The Anonymous Widower

Rolls-Royce Commences Series Production Of Hybrid-Ready MTU PowerPacks For Irish Rail

The title of this post, is the same as that of this article on CleanTechnica.

This is the introductory paragraph.

Rolls-Royce is to supply its very first series production MTU PowerPacks which are prepared for future use as hybrid traction units: Iarnród Éireann Irish Rail, the national railway operator of the Republic of Ireland, has ordered 41 of these MTU Hybrid-ready PowerPacks. Fitted with MTU 6H 1800 R86 engines, the PowerPacks comply with the EU Stage V emissions directives and each delivers 375 kW from the diesel engine as well as 150 kW from the electrical machine.

Later the aim would be to add batteries to the PowerPacks to make the trains fully hybrid.

I do think Rolls-Royce MTU might have a game-changer here.

  • You take a modern fleet of diesel multiple units like a British Class 170 trains or an Irish Class 22000 trains,
  • For starters you replace the old diesel engine, with a modern one that meets all the latest environmental regulations.
  • It surely helps both sales and engineering, when the old diesel engine was supplied by MTU.
  • Later you fit appropriately sized batteries to the PowerPack to create full hybrids with regenerative braking.

In Iarnród Éireann Orders Stage V MTU PowerPacks, I said this about fuel consumption and emissions.

The aim is to achieve a reduction of over thirty percent in both fuel consumption and carbon dioxide emissions.

I would suspect that with savings like that, the case for conversion might be an easy sell.

August 13, 2020 Posted by | Transport | , , | Leave a comment

Hitachi Rail To Acquire Perpetuum In Digital Expansion

The title of this post, is the same as that of this article on Railway Gazette.

This is the first two paragraphs.

Hitachi Rail Ltd has agreed to acquire Southampton-based condition monitoring specialist Perpetuum as part of a strategy to strengthen the use of digital technology in rail operations.

Established as a university spin-off less than a decade ago, Perpetuum developed the use of bogie-mounted self-powered vibration sensors to monitor the condition of rolling stock. Wireless equipment fitted to around 3 000 vehicles operating across three continents sends back real-time data about the performance of wheelsets, gearboxes, motors and bogies.

It seems to me, that Hitachi have bought an interesting company.

Let’s hope they develop the technology, but keep that development in Southampton.

August 13, 2020 Posted by | Business, Transport | , , | Leave a comment

Do We Need More New Measurement Trains?

In New Measurement Train – 30th July 2020, I said this.

With all the spare InterCity 125 trains at present, will Network Rail create a second train?

We have now had the tragic Stonehaven Derailment, where three have been sadly killed.

Increasingly, we seem to be getting weather-related problems on the UK’s railways.

I can remember several in the last few years.

So perhaps just as the Hatfield Crash led to the New Measurement Train, we should up our testing and the development of new tests.

Extra trains would increase the amount of testing, but also provide more laboratory space to test the testing systems in real railway conditions.

Perhaps, if a University or high-tech company has a feasible idea, there should be a mechanism, whereby they can rent space in the trains, just as they can on satellite launchers.

August 13, 2020 Posted by | Transport | , , | 2 Comments

Converting Class 456 Trains Into Two-Car Battery Electric Trains

Mark Hopwood is the interim Managing Director of South Western Railway and in Special Train Offers A Strong Case For Reopening Fawley Line, I quote him as saying the following about the trains for the Fawley Branch Line.

However, SWR’s Mark Hopwood favours a much bolder plan. “We’d have to take a decision, once we knew the line was going ahead. But my personal belief is that we should be looking for a modern environmentally-friendly train that can use third-rail electricity between Southampton and Totton and maybe operate on batteries down the branch line.”

Pressed on whether that would mean Vivarail-converted former-London Underground stock, Hopwood ads. “It could be. Or it could be a conversion of our own Class 456, which will be replaced by new rolling stock very shortly. But I don’t think this is the time to use old diesels.

Mark Hopwood is so right about using old diesels.

  • Where possible new and refurbished trains should be zero-carbon.
  • Fiesel is to be banned by 2035 in Scotland and 2040 in England and Wales.
  • Diesel trains and hydrogen trains for that matter need to refuelled.
  • Get the diagrams right and battery electric trains can be charged on existing electrification or automatic Fast Charging systems, when they turn back at terminal stations.
  • Electric trains attract passengers.
  • Battery electric trains are mouse-quiet!

Who would use anything else other than electric trains with a battery option for sections without electrification?

The Class 456 Train

These pictures show some of the twenty-four Class 456 trains, that are in South Western Railway’s fleet.

This is the specification of a Class 456 train.

  • Two cars
  • Operating speed – 75 mph.
  • Capacity – 152 seats – Although the plate on the train says 113!
  • Built 1990-1991
  • Ability to work in pairs.

Most trains seem to be used to lengthen trains from eight to ten cars, as some of the pictures shows. As these 4+4+2 formations will be replaced with new 10-car Class 701 trains or pairs of five-car Class 701 trains, the trains will be looking for a new role.

Does this explain Mark Hopwood’s statement?

It should be noted that the Class 456 trains are members of the Mark 3 family, and bare a strong resemblance to the Class 321 train, which are shown in these pictures.

Note that I have included the side view, as it shows the amount of space under these trains.

Some Class 321 trains are being converted to Class 600 hydrogen trains, by Alstom at Widnes. Others have been given a life-extending Renatus upgrade.

Are The Driver Cars Of Class 456 and Class 321 Trains Identical?

The trains may look similar, but does the similarity go deeper?

