The Anonymous Widower

Beeching Reversal – Restoring A South Humber Link

This is one of the projects that the Government and Network Rail are proposing to reverse some of the Beeching cuts.

The project is described by these two paragraphs in this article in the Yorkshire Post, which is entitled Government Announce Yorkshire Rail Schemes That Could Receive ‘Reverse Beeching’ Funding.

North Lincolnshire Council have bid for funding to subsidise a new train service that would allow passengers from Barton-on-Humber to travel to Gainsborough, from where they would be able to catch direct services to Sheffield.

This would be achieved by diverting the existing Barton to Grimsby and Cleethorpes trains up a freight-only section used by traffic heading to Immingham docks. There have never been passenger trains using this path before.

This rail map clipped from Wikipedia shows the Barton Line to Barton-on-Humber station.

Note.

  1. Barton-on-Humber station has a bus link to Hull station.
  2. The loop gives a grand tour of the Port of Immingham on what is now a freight-only line.
  3. There is a lot of development going on in the area including the AltAlto aviation biofuel, that I wrote about in Grant Shapps Announcement On Friday.

Perhaps all this development is causing a lot of small problems.

  • Is it causing congestion on the roads?
  • Are workers difficult to find in the Immingham area?
  • Is commuting over the Humber Bridge expensive?
  • Is parking difficult in the Port?

North Lincolnshire Council could feel that a better rail connection serving the Port of Immingham, would be an asset, that reduces these problems.

I suspect the current two-hourly service between Barton-on-Humber and Cleethorpes stations, will be replaced by an hourly one, between Barton-on-Humber and Gainsborough Lea Road stations, that takes the following route.

  • Barton-on-Humber to Ulceby
  • At Ulceby station the train will reverse and go clockwise around the loop.
  • After calling at Great Coates, Healing, Stallingborough and Habrough stations, the train would go West to Barnetby and Gainsborough Lea Road stations.
  • Passengers wanting to go from Barton-on-Humber to Grimsby Town or Cleethorpes, would change at Great Coates station.

It may look a rather round-about route, but I suspect that the plan includes some stations to serve the Port of Immingham and the industrial development.

I suspect that some of these port, oil, chemical and energy companies can afford to pay a contribution.

Gainsborough Lea Road Station

Gainsborough Lea Road station is a mix of architectural styles.

But with the addition of a friendly café and some other facilities, it would be a good interchange between the Immingham area and Sheffield and the county town of Lincoln.

Future Trains

Lincolnshire is an energy-rich county, which partly explains all the industrial development in the North-East of the county around Grimsby, Immingham and Scunthorpe.

  • Immingham is a large importer of biomass for power generation.
  • There are off-shore and on-shore gas fields connected to Theddlethorpe gas terminal.
  • There is the large power station complex at Keadby.

But the energy mix is a-changing.

  • Keadby now includes a solar farm.
  • Wind turbines are springing up both on land and in the sea.

If I was to make a prediction, it would be that more and more large energy-related businesses will develop in the area.

  • In recent months, Altalto’s waste-to-aviation biofuel plant has been given national and local government backing to be built at Immingham.
  • ITM Power are involved in a hydrogen development project in the area.
  • I wouldn’t be surprised to see hydrogen produced for transport from all this energy.

I think it will be inevitable, that zero-carbon battery electric or hydrogen-powered trains will run in the area.

  • Cleethorpes and Doncaster via Scunthorpe 52 miles apart.
  • Cleethorpes and Barton-on-Humber are 23 miles apart
  • Lincoln and Newark are 16.5 miles apart.
  • Lincoln and Doncaster are 37 miles apart.
  • Lincoln and Sheffield are 48 miles apart
  • Lincoln and the electrification at Peterborough are 54 miles apart.
  • Skegness and Sleaford are 41 miles apart.
  • Sleaford and Grantham are 18 miles apart.

With charging facilities at Barton-on-Humber, Lincoln, Skegness and Sleaford, the whole of Lincolnshire could be served by zero-carbon battery electric trains.

I suspect LNER could lead the way, as a five-car Class 800 train equipped with batteries, is predicted to have a 56 mile range away from the wires, which would easily handle a return trip between Newark and Lincoln.

