The Anonymous Widower

All Platforms Should Be Wide Like This

It is my view, that all platforms, like this one at Angel station should be wide.

Consider,

  • It must be less likely, that passengers get knocked onto the tracks.
  • Wide platforms must be easier for all passengers to navigate.
  • Blind people with of without guide dogs must find it easier.

Let’s see a few more. And with step-free access between platform and train!

January 9, 2021 Posted by | Transport | , | 8 Comments

Hitachi Targets Next Year For Testing Of Tri-Mode IET

The title of this post, is the same as that of this article on Rail Magazine.

This is the first two paragraphs.

Testing of a five-car Hitachi Class 802/0 tri-mode unit will begin in 2022, and the train could be in traffic the following year.

It is expected that the train will save more than 20% of fuel on Great Western Railway’s London Paddington-Penzance route.

This is the Hitachi infographic, which gives the train’s specification.

I have a few thoughts and questions.

Will The Batteries Be Charged At Penzance?

Consider.

  • It is probably not a good test of customer reaction to the Intercity Tri-Mode Battery Train, if it doesn’t work on batteries in stations through Cornwall.
  • Every one of the eight stops in Cornwall will need an amount of battery power.
  • London trains seem to take at least half-an-hour to turn round at Penzance.
  • London trains seem to take around 7-13 minutes for the stop at Plymouth.

So I think, that batteries will probably need to be charged at Penzance and possibly Plymouth, to achieve the required battery running,

There is already sufficient time in the timetable.

A charging facility in Penzance station would be a good test of Hitachi’s method to charge the trains.

Will Hyperdrive Innovation’s Battery Pack Be A Simulated Diesel Engine?

At the age of sixteen, for a vacation job, I worked in the Electronics Laboratory at Enfield Rolling Mills.

It was the early sixties and one of their tasks was at the time replacing electronic valve-based automation systems with new transistor-based systems.

The new equipment had to be compatible to that which it replaced, but as some were installed in dozens of places around the works, they had to be able to be plug-compatible, so that they could be quickly changed. Occasionally, the new ones suffered infant-mortality and the old equipment could just be plugged back in, if there wasn’t a spare of the new equipment.

So will Hyperdrive Innovation’s battery-packs have the same characteristics as the diesel engines that they replace?

  • Same instantaneous and continuous power output.
  • Both would fit the same mountings under the train.
  • Same control and electrical power connections.
  • Compatibility with the trains control computer.

I think they will as it will give several advantages.

  • The changeover between diesel engine and battery pack could be designed as a simple overnight operation.
  • Operators can mix-and-match the number of diesel engines and battery-packs to a given route.
  • As the lithium-ion cells making up the battery pack improve, battery capacity and performance can be increased.
  • If the computer, is well-programmed, it could reduce diesel usage and carbon-emissions.
  • Driver conversion from a standard train to one equipped with batteries, would surely be simplified.

As with the diesel engines, all battery packs could be substantially the same across all of Hitachi’s Class 80x trains.

How Many Trains Can Eventually Be Converted?

Great Western Railway have twenty-two Class 802/0 trains.

  • They are five-cars.
  • They have three diesel engines in cars 2, 3 and 4.
  • They have a capacity of 326 passengers.
  • They have an operating speed of 125 mph on electrification.
  • They will have an operating speed of 140 mph on electrification with in-cab ERTMS digital signalling.
  • They have an operating speed of 110 mph on diesel.
  • They can swap between electric and diesel mode at line speed.

Great Western Railway also have these trains that are similar.

  • 14 – nine-car Class 802/1 trains
  • 36 – five-car Class 800/0 trains
  • 21 – nine-car Class 800/3 trains

Note.

  1. The nine-car trains have five diesel engines in cars 2,3, 5, 7 and 8
  2. All diesel engines are similar, but those in Class 802 trains are more powerful, than those in Class 800 trains.

This is a total of 93 trains with 349 diesel engines.

In addition, there are these similar trains in service or on order with other operators.

Note.

  1. Class 801 trains have one diesel engine for emergency power.
  2. Class 803 trains have no diesel engines, but they do have a battery for emergency power.
  3. Class 805 trains have an unspecified number of diesel engines. I will assume three.
  4. Class 807 trains have no batteries or diesel engines.
  5. Class 810 trains have four diesel engines.

This is a total  of 150 trains with 395 diesel engines.

The Rail Magazine finishes with this paragraph.

Hitachi believes that projected improvements in battery technology, particularly in power output and charge, could enable diesel engines to be incrementally replaced on long-distance trains.

Could this mean that most diesel engines on these Hitachi trains are replaced by batteries?