Could Alstom Use Class 600 Hydrogen Train Technology To Create A Class 456 Train With a Battery Capability?

Consider.

  • Alstom are positioning themselves as Train Upgrade Specialists in the UK. They have already signed a near billion pound deal to upgrade and maintain Avanti West Coast’s fleet of Class 390 trains.
  • Alstom are creating the Class 600 hydrogen train from withdrawn Class 321 trains.
  • A hydrogen-powered  train is basically a battery electric train with a hydrogen tank and fuel cell to charge the batteries.
  • The Class 600 train doesn’t appear to be making fast progress and is still without an order.
  • One possible hydrogen route must surely be London Waterloo and Exeter, so I suspect Alstom are talking to South Western Railway.
  • The Class 456 trains are owned by Porterbrook, who would probably like to extend the useful life of the trains.

Could it be that the battery core and AC traction package of Alstom’s hydrogen system for the Class 600 train can turn old British Rail-era electric multiple units into battery electric multiple units with a useful range?

It is certainly a possibility and one that is also within the capability of other companies in the UK.

Could The Class 456 Trains Receive a Class 321 Renatus Interior And Traction Package?

As Class 321 and Class 456 trains were built around the same time, the two trains must share components.

These pictures show the current interior of a Class 456 train.

This is excellent for a two-car electric multiple unit, built thirty years ago! Although, the refurbishment is more recent from 2014-15.

  • Note the wheel-chair space and the copious rubbish bins.
  • I also spotted a stowed wheel-chair ramp on the train. It can be seen if you look hard in the picture than shows the wheel-chair space.
  • Some might feel that toilets should be provided.

These pictures show the interior of a Class 321 train, that has been given the Renatus upgrade.

What is not shown is the more efficient AC traction package.

I have been told or read, that the Renatus interior will be used in the conversion of a Class 321 train to an Alstom Class 600 or Breeze hydrogen train.

On the other hand, the current Class 456 interior would probably be ideal for a branch line, where one of initial aims would be to attract passengers.

Could A Class 456 Train Have a Lightweight Traction Package?

Consider.

  • The Class 456 train will access electrification that is only 750 VDC third-rail.
  • Batteries work in DC.
  • The new traction motors will work in AC, if they follow the practice in the Class 321 Renatus and the Class 600 train.
  • Regenerative braking will charge the batteries in both trains.
  • Air-conditioning and other hotel services can work in DC.

Some components needed to run from 25 KVAC like a transformer could be left out to save weight and improve acceleration.

I would suspect that a Class 456 train with batteries could use a slimmed-down traction system from the Class 600 train.

On both Class 456 and 600 trains a core system, that would power the train, might contain.

  • The traction battery or batteries.
  • The traction motors that both drive and brake the train,
  • Third-rail electrification shoes, so that the batteries could be charged in a station, as required.
  • A clever computer system, that controls the acceleration, braking and charging as required.

On the Class 600 train, there would also be the following.

  • Hydrogen tanks and fuel cells to provide an independent power source to charge the batteries.
  • A pantograph to access 25 KVAC overhead electrification.
  • Extra electrical gear to access the electrification.

I think it would be possible to design the Class 456 train with batteries as the basic train and just add the extra  hydrogen and electrical gubbins to make it a Class 600 train.

What Battery Range And Size Would Be Needed In A Class 456 Train?

These are typical branch line lengths for South Western Railway.

  • Fawley Branch – 8 miles
  • Wareham and Swanage – 11 miles
  • Lymington Branch – 5.6 miles
  • Reading and Basingstoke – 15.5 miles

I would suspect that a range of thirty miles on battery power would be sufficient for a Class 456 train with batteries.

In an article in the October 2017 Edition of Modern Railways, which is entitled Celling England By The Pound, Ian Walmsley says this in relation to trains running on the Uckfield Branch, which is not very challenging.

A modern EMU needs between 3 and 5 kWh per vehicle mile for this sort of service.

So applying that formula gives battery capacity of between 180 kWh and 300 kWh.

In Issue 864 of Rail Magazine, there is an article entitled Scotland High Among Vivarail’s Targets for Class 230 D-Trains, where this is said.

Vivarail’s two-car battery units contains four 100 kWh lithium-ion battery rafts, each weighing 1.2 tonnes.

If 200 kWh can be placed under the floor of each car of a rebuilt London Underground D78 Stock, then I think it is reasonable that up to 200 kWh can be placed under the floor of each car of the proposed train.

This picture of the Driver Car of a Class 321 train, shows that there is quite a bit of space under those trains. Are the Class 456 trains similar?

If we assume that the Class 456 train can have the following specification.

  • Battery capacity of 200 kWh in both cars.
  • Regenerative braking to battery.
  • Power consumption of 4 kWh per vehicle mile.

I think we could be approaching a range of fifty miles on a route without too many energy-consuming stops.

Charging The Batteries

I like the Vivarail’s Fast Charge concept of using third-rail equipment to charge battery trains.

This press release from the company describes how they charge their battery electric Class 230 trains.

  • The system is patented.
  • The system uses a trickle-charged battery pack, by the side of the track to supply the power.
  • The first system worked with the London Underground 3rd and 4th rail electrification standard.

As the length of rails needed to be added at charging points is about a metre, installing a charging facility in a station, will not be the largest of projects.

Under How Does It Work?, the press release says this.

The concept is simple – at the terminus 4 short sections of 3rd and 4th rail are installed and connected to the electronic control unit and the battery bank. Whilst the train is in service the battery bank trickle charges itself from the national grid – the benefit of this is that there is a continuous low-level draw such as an EMU would use rather than a one-off huge demand for power.