There could be a small problem, in that the first train of the day, between Lincoln and London Kings Cross positions from Doncaster Carr IEP Depot, so running Doncaster to Newark via Lincoln might challenge the battery range of the train. I suspect, that the positioning could be performed via Newark with a reverse, prior to the installation of a charging facility at Lincoln Central station.

I estimate that Barton-on-Humber and Gainsborough Lea Road stations are about 35 miles apart, so with today’s battery technology, I suspect that a round trip in a battery electric train would be on the limit. But with charging facilities at Gainsborough, there would be no problems.

I suspect that East Midlands Railway would use several of their forty diesel Class 170 trains on this and other routes in Lincolnshire, so perhaps a good interim solution would be to run the Class 170 trains on Altalto’s biodiesel, that will be produced at Immingham.

There is also the possibility, that some or all of the Class 170 trains will be retrofitted with MTU Hybrid PowerPacks, which would cut their diesel consumption.

Surely, with all Lincolnshire’s energy, hydrogen-powered trains must be a possibility. But they seem to be stuck in a siding!

The MTU Hybrid PowerPack and Altalto’s bio-diesel seems a more affordable and less risky route.

A Direct Connection To London

In the Wikipedia entry for Gainsborough Lea Road station, there is a section called Future Services, where a direct connection to London is mentioned.

Conclusion

Given that the likes of East Midlands Railway, Hull Trains, LNER and TransPennine Express are improving their services to Hull, Lincoln, Cleethorpes and Grimsby, this local North Lincolnshire Metro serving the Port and the industrial development, could well be welcomed by those that live and work in the area.

I doubt that the infrastructure cost will be very high.

July 12, 2020 Posted by | Transport | , , , , , , , , , , , , , , , | 2 Comments

Can A Green Revolution Really Save Britain’s Crisis-Stricken Aerospace Industry?

The title of this post, is the same as that of this article on the Telegraph.

This is the sub-title.

The Prime Minister has set a challenging target of green flights within a generation, but is it a sustainable plan?

I have read the whole article, which is mainly about Velocys and their project at Immingham to create aviation biofuel from household rubbish.

They say the main problem is scaling up the process to get enough jet fuel. When I was working at ICI in the early 1970s, modelling chemical processes, scale-up always loomed-large as a problem.

Nothing changes!

I think we’ll get to our carbon-neutral objective, for aviation, but it will be a mixture of things.

  • Aviation biofuel.
  • All-electric airports.
  • Efficient aerodynamics and engines.
  • Electric short-haul aircraft.
  • Rail substitution for short flights.

Traditional aerospace must reform itself or die!

As to Velocys, they must solve their scaleup problem, so that all suitable household and industrial rubbish ends up doing something more useful, than beinmg incinerated or nuried in landfill.

July 5, 2020 Posted by | Energy, Transport | , , , , , | 1 Comment

How Leeds Bradford Airport Can Be Catalyst For Green Aviation

The title of this post, is the same as that of this article on the Yorkshire Post.

The article was written by a geography student from Yorkshire, who is studying at Cambridge University.

He makes some interesting points.

  • Leeds Airport is not a good customer experience.
  • Manchester Airport will take passengers away from Leeds.
  • Leeds is the biggest financial centre in the UK outside London.
  • Leeds Airport should be improved to the highest environmental standards.
  • Aviation biofuels should be provided.
  • Short haul flights should be replaced by a train journey if possible.
  • By 2030, a lot of short haul flights will be replaced by electric aircraft.

I agree with a lot of what he says.

There will still be a need to fly and we must make it as environmentally-friendly as possible.

If we don’t find ways of making flying carbon-neutral, we’ll hurt the economy.

 

 

June 28, 2020 Posted by | Finance, Transport, World | , , , , | Leave a comment

Will Biofuel Save Jet Aviation?

I ask this question as I have just written a post, which is entitled Grant Shapps Announcement On Friday, where I detail a project called Altalto, which its developers hope will convert waste into aviation biofuel.

But there are other factors at work, that will have effects on passenger flying.