Five-Car Class 800 And Class 802 Trains

These trains are mainly regularly used to serve destinations like Bedwyn, Cheltenham, Chester, Harrogate, Huddersfield, Hull, Lincoln, Oxford and Shrewsbury, which are perhaps up to fifty miles beyond the main line electrification.

  • They have three diesel engines, which are used when there is no electrification.
  • I can see many other destinations, being added to those reached by the Hitachi trains, that will need similar trains.

I suspect a lot of these destinations can be served by five-car Class 800 and Class 802 trains, where a number of the diesel engines are replaced by batteries.

Each operator would add a number of batteries suitable for their routes.

There are around 150 five-car bi-mode Hitachi trains in various fleets in the UK.

LNER’s Nine-Car Class 800 Trains

These are mainly used on routes between London and the North of Scotland.

In LNER Seeks 10 More Bi-Modes, I suggested that to run a zero-carbon service to Inverness and Aberdeen, LNER might acquire rakes of carriages hauled by zero-carbon hydrogen electric locomotives.

  • Hydrogen power would only be used North of the current electrification.
  • Scotland is looking to have plenty of hydrogen in a couple of years.
  • No electrification would be needed to be erected in the Highlands.
  • InterCity 225 trains have shown for forty years, that locomotive-hauled trains can handle Scottish services.
  • I also felt that the trains could be based on a classic-compatible design for High Speed Two.

This order could be ideal for Talgo to build in their new factory at Longannet in Fife.

LNER’s nine-car Class 800 trains could be converted to all-electric Class 801 trains and/or moved to another operator.

There is also the possibility to fit these trains with a number of battery packs to replace some of their five engines.

If the planned twenty percent fuel savings can be obtained, that would be a major improvement on these long routes.

LNER’s Class 801 Trains

These trains are are all-electric, but they do have a diesel engine for emergencies.

Will this be replaced by a battery pack to do the same job?

  • Battery packs are probably cheaper to service.
  • Battery packs don’t need diesel fuel.
  • Battery packs can handle regenerative braking and may save electricity.

The installation surely wouldn’t need too much test running, as a lot of testing will have been done in Class 800 and Class 802 trains.

East Coast Trains’ Class 803 Trains

These trains have a slightly different powertrain to the Class 801 trains. Wikipedia says this about the powertrain.

Unlike the Class 801, another non-bi-mode AT300 variant which despite being designed only for electrified routes carries a diesel engine per unit for emergency use, the new units will not be fitted with any, and so would not be able to propel themselves in the event of a power failure. They will however be fitted with batteries to enable the train’s on-board services to be maintained, in case the primary electrical supplies would face a failure.

The trains are in the process of being built, so I suspect batteries can be easily fitted.

Could it be, that all five-car trains are identical body-shells, already wired to be able to fit any possible form of power? Hitachi have been talking about fitting batteries to their trains since at least April 2019, when I wrote, Hitachi Plans To Run ScotRail Class 385 EMUs Beyond The Wires.

  • I suspect that Hitachi will use a similar Hyperdrive Innovation design of battery in these trains, as they are proposing for the Intercity Tri-Mode Battery Train.
  • If all trains fitted with diesel engines, use similar MTU units, would it not be sensible to only use one design of battery pack?
  • I suspect, that as the battery on a Class 803 train, will be mainly for emergency use, I wouldn’t be surprised to see that these trains could be the first to run in the UK, with a battery.
  • The trains would also be simpler, as they are only battery-electric and not tri-mode. This would make the software easier to develop and test.

If all trains used the same battery pack design, then all features of the pack, would be available to all trains to which it was fitted.

Avanti West Coast’s Class 805 Trains

In Hitachi Trains For Avanti, which was based on an article with the same time in the January 2020 Edition of Modern Railways, I gave this quote from the magazine article.

Hitachi told Modern Railways it was unable to confirm the rating of the diesel engines on the bi-modes, but said these would be replaceable by batteries in future if specified.

Note.

  1. Hitachi use diesel engines with different ratings in Class 800 and Class 802 trains, so can probably choose something suitable.
  2. The Class 805 trains are scheduled to be in service by 2022.
  3. As they are five-cars like some Class 800 and Class 802 trains will they have the same basic structure and a powertrain with three diesel engines in cars 2, 3 and 4?

I think shares a basic structure and powertrain will be very likely, as there isn’t enough time to develop a new train.

I can see that as Hitachi and Great Western Railway learn more about the performance of the battery-equipped Class 802 trains on the London and Penzance route, that batteries could be added to Avanti West Coast’s Class 805 trains. After all London Euston and North Wales and London Paddington and Cornwall are routes with similar characteristics.

  • Both routes have a high speed electrified section out of London.
  • They have a long section without electrification.
  • Operating speeds on diesel are both less than 100 mph, with sections where they could be as low as 75 mph.
  • The Cornish route has fifteen stops and the Welsh route has seven, so using batteries in stations will be a welcome innovation for passengers and those living near the railway.