The train pulls into the station as normal and the shoe-gear connects with the sections of charging rail. The driver need do nothing other than stop in the correct place as per normal and the rail is not live until the train is in place.

That’s it!

As an electrical engineer, I’m certain the concept could be adapted to charge the batteries of a conventional third-rail train.

Vivarail’s press release says this about modification to the trains.

The train’s shoe-gear is made of ceramic carbon so it is able to withstand the heat generated during the fast charge process.

That wouldn’t be a major problem to solve.

Class 456 Train With Batteries And Class 600 Train Compared

The following sub-sections will compare the trains in various areas.

Lightweight Design

As I suspect that the basic structure of the Class 456 and Class 600 trains are similar, systems like toilets, air-conditioning, traction motors and seats will be chosen with saving weight in mind.

Every kilogram saved will mean faster acceleration.

Operating Speed

The current Class 321 train is a 100 mph train, whilst the current Class 456 train is only a 75 mph train.

I wonder if applying the modern traction package of the Class 321 Renatus to the Class 456 train could speed the shorter train up a bit?

Range Away From Electrification

Alstom have quoted ranges of hundreds of miles for the Class 600 train on one filling of hydrogen, but I can’t see the Class 456 train with batteries doing much more than fifty miles on a full charge.

But using a Fast Charge system, I can see the Class 456 train with batteries fully-charging in under ten minutes.

Fast Charge systems at Romsey and Salisbury stations would surely enable the Class 456 trains with batteries to run the hourly service over the thirty-eight mile route between the two stations.

Passenger Capacity

The current Class 456 trains have a capacity of 152 seats.

In Orders For Alstom Breeze Trains Still Expected, I said this.

The three-car Alstom Breeze is expected to have a similar capacity to a two-car diesel multiple unit.

But until I see one in the flesh, I won’t have a better figure.

If South Western Railway were wanting to replace a two-car diesel Class 158 train, they’d probably accept something like 180 seats.

Increasing Passenger Capacity

There are compatible trailer cars around from shortening Class 321 trains from four to three cars and their may be more from the creation of the Class 600 trains.

I suspect that these could be added to both Class 456 and Class 600 trains to increase capacity by fifty percent.

As a two-car train, the Class 456 train might be a bit small, but putting in a third car, which had perhaps slightly more dense seating and possibly a toilet and even more batteries could make the train anything the operator needed.

Suitability For London Waterloo and Exeter via Salisbury

This is South Western Railway’s big need for a zero emission train.

  1. It is around 170 miles
  2. Only 48 miles are electrified.
  3. It is currently worked by three-car Class 159 trains working in pairs.
  4. Class 159 trains are 90 mph trains.

I have believed for some time, that with fast charging, a battery electric train could handle this route.

But, I would feel that.

  • Class 456 trains would be too slow and too small for this route.
  • Class 600 trains would be too small for this route.

On the other hand, I believe that Hitachi’s Class 800 train with a battery electric capability or Regional Battery Train, which is described in this infographic from the company, could be ideal for the route.

The proposed 90 km or 56 mile range could even be sufficient take a train between Salisbury and Exeter with a single intermediate charge at Yeovil Junction station, where the trains wait up to ten minutes anyway.

There are other reasons for using Hitachi’s Regional Battery Train rather than Class 600 trains.

  • First Group have a lot of experience of running Hitachi Class 80x trains, through their various subsidiaries.
  • They could share depot facilities at Exeter.
  • No specialist facilities would be needed.
  • A five-car Class 801 with batteries would have a convenient 300 seats.
  • I suspect they could be delivered before Alstom’s Class 600 train.

As the only new infrastructure required would be Fast Charge facilities at Salisbury and Yeovil Junction stations, I feel that Hitachi’s Regional Battery Train, should be a shoe-in for this route.

First Delivery

The Wikipedia entry for the Class 600 train, says introduction into traffic could be in 2024. Given, the speed with which Greater Anglia’s Class 321 trains were updated to the Renatus specification, we could see Class 456 trains with a battery capability and new interiors running well before 2024.

A Few Questions

These questions have occurred to me.

Could The Technology Be Used To Create A Class 321 Battery Electric Train?

I don’t see why not!

I believe a Class 321 battery electric train could be created with this specification.

  • Three or four cars. Remember the Class 320 train is a three-car Class 321 train.
  • 100 mph operating speed.
  • Regenerative braking to the batteries.
  • Renatus or operator-specified interior.
  • Toilet as required.
  • Electrification as required.
  • Battery range of around sixty miles.
  • Ability to use a Fast Charge system, that can easily be installed in a terminal platform.

Trains could be tailored to suit a particular route and/or operator.

Any Other Questions?

If you have any other questions, send them in and I’ll add them to this section.

Conclusion

It does appear that if the Class 456 trains, were to be fitted with a battery capability, that they would make a very useful two-car battery electric train, with the following specification.

  • Two cars
  • Operating speed – 75 mph. This might be a bit higher.
  • Capacity – 152 seats
  • Ability to work in pairs.
  • Modern interior
  • Range of 45-50 miles on batteries.
  • Ability to charge batteries in ten minutes in a station.
  • Ability to charge batteries on any track with 750 VDC third-rail electrification.

This is the sort of train, that could attract other operators, who don’t have any electrification, but want to electrify short branch lines.

 

 

 

August 12, 2020 Posted by | Energy Storage, Hydrogen, Transport | , , , , , , , , | 6 Comments

Special Train Offers A Strong Case For Reopening Fawley Line

The title of this post is the same as that of an article in Issue 911 of Rail Magazine.