Electric Aircraft

Despite the technological problems electric aircraft, I can see that in a couple of years, an electric plane will be available with the following specification.

  • 9-15 passenger capacity
  • 100-200 mile range
  • Half-hour recharge time

These will improve as technology improves. But then everybody who uses a battery in their product says this.

Lightweight Structures

If you’ve ever looked at a high-performance glider, you’ll see that they are the featherweights of the aviation world and are built mainly from ultra lightweight composites.

Boeing have gone this route with the 787 Dreamliner and the aircraft has been a success.

Unfortunately, Boeing’s accountants have trashed the company, by trying to prolong the life of the obsolete 737 too far, instead of developing a composite replacement.

By the end of this decade all aircraft will be made from lightweight composite structures.

Interstingly, the only all new electric passenger aircraft; the Eviation Alice has a fully-composite airframe.

Lightweight structures will help create lower carbon emissions on traditional aircraft, by reducing fuel burn, but will really help in creating new aircraft types. Some of which will look very unusual.

Better Aerodynamics

Aerodynamics are getting more efficient and this will reduce fuel burn and have two effects on aircraft design.

  • They will make existing designs more efficient.
  • They will improve the design of electric aircraft designed on a clean sheet of paper.

Expect to see some very weird looking aircraft. Look at Eviation Alice, which could evolve into a twenty seat aircraft with a range exceeding six hundred miles.

Hybrid-Powered Aircraft

I can’t with current technology, see an all-electric aircraft powered by batteries having a range greater than perhaps six hundred miles and a capacity of greater than perhaps 20 passengers. The mathematics and the physics say no!

Some aero engine manufacturers are talking about hybrid power, where a small turbofan engine is paired with a battery and electric motors.

I think it could be a way to extend the range of electric aircraft, without creating significant emissions. Aviation biofuel would fit well with a hybrid aviation powerplant, as it would further remove emissions.

Completely Automatic Flight

The pilot of a modern airliner does very little flying and there is no reason, pilots couldn’t do as little to fly the plane, as a driver on a Victoria Line tube has done since 1967 to drive the train.

When a train is ready to depart, the driver presses a button and the train moves automatically to the next station.

If anything unusual happens, the driver takes control.

Why not with airliners?

Point-To-Point Air Services

In MagniX Electric Aircraft Engines Take To The Skies, I put this quote from magniX, who make the electric motors for electric aircraft.

magniX says 45% of all airline flights cover less than 800 km, while 5% of flights are sub-160 km.

These flights will be the first to go electric.

But they are not really suited for an airport like Heathrow or Gatwick, as each plane needs a separate take-off and landing slot to fit in with conventional flights.

Heathrow want a third runway to increase capacity.

Perhaps it should be for electric flights only!

  • Electric aircraft will be low-noise and create no pollution.
  • It would have its own terminal.
  • Charging facilities would be built into the terminal.
  • Taxi distances would be short.
  • The runway would only need to be short.
  • Passengers would have to arrive and leave by zero-carbon transport.
  • There might even be space for two runways; one for landing and one of take-off.

I can see a network of both smaller airports and satellites at major airports developing, that are designed for electric aircraft.

  • Some airports, like possibly London City, might convert to all-electric, due to their sensitive locations.
  • Other important towns and cities without an airport, might develop new all-electric airports.
  • Hubs might develop at convenient locations in the UK, for short trips to the Continent and Ireland. Perhaps a high speed rail-connected Manston Airport would be ideal for electric flights to Belgium, The Netherlands and Northern France.

Frequent point-to-point electric flights could create a zero-carbon short-haul network for flights of up to about six hundred miles.

Rail Journeys Less Than Four Hours

It is accepted by many analysts and rail companies, that if a train takes less than four hours, then it is a viable alternative to flying.

  • Could the success of Eurostar’s London and Amsterdam route, be partly down to the that it’s four hours?
  • First Group subsidiary; East Coast Trains have stated they will target air passengers, with a sub four-hour, one-class £25 train journey between London and Edinburgh.
  • High Speed Two is currently promising three hours and forty minute journeys between London and Edinburgh/Glasgow, when their service starts.