As the order for the Avanti West Coast trains was placed, whilst Hitachi were probably designing their battery electric upgrade to the Class 800 and Class 802 trains, I can see batteries in the Class 805 trains becoming an early reality.

In Hitachi Trains For Avanti, I also said this.

Does the improvement in powertrain efficiency with smaller engines running the train at slower speeds help to explain this statement from the Modern Railways article?

Significant emissions reduction are promised from the elimination of diesel operation on electrified sections as currently seen with the Voyagers, with an expected reduction in CO2 emissions across the franchise of around two-thirds.

That is a large reduction, which is why I feel, that efficiency and batteries must play a part.

Note.

  1. The extract says that they are expected savings not an objective for some years in the future.
  2. I have not done any calculations on how it might be achieved, as I have no data on things like engine size and expected battery capacity.
  3. Hitachi are aiming for 20 % fuel and carbon savings on London Paddington and Cornwall services.
  4. Avanti West Coast will probably only be running Class 805 trains to Chester, Shrewsbury and North Wales.
  5. The maximum speed on any of the routes without electrification is only 90 mph. Will less powerful engines be used to cut carbon emissions?

As Chester is 21 miles, Gobowen is 46 miles, Shrewsbury is 29.6 miles and Wrexham General is 33 miles from electrification, could these trains have been designed with two diesel engines and a battery pack, so that they can reach their destinations using a lot less diesel.

I may be wrong, but it looks to me, that to achieve the expected reduction in CO2 emissions, the trains will need some radical improvements over those currently in service.

Avanti West Coast’s Class 807 Trains

In the January 2020 Edition of Modern Railways, is an article, which is entitled Hitachi Trains For Avanti.

This is said about the ten all-electric Class 807 trains for Birmingham, Blackpool and Liverpool services.

The electric trains will be fully reliant on the overhead wire, with no diesel auxiliary engines or batteries.

It may go against Hitachi’s original design philosophy, but not carrying excess weight around, must improve train performance, because of better acceleration.

I believe that these trains have been designed to be able to go between London Euston and Liverpool Lime Street stations in under two hours.

I show how in Will Avanti West Coast’s New Trains Be Able To Achieve London Euston and Liverpool Lime Street In Two Hours?

Consider.

  • Current London Euston and Liverpool Lime Street timings are two hours and thirteen or fourteen minutes.
  • I believe that the Class 807 trains could perhaps be five minutes under two hours, with a frequency of two trains per hour (tph)
  • I have calculated in the linked post, that only nine trains would be needed.
  • The service could have dedicated platforms at London Euston and Liverpool Lime Street.
  • For comparison, High Speed Two is promising one hour and thirty-four minutes.

This service would be a Marketing Manager’s dream.

I can certainly see why they won’t need any diesel engines or battery packs.

East Midland Railway’s Class 810 Trains

The Class 810 trains are described like this in their Wikipedia entry.

The Class 810 is an evolution of the Class 802s with a revised nose profile and facelifted end headlight clusters, giving the units a slightly different appearance. Additionally, there will be four diesel engines per five-carriage train (versus three on the 800s and 802s), and the carriages will be 2 metres (6.6 ft) shorter.

In addition, the following information has been published about the trains.

  • The trains are expected to be capable of 125 mph on diesel.
  • Is this speed, the reason for the fourth engine?
  • It is planned that the trains will enter service in 2023.

I also suspect, that like the Class 800, Class 802 and Class 805 trains, that diesel engines will be able to be replaced with battery packs.

Significant Dates And A Possible Updating Route For Hitachi Class 80x Trains

I can put together a timeline of when trains are operational.

  • 2021 – Class 803 trains enter service.
  • 2022 – Testing of prototype Intercity Tri-Mode Battery Train
  • 2022 – Class 805 trains enter service.
  • 2022 – Class 807 trains enter service.
  • 2023 – First production Intercity Tri-Mode Battery Train enters service.
  • 2023 – Class 810 trains enter service.

Note.

  1. It would appear to me, that Hitachi are just turning out trains in a well-ordered stream from Newton Aycliffe.
  2. As testing of the prototype Intercity Tri-Mode Battery Train proceeds, Hitachi and the operators will learn how, if batteries can replace some or even all of the diesel engines, the trains will have an improved performance.
  3. From about 2023, Hitachi will be able to design tri-mode trains to fit a customer’s requirements.
  4. Could the powertrain specification of the Class 810 trains change, in view of what is shown by the testing of the prototype Intercity Tri-Mode Battery Train?
  5. In parallel, Hyperdrive Innovation will be building the battery packs needed for the conversion.