This is the opening paragraph.

On July 28, a South Western Railway train ran along the Fawley Branch Line. to make the case for reopening to passenger services after a 54-year gap.

On board were the Rail Minister; Chris Heaton-Harris, Network Rail Chairman; Sir Peter Hendy, Managing Director of South Western Railway; Mark Hopwood and Lord Montagu of Beulieu.

The article reports the trip and fills in more of the details, that make more sense of my sketchy post called Reintroduction Of Passenger Rail Services On The Waterside Line.

These are some points from the article.

The Infrastructure Needs Updating

This is a quote from the article.

The route has a line speed of 30 mph, with lower speed restrictions at level crossings, some of which are still hand-operated. Semaphore signals operated from by mechanical levers from Marchwood remain in use. A token is given to the driver to allow the train to run towards Fawley. All this would require updating.

Elsewhere the article says there are ten level crossings.

Housing Is The Game Changer

This is another quote from the article.

The big change is urban sprawl. In the half century since passenger services ended, housing estates for thousands of people have been built alongside the line. mostly for commuters into Southampton and the surrounding conurbation.

Up to 5,000 further new homes are planned, including an all-new small town on the site of the former Fawley power station on the southern tip of Southampton Water. Planning permission for at least 1,300 homes was granted the very evening before the Fawley train ran.

This Google Map shows the the town of Hythe and the giant Fawley Refinery.

Note.

  1. Hythe is towards the top of the map on Southampton Water.
  2. The refinery is the large beige blob in the middle on Southampton Water.
  3. The Fawley Branch runs close to the water and finishes inside the secure fence of the refinery.
  4. There will be stations at Marchwood, Hythe Town and Hythe & Fawley Parkway.
  5. The parkway station will be to the North of the refinery.
  6. The major housing site is on the former Fawley power station site, which is the Southernmost beige blob.
  7. The blue dot towards the West indicates the National Motor Museum at Beaulieu.

It looks to me, that an electric shuttle bus between Hythe & Fawley Parkway, Beaulieu and the various housing sites would be a good idea.

The Cost Of The Scheme

This is another quote from the article.

The campaign to open the line has been spearheaded by the Three Rivers Community Rail Partnership.

Chairman Nick Farthing says:

“For £45m, you get the track, signalling and level crossings sorted. You get a 60 mph railway with three stations = upgrading Marchwood, a new station for Hythe, and Fawley park-and-ride (just beyond Holbury, where Hardley Halt used to be).

“Three Rivers commissioned a level crossing study from Network Rail, so we know what has to be done. We’ve used a rail-approved contractor to work out how much the three stations will cost.

Three Rivers have also identified some affordable diesel rolling stock.

South Western Railway’s Innovative Train Plan

This is another quote from the article.

However, SWR’s Mark Hopwood favours a much bolder plan. “We’d have to take a decision, once we knew the line was going ahead. But my personal belief is that we should be looking for a modern environmentally-friendly train that can use third-rail electricity between Southampton and Totton and maybe operate on batteries down the branch line.”

Pressed on whether that would mean Vivarail-converted former-London Underground stock, Hopwood ads. “It could be. Or it could be a conversion of our own Class 456, which will be replaced by new rolling stock very shortly. But I don’t think this is the time to use old diesels.

Converting Class 456 Trains Into Two-Car Battery Electric Trains discusses this conversion in detail.

Conclusion

This plan seems to be coming together strongly.

All the partners like Three Rivers Community Rail Partnership, Network Rail, South Western Railway and other local interests seem to be acting together and very professionally.

 

 

August 11, 2020 Posted by | Transport | , , , , , , , | 1 Comment

Hydrogen Can Be Transported By Rail, German Railway Company Says

The title of this post, is the same as that of this article on PV Magazine.

This is the introductory paragraph.

A study by DB Energie shows that technically and legally there is nothing to be said against the transport of hydrogen by rail. However, there is still a lack of suitable transport containers.

I suppose though the lack of suitable transport containers makes it a bit difficult.

August 11, 2020 Posted by | Hydrogen, Transport | , | Leave a comment

Beeching Reversal – Reinstatement of Bolton-Radcliffe / Bolton – Bury

This is one of the Beeching Reversal projects that the Government and Network Rail are proposing to reverse some of the Beeching cuts.

This article in the Bury Times is entitled Plans For Bolton Metrolink Route To Radcliffe See New Bid Submitted. This is the introductory paragraphs.

A bid to secure funding for a tram link between Bolton and Radcliffe has been submitted to the government.

Mark Logan, the MP for Bolton North East, hopes to secure part of the Department for Transport’s £500m Restoring Your Railway Ideas Fund to connect the town to the major public transport network.

The proposal submitted shows Metrolink connecting Bolton, Radcliffe and Bury by reviving an existing disused track bed; bridging the gap between some of the more deprived areas along the route.

This Google Map shows the triangular area between Bolton, Radcliffe and Bury.

Note.

  1. Bolton is just off the Western edge of the map.
  2. Bury is in the North East corner of the map.
  3. Radcliffe is at the Southern edge of the map, close to the point of the triangular green space.
  4. There is already a Metrolink line between Bury and Radcliffe.

If you look at this map on a larger scale, you can see the scars of old railway lines between Bolton and Bury and Bolton and Radcliffe.

I will take a more detailed look at this proposal.

Bolton

This Google Map shows the Western point of the triangle, where it connects towards Bolton.

Note.

  1. The disused railway appears to run South of the Bradley Fold Trading Estate.
  2. It then split into two branches in the middle of the map.
  3. The Northern branch goes off in a North-Easterly direction to Bury.
  4. The Southern branch goes off in a South-Easterly direction to Radcliffe.