I believe that rail companies all over the world will see tempting air passengers to use rail, as a market to develop.

Zoom And Other Internet Techniques

During the COVID-19 pandemic, businesses, families and others have started using Internet conferencing in a big way.

But will other software develop, that will have the effect of both cutting flying or making it more zero-carbon.

Suppose, I wanted to visit several cities in the United States. Is there an Internet site that tells me how to do it to create the least amount of CO2?

Biofuel For Short Flights

When I laid out the factors, I only mentioned aviation biofuels once.

That was in conjunction with hybrid aircraft, that use both jet and electric power.

If the hybrid technology succeeds, it may mean that flights up to about a thousand miles are possible and this would include a lot of short haul flights around the world. With biofuels and hybrid powerplants, carbon dioxide emissions will be greatly reduced and could probably be managed by carbon offset measures like tree-planting.

Biofuel For Long Flights

As aircraft get more efficient using biofuel will help to reduce the amount of emissions, to a level that could be balanced by carbon offset.

This will be an expensive process for airlines, as probably most fleets will need to be replaced with more fuel efficient planes.

But this is happening, as 757s and A380 are being replaced by Dreamliners and other more fuel efficient types.

Conclusion

By 2035, most short haul flights will be electric or some form of hybrid power, although a lot will be replaced by high speed rail.

Biofuel won’t save long-haul flights, but it will make them economic for the airlines.

I suspect that there will be a lot of aluminium aircraft going for scrap.

June 16, 2020 Posted by | Transport | , , , , , , , | 2 Comments

Grant Shapps Announcement On Friday

I listened to Grant Shapps announcement on Friday, when he gave the daily COVID-19 Press Conference.

This article on the Velocys web site is entitled Government Announces Jet Zero Council And Confirms Support For Velocys Waste-To-Jet-Fuel Project.

The article shows a video of the speech and this summary paragraph.

At this afternoon’s COVID-19 press conference, Secretary of State for Transport, Grant Shapps, announced the establishment of a new Jet Zero Council and confirmed Government support for Velocys.

So who are the company with the strange name of Velocys?

This is a quote from the Velocys CEO; Henrik Wareborn.

Today’s announcement on the formation of a Jet Zero Council shows that a new era of net zero carbon flying is on a credible path, at a time when we need it more than ever. This follows news earlier today that our Altalto waste-to-jet fuel facility – the first of its kind in the UK – has received additional funding from Government and formally received planning permission, meaning it could be producing sustainable aviation fuel in commercial scale by the middle of this decade.

Is a new era of net zero carbon flying a possibility or is this a dream too far?

The AltAlto Project

Yhe project is called AltAlto and it has its own web site.

It is backed by British Airways and Shell, and uses technology from Velocys.

This description of the project is on the home page.

Altalto turns household and commercial waste into clean-burning fuels with reduced greenhouse gas emissions for air and road transport.

A page called Technology describes how it is done.

This is the initial summary.

Our process can accept a wide variety of waste, while delivering a clean product. There are very limited emissions to atmosphere from the plant except water and carbon dioxide. Components of the waste which do not get turned into fuel, such as metals and stones, are recycled; a small amount of it (less than 3%) goes to landfill.

This diagram from the Velocys web site illustrates the process.

The then goes through the stages of the process.

  • Stage 1 – Preparation – First the waste is treceived, sorted and prepared.
  • Stage 2 – Gasification – Next the solid waste is gasified; heated to a high temperature to break it down and convert it into synthesis gas or syngas (carbon monoxide and hydrogen).
  • Stage 3 – Synthesis – After cleaning, the syngas is used to synthesis hydrocarbons using the Fischer-Tropsch technology provided by Velocys.
  • Stage 4 – Finishing – These hydrocarbons are then refined into the final products; renewable jet fuel (in the form of SPK) and naphtha.

They add this final summary.

The process is fundamentally different to incineration: instead of being burnt, the carbon in the waste is converted into a fuel for use in aircraft or vehicles.

There are many clean ways of making electricity, but it is really difficult to make sustainable jet fuel – this is one of the very few economic ways of doing so. It’s therefore a far better use of household waste than incineration, creating a much more valuable and environmentally beneficial product.