Batteries could be fitted to the trains in three ways,

  • They could be incorporated into new trains on the production line.
  • Batteries could be fitted in the depots, during a major service.
  • Trains could be returned to Newton Aycliffe for battery fitment.

Over a period of years as many trains as needed could be fitted with batteries.

Conclusion

I believe there is a plan in there somewhere, which will convert many of Hitachi’s fleets of trains into tri-mode trains with increased performance, greater efficiency and less pollution and carbon emissions.

 

 

January 8, 2021 Posted by | Transport | , , , , , , , | 3 Comments

Greener Planes Of The Future… Or Just Pretty Plans?

The title of this post, is the same as that of this article on the BBC.

  • It is a good survey of the way things will have to go for zero carbon aviation.
  • It shows designs from both Airbus and Boeing, with some more radical designs as well.

These are a few of my thoughts.

  • I think that we shan’t be seeing a too-radical design in the next decade, as it just wouldn’t fit the current airports.
  • But I can certainly envisage, aircraft running on liquid hydrogen.
  • There will be some outstanding aerodynamics.
  • Long-haul aircraft might just be upgraded current designs running on aviation biofuel.

I am certainly looking forward to taking a zero-carbon flight before 2030.

January 8, 2021 Posted by | Transport | , , , , , | Leave a comment

Housing Approved For Northern Line Extension Building Site

The title of this post, is the same as that of this article on IanVisits.

This is the introductory paragraph.

A worksite in Kennington currently being used for the Northern line extension is set to be redeveloped as a mixed residential and light industrial estate. TfL bought the plot of land in 2012 as a worksite for the Northern line extension, as the access shaft for the tunnelling and permanent ventilation are close by.

This surely, is the way to build developments in a crowded city to incorporate the necessary ventilation shaft.

This development will provide 139 new rental homes and more than 2,700 sqm of light industrial workspace, in a partnership between the developer and Transport for London.

January 8, 2021 Posted by | Transport | , , , | Leave a comment

High Speed Rail Group Calls For Cross-Irish Sea Rail Tunnel

The title of this post, is the same as that of this article on Infrastructure Intelligence.

This is the first paragraph.

The High Speed Rail Group (HSRG) has called for a cross-Irish Sea rail tunnel to be built as part of seven key transport improvements to “strengthen the union between the four nations of the UK”.

The Irish Sea tunnel is only one of the projects proposed.

The full list of improvements is as follows.

  • Glasgow/ Edinburgh – London
  • Birmingham/ Manchester – Glasgow/ Edinburgh
  • Cardiff – Birmingham – Newcastle – Edinburgh
  • Cardiff – Liverpool/Manchester
  • Galashiels/Hawick – Carlisle
  • Manchester Airport – Chester – Bangor – Holyhead
  • Edinburgh/Glasgow and London – Belfast

I think these extensions are logical and in Could High Speed Two Be A One-Nation Project?, I proposed that High Speed Two be extended into a railway that link the whole of Great Britain and Ireland together.

 

January 6, 2021 Posted by | Transport | , | 8 Comments

Northern Line Extension ‘On Track’ For 2021 Opening

The title of this post, is the same as that of this article on Transport Network.

I’m looking forward to using the line in the Autumn.

This map from cartometro.com, shows the track layout of the extension.

 

Note.

  1. The extension starts from the existing Kennington Loop at Kenning station.
  2. There is an intermediate station at Nine Elms.
  3. As with many two-platform stations, there is a cross-over in the approach. It is shown in a picture in the article.

Hopefully, the extension will eventually be extended to Clapham Junction.

Step-Free Interchange At Kennington Station

I have been worried about this and from the comment of others like Melvyn, I am not alone.

This map from cartometro.com, shows the track layout at Kennington station.

Note.

  1. Elephant and Castle station is at the North-East corner of the map and is on the Bank branch of the Northern Line.
  2. The pair of tracks going North-West are the Charing Cross branch of the Northern Line.
  3. The pair of tracks going South-West are the Morden branch of the Northern Line.
  4. Trains going South  to Morden can use either Platform 2 or 4, depending, whether they have come Charing Cross or Bank.
  5. Trains going North  from Morden can use either Platform 1 or 3, depending, whether they are going to Charing Cross or Bank.
  6. The Kennington Loop allows trains from Charing Cross that arrive in Platform 2 to go direct to Platform 1 to return to the North.
  7. There appears to be a revering siding, which can also reverse trains from either Platform 2 or 4 and send them North from Platform 1 or 3.
  8. Chords South of the platforms allow trains to and from Charing Cross to access the tracks to Morder and the reversing siding.
  9. The Battersea Power Station branch, is shown in dotted lines and connects to the Kennington Loop.

I took these pictures at Kennington station today.

Note.