I’ve followed the route of the disused railway to the West and it goes all the way to the centre of Bolton.

This Google Map shows between Bolton and Bradley Fold.

This railway used to be part of the Liverpool and Bury Railway. This map, which has been clipped from Wikipedia, shows the route.

This information came in a comment from FS (Thanks!) and there are some interesting bridges and viaducts on the route.

Looking at the route from my virtual helicopter, much of the route between Bolton and Radcliffe, is now a walking and cycle route, so there will have to be some careful design to get shared use right.

Radcliffe

This Google Map shows the Radcliffe point of the triangle.

Note.

  1. The Bury Line of the Manchester Metrolink runs down the Eastern side of the map.
  2. The Radcliffe tram stop, with its Park-and-Ride is in the South-East corner of the map.
  3. The disused railway from Bolton joins the map in the North-West corner.

This Google Map avows the Radcliffe tram stop.

I don’t think it would be the most challenging of projects to connect the Radcliffe tram stop to a tram branch to and from Bolton.

  • There seems to be plenty of space on both sides of the main road.
  • Extra platforms could probably be added for Bolton trams if required.

Although, there could be problems threading the route, through the new housing and over the viaducts and bridges.

Bury

This Google Map shows the South-West approaches to Bury.

Note.

  1. Bury Interchange is in the North-East corner of the map.
  2. The tracks and sidings of the East Lancashire Railway can be seen running South-West from the centre of Bury.
  3. The proposed line from Bolton enters the map in the South West corner.

Where will the new line terminate, as getting across the town might be expensive?

New Tram Stops

There is a Wikipedia entry, which is entitled Proposed Developments Of Manchester Metrolink, which says nothing about the Bolton – Radcliffe and Bolton – Bury Lines.

But it does indicate, there may be two new stops between Bury Interchange and Radcliffe tram stop.

Buckley Wells

The Wikipedia entry for Buckley Wells tram stop says this.

Buckley Wells is a proposed tram stop on the Bury Line of Greater Manchester’s Metrolink light rail system. It is to be between Bury Interchange and Radcliffe Metrolink station, in the Buckley Wells area of Bury, north of Fishpool and south of Bury town centre.

The proposed site of Buckley Wells stop, by the A56 road, is owned by Transport for Greater Manchester, was proposed in 2003, offering (in addition to the Metrolink stop and services for southern Bury) a park and ride facility, and opportunity to provide an interchange with the East Lancashire Railway.

This Google Map shows the wider area of the site.

Note.

  1. The Bury Line of the Manchester Metrolink runs SW-NE across the map.
  2. The A56 Manchester Road runs roughly North-South and crosses over the Bury Line.
  3. The tracks and sidings of the East Lancashire Railway, can be seen in the North-West corner of the map.
  4. The main route of the East Lancashire Railway can be seen crossing the Bury Line in the North-East corner of the map.

If you follow the Bury Line back towards Manchester, there is a connection between the Manchester Methrolink and the East Lancashire Railway.

Elton Reservoir

The Wikipedia entry for Elton Reservoir tram stop says this.

Elton Reservoir, also known as Warth, is a proposed tram stop on the Bury Line of Greater Manchester’s Metrolink light rail system. It is to be located between Bury Interchange and Radcliffe Metrolink station, southeast of Elton Reservoir and south of Bury town centre.

This Google map shows the wider area of the site.

Note.

  1. The Bury Line runs North-South from the North-East corner of the map.
  2. The stop is being proposed for new housing, that might be built in the area.

It should be noted that the proposed Bolton – Bury tram line would run on the reservoir side of the houses in the North-West corner of the map.

Infrastructure

On a quick look, the two new lines and the two new tram stops, don’t appear to be too challenging.

The only parts that appear difficult might be.

  • Running the trams between Bolton Town Centre and Bradley Fold.
  • Running the trams into Bury Town Centre.
  • Some of the Radcliffe route seems to have been built on.

But there doesn’t seem to be any bridges over major roads or waterways.

Conclusion

There is a lot to like about these two new tram routes.

August 10, 2020 Posted by | Transport | , , , , | 3 Comments

Freight Tram-Train To Be Tested In Karlsruhe

The title of this post is the same as that of this article on Railway Gazette.

This is the introductory paragraph.

Trials with a prototype freight tram or tram-train are to start in Karlsruhe and the surrounding area in 2022. The concept is being drawn up with a view to improving urban life by reducing road traffic and the emissions it generates.

There are other cargo trams in Germany, like the CarGoTram in Dresden and I think it is a concept, we’ll see in other places.

In High Speed Urban Freight Logistics By Rail, I wrote about Rail Operations Group’s plans to run freight services between London Gateway and Liverpool Street station.

It may be different technology, but it has similar objectives.

August 10, 2020 Posted by | Transport | , , , | Leave a comment

Liverpool’s Forgotten Tunnel

The Wapping Tunnel in Liverpool was designed by George Stephenson and was the first tunnel in the world to be bored under a city.

It used to take goods trains between Liverpool Docks and the Liverpool and Manchester Line.

During the 1970s preparations were made to connect the Wapping Tunnel to Merseyrail’s Northern Line, so that trains could run between the Northern Line and the City Line, which would have connected the North and East of the City.

But the project was never completed.

It now appears, the project is on the agenda again.

This article on TransportExtra is entitled Liverpool CR Develops Plan To Boost City Centre Rail Capacity.

The plan outlined is as follows.

  • At present, as many as two thirds of trains on the Northern Line turn back as Liverpool Central station.
  • Between four and eight trains per hour (tph) could be diverted into the Wapping Tunnel to serve places like St. Helens, Warrington Central and Wigan.
  • This would free up platforms in Liverpool Lime Street station for Inter-City and Inter-Regional services.

It is also pointed out, that a 2016 study, didn’t find any serious technical problems with the project.

I do have my thoughts on this project.

Services That Could Be Connected

Local services running from Liverpool Lime Street station include.

Manchester Oxford Road Via Warrington Central

This service is run by Northern.

  • It has a frequency of two tph.
  • One service calls at Edge Hill, Mossley Hill, West Allerton, Liverpool South Parkway, Hunts Cross, Halewood, Hough Green, Widnes, Sankey For Penketh, Warrington West, Warrington Central, Birchwood, Irlam, Urmston and Deansgate.
  • The other service calls at Mossley Hill, West Allerton, Liverpool South Parkway, Hough Green, Widnes, Warrington Central, Padgate, Birchwood, Glazebrook, Irlam, Flixton, Chassen Road (1tp2h), Urmston, Humphrey Park, Trafford Park and Deansgate
  • Both trains appear to take the same route.
  • Some stations like Liverpool South Parkway, Warrington West and Deansgate have lifts, but disabled access is patchy.
  • The service has a dedicated terminal at Manchester Oxford Road, which is without doubt Manchester’s worst central station for location, access to the Metrolink, onward travel and step-free access.
  • It takes seventy-two minutes. which is an inconvenient time for train operators.
  • The route is electrified with 25 KVAC overhead electrification at both ends.

I’ve used this route several times and usually pick it up from Deansgate, as it has a convenient interchange to the Metrolink.

I am fairly certain that Merseyrail’s new Class 777 trains running on battery power in the middle could handle this route.

  • They would charge the batteries at the electrified ends of the route.
  • They would join the route at Edge Hill station.
  • They would offer step-free access between train and platform.
  • These trains are built for fast stops, so could all services call at all stations?
  • On Merseyrail’s principles, the service would probably be at least two tph, if not four tph.

I estimate that these trains are fast enough to do the return trip between the Wapping Tunnel portal at Edge Hill and Manchester Oxford Road in under two hours.

  • A two-four tph stopping service between Liverpool and Manchester City Centres, that took less than an hour, would be very convenient for passengers.
  • The service would be well-connected to local tram, train and bus services in both City Centres.
  • The service would also very easy for train schedulers to integrate with other services.

Liverpool and Manchester would have the world’s first battery-powered inter-city railway.

Other than the connection of the Wapping Tunnel no extra infrastructure works would be needed.

Wigan North Western Via St. Helens Central

This service is run by Northern.

  • It has a frequency of two tph.
  • The service calls at Edge Hill, Wavertree Technology Park, Broad Green, Roby, Huyton, Prescot, Eccleston Park, Thatto Heath, St Helens Central, Garswood and Bryn
  • The route is fully-electrified with 25 KVAC overhead.
  • It takes fifty-one minutes. which is a very convenient time for train operators.

Merseyrail’s new Class 777 trains could handle this route, if fitted with pantographs for 25 KVAC overhead electrification.

  • They would join the route at Edge Hill station.
  • They would offer step-free access between train and platform.
  • On Merseyrail’s principles, the service would probably be at least two tph, if not four tph.

I estimate that these trains are fast enough to do the return trip between the Wapping Tunnel portal at Edge Hill and Wigan North Western in under two hours.

  • A two-four tph stopping service between Liverpool and Wigan, that took less than an hour, would be very convenient for passengers.
  • Wigan North Western has good connections using the West Coast Main Line.
  • The service would also very easy for train schedulers to integrate with other services.

Other than the connection of the Wapping Tunnel no extra infrastructure works would be needed.

Blackpool North

This service is run by Northern.

  • It has an hourly frequency.
  • The service calls at Huyton, St Helens Central, Wigan North Western, Euxton Balshaw Lane, Leyland, Preston, Kirkham & Wesham and Poulton-le-Fylde
  • The route is fully-electrified with 25 KVAC overhead.
  • It takes seventy-seven minutes. which is a reasonable time for train operators.

This is a service that could continue as now, but would probably be timed to fit well with four Merseyrail trains between the Wapping Tunnel and Wigan North Western.

Manchester Airport Via Warrington Central And Manchester Piccadilly

This service is run by Northern.

  • It has an hourly frequency.
  • The service calls at Liverpool South Parkway, Warrington West, Warrington Central, Birchwood, Manchester Oxford Road, Manchester Piccadilly and Mauldeth Road
  • The route is partially-electrified with 25 KVAC overhead.
  • The service is operated by diesel trains.
  • The service uses the overcrowded Castlefield Corridor.
  • It takes sixty-nine minutes, which is an inconvenient time for train operators.

This is one of those services, which I think will eventually be partially replaced by other much better services.

  • Northern Powerhouse Rail is planning six tph between Liverpool Lime Street and Manchester Piccadilly via Warrington South Parkway and Manchester Airport, which will take just twenty-six minutes.
  • Two-four tph on the route between Liverpool Lime Street and Manchester Oxford Road via Warrington Central would be a better service for the smaller stations. Passengers going to and from Manchester Airport would change at Liverpool Lime Street, Deansgate or Manchester Oxford Road.

Continuing as now, would definitely be possible.

Crewe And Manchester Airport Via Newton-le-Willows And Manchester Piccadilly

This service is run by Northern.