The platforms are in two pairs, which are connected by walk-through passages, with Platforms 2 and 4  for Southbound trains and Platforms 1 and 3 for Northbound trains.

  1. Each platform has a proper clock.
  2. The only access to the pair of platforms is by steep long stairs.
  3. The stairs need to be rebuilt with proper handrails on both sides.
  4. The last picture shows the handrails at Moorgate station.

Currently, the system allows journeys between the North and Morden, either directly or with a walk-across change at Kennington station.

  • Going South to Morden, if you get a train, that reverses at Kennington, you would wait for a train to turn up on either Platform 2 or 4, that is going the whole way.
  • Going North from Morden, if you get a train going to the wrong Northern destination, you would get off at Kennington and wait for a train to turn up on either Platform 1 or 3, that is going to the destination you desire.

What is needed on all platforms, is more comprehensive information displays.

  • Displays on Platforms 2 and 4, would show details of all Southbound trains. whether they terminated at Kennington or went to Morden, or in future went to Battersea Power Station station.
  • Displays on Platforms 1 and 3, would show details of all Northbound trains.

Displays would indicate destination and time as now, but with the addition of platform, where you catch the train.

If there is one problem it is taking a train between Battersea Power Station and Morden stations.

This public domain drawing from the Internet shows the station, after the Kennington Loop had been built in the 1920s and 1930s.

Note.

  1. We are looking from the North.
  2. The Kennington Loop at the far end of the station.
  3. The four platforms of the station numbered 2, 4, 3 and 1 from left to right.
  4. The stairs between the two pairs of platforms, leading to overbridges.
  5. The lift tower and a spiral staircase leading to and from the surface.

I can now sum up the step-free status of the station.

  • Passengers entering or leaving the station, must walk up or down a staircase like that shown in the first picture.
  • Passengers needing to change to another train going in the same direction, just walk across to the other platform in the pair.
  • Passengers needing to change to another train going in the opposite direction, as they would going between Battersea Power Station and Morden stations, will need to climb one set of stairs and descend another.

It does appear that in an ideal world lifts will need to be added.

Thoughts On Future Step-Free Access At Kennington Station

In the future, it is planned that the Northern Line will be split into two lines.

  • Battersea Power Station and Edgware
  • Modern and High Barnet

Will this increase the number of passengers, who need to do the opposite direction change, as there will just be more trains running on all branches?

Alternative Step-Free Access

But, there may be another way to go between Battersea Power Station and Morden stations.

  • Take a train from Battersea Power Station to Waterloo.
  • Walk across the platform at Waterloo to the Southbound platform.
  • Take a train from Waterloo back to Kennington.
  • Walk across from Platform 2 at Kennington to Platform 4.
  • Take the first train from Platform 4 to Morden.

The reverse journey between Morden and Battersea Power Station stations would be.

  • Take a train from Morden to Kennington.
  • Walk across from Platform 3 at Kennington to Platform 1
  • Take a train from Platform 1 to Waterloo.
  • Walk across the platform at Waterloo to the Southbound platform.
  • Take the first train from Waterloo to Battersea Power Station.

Note,

  1. Both routes have two changes; one at Kennington and one at Waterloo,
  2. All changes are step-free.
  3. All changes are very simple

It should also be noted that Battersea Power Station, Nine Elms and Waterloo are all or will be fully step-free stations.

The two routes I have outlined have one big advantage. They already exist and the only costs would be training of staff and indicating the routes to passengers.

January 6, 2021 Posted by | Transport | , , , , , | 2 Comments

Foresight Partners With CNG Fuels To Deliver Carbon-Neutral UK Transport Network As Demand For Clean Fuels Grows

The title of this post is the same as that of this press release from the Foresight Group.

These four bullet points introduce the document.

  • Two Foresight investment funds have partnered with CNG Fuels to acquire and grow a strategic network of biomethane HGV refuelling stations across the UK
  • CNG Fuels is the UK’s dominant supplier of renewable biomethane compressed natural gas for the UK’s truck sector
  • Transport sector emissions accounted for 34% of UK emissions in 2019
  • Biomethane-refuelling technologies reduce carbon emissions by 80+% and lower operating costs and improve air quality.

This web page is the home page of the CNG Fuels web site.

Judging by the picture on the CNG Fuels have Waitrose as a customer.

It looks to me, that Foresight Group and CNG Fuels are companies to watch, as biomethane or renewable natural gas, produced from food waste could be a valuable alternative fuel to decarbonise trucks.

January 5, 2021 Posted by | Transport | , , , , , | Leave a comment

Class 777 Train Update

This news story on the MerseyTravel web site is entitled New Trains Programme Update.

This is the first paragraph.

Merseytravel has confirmed that the phased introduction into service of the new fleet of trains for the Merseyrail network will not begin this year due to ongoing challenges as a result of the Coronavirus pandemic.

As the story is dated the 17th December 2020, the news isn’t as bad as it first appears.

January 4, 2021 Posted by | Transport | , , | 2 Comments

Shooter Urges Caution On Hydrogen Hubris

The title of this post is the same as that of an article in the January 2021 Edition of Modern Railways.

This is the first paragraph.

Vivarail Chairman Adrian Shooter has urges caution about the widespread enthusiasm for hydrogen technology. In his keynote speech to the Golden Spanner Awards on 27 November, Mr. Shooter said the process to create ‘green hydrogen’ by electrolysis is ‘a wasteful use of electricity’ and was skeptical about using electricity to create hydrogen to then use a fuel cell to power a train, rather than charging batteries to power a train. ‘What you will discover is that a hydrogen train uses 3.5 times as much electricity because of inefficiencies in the electrolysis process and also in the fuel cells’ said Mr. Shooter. He also noted the energy density of hydrogen at 350 bar is only one-tenth of a similar quantity of diesel fuel, severely limiting the range of a hydrogen-powered train between refuelling.

Mr. Shooter then made the following points.

  • The complexity of delivering hydrogen to the railway depots.
  • The shorter range available from the amount of hydrogen that can be stored on a train compared to the range of a diesel train.
  • He points out limitations with the design of the Alstom Breeze train.

This is the last paragraph.

Whilst this may have seemed like a challenge designed purely to promote the battery alternatives that Vivarail is developing, and which he believes to be more efficient, Mr. Shooter explained: ‘I think that hydrogen fuel cell trains could work in this country, but people just need to remember that there are downsides. I’m sure we’ll see some, and in fact we should because competition improves the breed.’

i think Mr. Shooter may have made several good points.

These are my thoughts.

Creating Green Hydrogen

I haven’t done an analysis of the costs of creating green hydrogen from electrolysis, but I have a feeling, that electrolysis won’t be the only way to create large amounts of carbon-free hydrogen, in a few years.

These methods are currently available or under development or construction.

  • The hydrogen tram-buses in Pau have a personal electrolyser, that provides hydrogen at 350 bar.
  • London’s hydrogen buses will be provided with hydrogen from an electrolyser at Herne Bay by truck. Will the trucks be hydrogen-powered?

Some industrial processes like the Castner-Kellner process create hydrogen as a by-product.

In Shell Process To Make Blue Hydrogen Production Affordable, I describe the Shell Blue Hydrogen Process, which appears to be a way of making massive amounts of carbon-free hydrogen for processes like steel-making and cement production. Surely some could be piped or transported by truck to the rail depot.

In ITM Power and Ørsted: Wind Turbine Electrolyser Integration, I describe how ITM Power and Ørsted plan to create the hydrogen off shore and bring it by pipeline to the shore.

Note.

  1. The last two methods could offer savings in the cost of production of carbon-free hydrogen.
  2. Surely, the delivery trucks if used, must be hydrogen-powered.
  3. The Shell Blue Hydrogen Process uses natural gas as a feedstock and converts it to hydrogen using a newly-developed catalyst. The carbon-dioxide is captured and used or stored.
  4. If the local gas network has been converted to hydrogen, the hydrogen can be delivered to the depot or filling station through that gas network.

I very much feel that affordable hydrogen can be supplied to bus, train, tram or transport depot. For remote or difficult locations. personal electrolysers, powered by renewable electricity, can be used, as at Pau.

Hydrogen Storage On Trains

Liquid hydrogen could be the answer and Airbus are developing methods of storing large quantities on aircraft.

In What Size Of Hydrogen Tank Will Be Needed On A ZEROe Turbofan?, I calculated how much liquid hydrogen would be needed for this ZEROe Turbofan.

I calculate that to carry the equivalent amount of fuel to an Airbus A320neo would need a liquid hydrogen tank with a near 100 cubic metre capacity. This sized tank would fit in the rear fuselage.

I feel that in a few years, a hydrogen train will be able to carry enough liquid hydrogen in a fuel tank, but the fuel tank will be large.

In The Mathematics Of A Hydrogen-Powered Freight Locomotive, I calculated how much liquid hydrogen would be needed to provide the same amount of energy as that carried in a full diesel tank on a Class 68 locomotive.

The locomotive would need 19,147 litres or 19.15 cubic metres of liquid hydrogen, which could be contained in a cylindrical tank with a diameter of 2 metres and a length of 6 metres.

Hydrogen Locomotives Or Multiple Units?

We have only seen first generation hydrogen trains so far.

This picture shows the Alstom Coradia iLint, which is a conversion of a Coradia Lint.

It is a so-so train and works reasonably well, but the design means there is a lot of transmission noise.