  • It has an hourly frequency.
  • The service calls at Edge Hill, Wavertree Technology Park, Broad Green, Roby, Huyton, Whiston, Rainhill, Lea Green, St Helens Junction, Earlestown, Newton-le-Willows, Patricroft, Eccles, Deansgate, Manchester Oxford Road, Manchester Piccadilly, Mauldeth Road, Burnage, East Didsbury, Gatley and Heald Green.
  • The route is fully-electrified with 25 KVAC overhead.
  • The service uses the overcrowded Castlefield Corridor
  • It takes eighty-five minutes, which is an inconvenient time for train operators.

This is one of those services, which I think will eventually be partially replaced by other much better services.

  • Northern Powerhouse Rail is planning six tph between Liverpool Lime Street and Manchester Piccadilly via Warrington South Parkway and Manchester Airport, which will take just twenty-six minutes.
  • Two-four tph on the route between Liverpool Lime Street and Wigan North Western would be a better service for the smaller stations. Passengers going to and from Manchester Airport and Crewe would change at Liverpool Lime Street or Wigan North Western.

Continuing as now, would definitely be possible.

Warrington Bank Quay Via Earlstown

This service is run by Northern.

  • It has an hourly frequency.
  • The service calls at Edge Hill, Wavertree Technology Park, Broad Green, Roby, Huyton, Whiston, Rainhill, Lea Green, St Helens Junction and Earlestown.
  • The route is fully-electrified with 25 KVAC overhead.
  • The service takes forty-three minute, which is a convenient time for train operators.

Merseyrail’s new Class 777 trains could handle this route, if fitted with pantographs for 25 KVAC overhead electrification.

  • They would join the route at Edge Hill station.
  • They would offer step-free access between train and platform.
  • On Merseyrail’s principles, the service would probably be at least two tph, if not four tph.

Other than the connection of the Wapping Tunnel no extra infrastructure works would be needed.

Three Possible Routes Through Wapping

Summing up this section, these are possible routes that could be replaced by services through the Wapping Tunnel.

  • Two tph – Manchester Oxford Road
  • Two tph – Warrington Bank Quay
  • One tph – Wigan North Western

Increasing the Wigan North Western service to two tph, would increase the frequency between Edge Hill and Huyton to a very passenger-friendly four tph.

If eight tph could be accommodated in the Wapping Tunnel, the frequency could also be doubled to Manchester Oxford Road.

This would give the following services through the Wapping Tunnel.

  • Four tph – Manchester Oxford Road
  • Two tph – Warrington Bank Quay
  • Two tph – Wigan North Western

The only local services that would need to run into Liverpool Lime Street would be.

  • One tph – Northern – Blackpool North via Wigan North Western.
  • One tph – Northern – Manchester Airport and Crewe via St. Helens and Newton-le-Willows.
  • One tph – Northern – Manchester Airport via Warrington Central.
  • One tph – Trains for Wales – Chester via Runcorn

I can understand, why so many seem to be enthusiastic about using the Wapping Tunnel to connect the Northern and City Lines.

Echoes Of The Brunels’ Thames Tunnel

George Stephenson’s Wapping Tunnel may be the first tunnel under a city, but the Brunels’ Thames Tunnel was the first under a navigable river.

The Brunels’ tunnel was built for horses and carts, but today it is an important rail artery of the London Overground, handling sixteen tph between Wapping and Rotherhithe.

I would expect that the Wapping Tunnel could do for Liverpool, what the Thames Tunnel has done for East London.

Modern signalling techniques probably mean that the theoretical capacity of the Wapping Tunnel is way in excess of the planned maximum frequency of eight tph.

High Speed Two Between Liverpool And London

The latest High Speed Two plans as laid out in the June 2020 Edition of Modern Railways, say that there will be two tph between Liverpool Lime Street and London Euston.

  • Both trains will call at Old Oak Common, Crewe and Runcorn.
  • Both trains will be 200 metres long classic-compatible High Speed Two trains.
  • One train will split and join with a similar service between London Euston and Lancaster.

Will these High Speed Two services replace the current Avanti West Coast services?

Northern Powerhouse Rail Between Liverpool And Manchester

In Changes Signalled For HS2 Route In North, I looked at Transport for the North’s  report, which is entitled At A Glance – Northern Powerhouse Rail.

This report says that Northern Powerhouse Rail between Liverpool and Manchester Piccadilly will be as follows.

  • Services will go via Manchester Airport.
  • There could be a new Warrington South Parkway station.
  • Six tph between Liverpool and Manchester via Manchester Airport and Warrington are planned.
  • Journey times will be 26 minutes.

I would assume that several of the six tph will continue across the Pennines to Huddersfield, Bradford, Leeds, York and Hull.

Will these Northern Powerhouse Rail services replace the current TransPennine and some of the Northern services?

Northern Powerhouse Rail Trains

Nothing has been said about the trains for Northern Powerhouse Rail.

I suspect they will be versions of the 200 metre long classic-compatible High Speed Two trains.

I do wonder, if Avanti West Coast have already ordered a prototype fleet of these trains,

Look at the specification of the Class 807 trains, they have ordered to boost services on the West Coast Main Line.

  • 7 x 26 metre cars.
  • 182 metres long. Shorter than an eleven-car Class 390 train.
  • All-electric, with no diesel engines or traction batteries. Are they lightweight trains with sparkling acceleration?
  • 125 mph operating speed. All Class 80x trains can do this.
  • 140 mph operating speed with ERTMS digital signalling. All Class 80x trains can do this.
  • Ability to work in pairs. All Class 80x trains can do this, up to a maximum length of twelve cars in normal mode and twenty-four cars in emergency mode. I doubt fourteen cars would be a problem!