This is a visualisation of an Alstom Breeze or Class 600 train.

Note that the front half of the first car of the train, is taken up with a large hydrogen tank. It will be the same at the other end of the train.

As Mr. Shooter said, Alstom are converting a three-car train into a two-car train. Not all conversions live up to the hype of their proposers.

I would hope that the next generation of a hydrogen train designed from scratch, will be a better design.

I haven’t done any calculations, but I wonder if a lighter weight vehicle may be better.

Hydrogen Locomotives

I do wonder, if hydrogen locomotives are a better bet and easier to design!

  • There is a great need all over the world for zero-carbon locomotives to haul freight trains.
  • Powerful small gas-turbine engines, that can run on liquid hydrogen are becoming available.
  • Rolls-Royce have developed a 2.5 MW gas-turbine generator, that is the size of a beer-keg.

In The Mathematics Of A Hydrogen-Powered Freight Locomotive, I wondered if the Rolls-Royce generator could power a locomotive, the size of a Class 68 locomotive.

This was my conclusion.

I feel that there are several routes to a hydrogen-powered railway locomotive and all the components could be fitted into the body of a diesel locomotive the size of a Class 68 locomotive.

Consider.

  • Decarbonising railway locomotives and ships could be a large market.
  • It offers the opportunities of substantial carbon reductions.
  • The small size of the Rolls-Royce 2.5 MW generator must offer advantages.
  • Some current diesel-electric locomotives might be convertible to hydrogen power.

I very much feel that companies like Rolls-Royce and Cummins (and Caterpillar!), will move in and attempt to claim this lucrative worldwide market.

In the UK, it might be possible to convert some existing locomotives to zero-carbon, using either liquid hydrogen, biodiesel or aviation biofuel.

Perhaps, hydrogen locomotives could replace Chiltern Railways eight Class 68 locomotives.

  • A refuelling strategy would need to be developed.
  • Emissions and noise, would be reduced in Marylebone and Birmingham Moor Street stations.
  • The rakes of carriages would not need any modifications to use existing stations.

It could be a way to decarbonise Chiltern Railways without full electrification.

It looks to me that a hydrogen-powered locomotive has several advantages over a hydrogen-powered multiple unit.

  • It can carry more fuel.
  • It can be as powerful as required.
  • Locomotives could work in pairs for more power.
  • It is probably easier to accommodate the hydrogen tank.
  • Passenger capacity can be increased, if required by adding more coaches.

It should also be noted that both hydrogen locomotives and multiple units can build heavily on technology being developed for zero-carbon aviation.

The Upward Curve Of Battery Power

Sparking A Revolution is the title an article in Issue 898 of Rail Magazine, which is mainly an interview with  Andrew Barr of Hitachi Rail.

The article contains a box, called Costs And Power, where this is said.

The costs of batteries are expected to halve in the next years, before dropping further again by 2030.

Hitachi cites research by Bloomberg New Energy Finance (BNEF) which expects costs to fall from £135/kWh at the pack level today to £67/kWh in 2030 and £47/kWh in 3030.

United Kingdom Research and Innovation (UKRI) are predicting that battery energy density will double in the next 15 years, from 700 Wh/l to 1400 Wh/l in 2-35, while power density (fast charging) is likely to increase four times in the same period from 3 kW/kg to 12 kW/kg in 2035.

These are impressive improvements that can only increase the performance and reduce the cost of batteries in all applications.

Hitachi’s Regional Battery Train

This infographic gives the specification of Hitachi Regional Battery Train, which they are creating in partnership with Hyperdrive Innovation.

Note that Hitachi are promising a battery life of 8-10 years.

Financing Batteries

This paragraph is from this page on BuyaCar, which is entitled Electric Car Battery Leasing: Should I Lease Or Buy The Batteries?

When you finance or buy a petrol or diesel car it’s pretty simple; the car will be fitted with an engine. However, with some electric cars you have the choice to finance or buy the whole car, or to pay for the car and lease the batteries separately.

I suspect that battery train manufacturers, will offer similar finance models for their products.

This paragraph is from this page on the Hyperdrive Innovation web site.

With a standardised design, our modular product range provides a flexible and scalable battery energy storage solution. Combining a high-performance lithium-ion NMC battery pack with a built in Battery Management System (BMS) our intelligent systems are designed for rapid deployment and volume manufacture, supplying you with class leading energy density and performance.

I can envisage that as a battery train ages, every few years or so, the batteries will get bigger electrically, but still be the same physical size, due to the improvements in battery technology, design and manufacture.

I have been involved in the finance industry both as a part-owner of a small finance company and as a modeller of the dynamics of their lending. It looks to me, that train batteries could be a very suitable asset for financing by a fund. But given the success of energy storage funds like Gore Street and Gresham House, this is not surprising.