To be classic-compatible High Speed Two trains, they would need to be able to cruise at 205 mph, whilst working on High Speed Two. I suspect that Hitachi have got some higher-capacity electrical gear and traction motors with lots more grunt in their extensive parts bin!

If these are a prototype fleet of classic-compatible High Speed Two trains, they will certainly get a lot of in-service testing even before the order is placed for the trains for High Speed Two.

Northern Powerhouse Rail will need trains with a slightly different specification.

  • As they won’t generally work on high speed lines, for most trains an operating speed of 140 mph will be sufficient.
  • For serving some destinations like Cleethorpes, Harrogate, Hull, Middlesbrough and Redcar an independently-powered capability would be desirable. Sixty miles on batteries would probably be sufficient!

Nothing would appear to be out of Hitachi’s current capabilities.

Liverpool Lime Street Station After Remodelling

Liverpool Lime Street station has two groups of platforms.

  • Platforms 1-5 on the Western side
  • Platforms 6-10 on the Eastern side.

These pictures show some views of the platforms at Liverpool Lime Street station after the remodelling of 2017-2019.

Note,

  1. The platforms are not narrow!
  2. It appears that the five platforms in the Eastern group are all long enough to take an eleven-car Class 390 train, which is 265.3 metres long.
  3. TransPennine Express trains can use the Western group.

I have looked at a whole day’s traffic on Real Time Trains and it appears that the new track layout allows almost all services to use any available platform.

This flexibility must make operation of the station much easily than it was!

Liverpool Lime Street Station As A High Speed Station

It would appear that the Eastern Group of Platforms 6-10 will all be capable of the following.

  • Handling a 182 metre long Avanti West Coast Class 807 train.
  • Handling a 200 metres long classic-compatible High Speed Two train.
  • Handling a 130 metre long TransPennine Express Class 802 train.
  • In the future, handling a Northern Powerhouse Rail train, which will probably be less than 200 metres long.

But they won’t be able to handle High Speed Two’s full-size trains.

Currently, these services capable of over 125 mph are running or are planned from Liverpool Lime Street station.

  • 2 tph – Avanti West Coast – Liverpool Lime Street and London Euston
  • 1 tph – TransPennine Express – Liverpool Lime Street and Newcastle
  • 1 tph – TransPennine Express – Liverpool Lime Street and Scarborough
  • 3 trains per day(tpd) – TransPennine Express – Liverpool Lime Street and Glasgow

This totals to four tph.

High Speed Two will add two classic-compatible High Speed Two trains.

Will these replace the two Avanti West Coast services?

  • They will be run by the same company.
  • They will take different routes.
  • The current service takes 134 minutes.
  • The High Speed Two train will take 94 minutes.

I can see Avanti West Coast running a  one tph slower train via stations with difficult connections to Liverpool Lime Street. Think Watford Junction, Milton Keynes, Rugby, Stafford and Stoke-on-Trent.

This would bring the total to five tph.

Northern Powerhouse Rail will run six high speed trains to Manchester and beyond.

If they replaced the two TransPennine Express services, that would bring the maximum number of 200 metre long high speed trains to nine tph.

Could Liverpool Lime Street station handle nine high-speed tph?

Comparison With Birmingham Curzon Street Station

Birmingham Curzon Street station on High Speed Two will handle high speed trains from three directions, as will Liverpool Lime Street station.

The Birmingham station will handle nine tph on seven platforms.

As Liverpool Lime Street station will have ten platforms and also need to handle nine tph, I think it will be able to handle the trains.

Will There Be A Station In The Wapping Tunnel?

Just as London has its clay, which makes excavating for the Underground easy, the Centre of Liverpool has its sandstone, which has been honeycombed with tunnels. In addition to the Wapping Tunnel, there are two other tunnels from Edge Hill station to the Docks; the Waterloo Tunnel and the Victoria Tunnel.

Liverpool has plans for a Knowledge Quarter based on the Universities on Brownlow Hill.

As part of the development, it is intended to develop an area called Paddington Village.

Wikipedia says this about the village.

Paddington Village is a site at the eastern gateway to the city centre and has been earmarked as 1.8m sq ft of science, technology, education and health space.

This is also another paragraph.

Liverpool Mayor Joe Anderson announced that the council were looking into a new Merseyrail station to serve the site. A mention of a station is made in the October 2017 Liverpool City Region Combined Authority update to the Long Term Rail Strategy. Merseytravel commissioned a feasibility report into re-opening the Wapping Tunnel in May 2016 which found that it was a valid proposal which would allow for a new station to be built that could serve the Knowledge Quarter.

Someone has thought up a proposal for a Lime Line, which would be a tram or bus system, linking the Knowledge Quarter and the City Centre.

This map shows how their proposal fits in with all the other rail systems in Liverpool City.

Note the Wapping Tunnel is shown on the map, as a dotted blue line.

  • It connects to the Northern Line to the South of Liverpool Central station.
  • It connects to the City Line to the West of Edge Hill station.
  • A station named University/KQ is shown.

A new St. James station is also shown

Conclusion

Using the Wapping Tunnel to increase capacity in Liverpool City Centre could be used if required to improve capacity for the high speed network in the city, by removing local trains from Liverpool Lime Street station.

August 8, 2020 Posted by | Transport | , , , , , , , , , | 17 Comments

1-in-11,000 Chance Of Contracting COVID-19 On Trains

The title of this post, is the same as that of this article on Rail Magazine.

That looks like a chance I’ll take!

August 7, 2020 Posted by | Health, Transport | , | 1 Comment