I can envisage that battery electric trains will be very operator friendly, as they are likely to get better with age and they will be very finance-friendly.

Charging Battery Trains

I must say something about the charging of battery trains.

Battery trains will need to be charged and various methods are emerging.

Using Existing Electrification

This will probably be one of the most common methods used, as many battery electric services will be run on partly on electrified routes.

Take a typical route for a battery electric train like London Paddington and Oxford.

  • The route is electrified between London Paddington and Didcot Junction.
  • There is no electrification on the 10.4 miles of track between Didcot Junction and Oxford.

If a full battery on the train has sufficient charge to take the train from Didcot Junction to Oxford and back, charging on the main line between London Paddington and Didcot Junction, will be all that will be needed to run the service.

I would expect that in the UK, we’ll be seeing battery trains using both 25 KVAC overhead and 750 VDC third rail electrification.

Short Lengths Of New Strategic Electrification

I think that Great Western Railway would like to run either of Hitachi’s two proposed battery electric trains to Swansea.

As there is 45.7 miles pf track without .electrification, some form of charging in Swansea station, will probably be necessary.

The easiest way would probably be to electrify Swansea station and perhaps for a short distance to the North.

This Google Map shows Swansea station and the railway leading North.

Note.

  1. There is a Hitachi Rail Depot at the Northern edge of the map.
  2. Swansea station is in South-West corner of the map.
  3. Swansea station has four platforms.

Swansea station would probably make an excellent battery train hub, as trains typically spend enough time in the station to fully charge the batteries before continuing.

There are other tracks and stations of the UK, that I would electrify to enable the running of battery electric trains.

  • Leeds and York, which would enable carbon-free London and Edinburgh services via Leeds and help TransPennine services. This is partially underway.
  • Leicester and East Midlands Parkway and Clay Cross North Junction and Sheffield – These two sections would enable EMR InterCity services to go battery electric.
  • Sheffield and Leeds via Meadowhall, Barnsley Dearne Valley and the Wakefield Line, which would enable four trains per hour (tph) between Sheffield and Leeds and an extension of EMR InterCity services to Leeds.
  • Hull and Brough, would enable battery electric services to Hull and Beverley.
  • Scarborough and Seamer, would enable electric services services to Scarborough and between Hull and Scarborough.
  • Middlesbrough and Redcar, would enable electric services services to Teesside.
  • Crewe and Chester and around Llandudno Junction station – These two sections would enable Avanti West Coast service to Holyhead to go battery electric.
  • Shrewsbury station – This could become a battery train hub, as I talked about for Swansea.
  • Taunton and Exeter and around Penzance, Plymouth and Westbury stations – These three sections would enable Great Western Railway to cut a substantial amount of carbon emissions.
  • Exeter, Yeovil Junction and Salisbury stations. – Electrifying these three stations would enable South Western Railway to run between London and Exeter using Hitachi Regional Battery Trains, as I wrote in Bi-Modes Offered To Solve Waterloo-Exeter Constraints.

We will also need fast chargers for intermediate stations, so that a train can charge the batteries on a long route.

I know of two fast chargers under development.

I believe it should be possible to battery-electrify a route by doing the following.

  • Add short lengths of electrification and fast charging systems as required.
  • Improve the track, so that trains can use their full performance.
  • Add ERTMS signalling.
  • Add some suitable trains.

Note.

  1. I feel ERTMS  signalling with a degree of automatic train control could be used with automatic charging systems, to make station stops more efficient.
  2. In my view, there is no point in installing better modern trains, unless the track is up to their performance.

January 4, 2021 Posted by | Energy, Hydrogen, Transport | , , , , , , , , , , , , , , , , , , , , , , , , , | 1 Comment

Top Reasons Many Researchers Prefer Hydrogen Fuel Vehicles Over EVs

The title of this post, is the same as that of this article on Hydrogen Fuel News.

This is the introductory paragraph.

Despite the fact that EVs have experienced far more widespread adoption than hydrogen fuel vehicles, many researchers, engineers and environmentalists – as well as drivers – find the latter option more appealing.

These reasons are given.

  • No substantial lifestyle changes are required.
  • H2 powered cars place less strain on the electric grid.
  • They have a larger range
  • Practicality for a larger range of vehicles

If I was thinking of buying an electric vehicle, I;d look at hydrogen before I decided on the vehicle, I would buy.

I don’t drive, but if I wanted to, I suspect I could get my licence back.

  • I have a garage, that opens onto the street.
  • There is no nearby hydrogen station.
  • If I went any distance over about twenty miles, I’d probably use public transport.

I’d probably choose an electric vehicle.

December 31, 2020 Posted by | Hydrogen, Transport | , , | 4 Comments