Could the process be considered a sophisticated waste incineration process, where the actual incineration is performed in the turbofan engine in the aircraft or the diesel engine in the truck to provide power?

I have a few questions.

What is Fischer-Tropsch Technology?

This is the first sentence for the Wikipedia entry for the Fischer-Tropsch Process.

The Fischer-Tropsch process is a collection of chemical reactions that converts a mixture of carbon monoxide and hydrogen into liquid hydrocarbons. These reactions occur in the presence of metal catalysts, typically at temperatures of 150-300 °C (302-572 °F) and pressures of one to several tens of atmospheres. The process was first developed by Franz Fischer and Hans Tropsch at the Kaiser-Wilhelm-Institut fur Kohlenforschung in Mulheim an der Ruhr, Germany, in 1925.

One of the companies involved in using the Fischer-Tropsch process is the South African company; Sasol. Wikipedia gives this summary about Sasol’s use of the process.

Another large scale implementation of Fischer-Tropsch technology is a series of plants operated by Sasol in South Africa, a country with large coal reserves, but little oil. The first commercial plant opened in 1952. Sasol uses coal and now natural gas as feedstocks and produces a variety of synthetic petroleum products, including most of the country’s diesel fuel.

The involvement with the apartheid regime in South Africa probably wasn’t the best of publicity for the process.

But have Oxford University and Velocys created a way of making net zero carbon aviation and diesel fuels?

What Is SPK?

SPK is Synthetic Paraffinic Kerosene and it is an aviation biofuel.

The Wikipedia entry for aviation biofuel has a sub-section called FT-SPK, where this is said.

The second route involves processing solid biomass using pyrolysis to produce pyrolysis oil or gasification to produce a syngas which is then processed into FT SPK (Fischer-Tropsch Synthetic Paraffinic Kerosene)

This sounds like the Velocys process.

What Are The Environmental Effects?

In the Wikipedia entry for aviation biofuel, there is a section called Environmental Effects. This is the first sentence.

A life cycle assessment by the Yale School of Forestry on jatropha, one source of potential biofuels, estimated using it could reduce greenhouse gas emissions by up to 85% if former agro-pastoral land is used, or increase emissions by up to 60% if natural woodland is converted to use. In addition, biofuels do not contain sulphur compounds and thus do not emit sulphur dioxide.

As Velocys produce their SPK from household waste, their fuel will have a different and more positive effect on greenhouse gas emissions.

This press release on the Velocys web site is entitled Plans Submitted For The First Waste To Jet Fuel Plant In The UK And Europe.

This is a paragraph.

The proposed plant will take hundreds of thousands of tonnes of household and commercial solid waste and turn it into clean burning sustainable aviation fuel, reducing net greenhouse gases by 70% compared to the fossil fuel equivalent – equal to taking up to 40,000 cars per year off the road.

Earlier, I quoted this about the process.

There are very limited emissions to atmosphere from the plant except water and carbon dioxide.

A lot depends on where the carbon dioxide is produced, but if it is produced by a well-designed process plant, it should be possible to capture it for storage.

There are also possibilities to reuse carbon-dioxide in the Fischer-Tropsch process.

Could Diesel Be Produced By The Process?

In the United States, Velocys are developing a project called Bayou Fuels.

This is said on the home page.

We are developing a plant in Mississippi that will create diesel fuel for road transportation in the U.S. It will process waste from the paper and lumber industries – woody biomass forest residue that would otherwise rot on the forest floor or contribute to forest fires.

It should be noted that this is said in the Wikipedia entry for the Port of Immingham.

In 2013 ABP began the development of the “Immingham Renewable Fuels Terminal” on the Humber International Terminal site, as part of a 15-year contract with Drax Power Station to supply biomass (wood pellet) to the powerplant. ABP’s total investment in biomass handling facilities, including installations at Hull and Goole was to be around £100 million.

As Velocys’s new  plant will be at Immingham, close to the biomass port, I suspect the answer is yes.

Where Is The Plant Located?

This Google Map shows Immingham Port and the area to the South.

Note.

  1. Immingham Port is towards the North West corner of the map.
  2. South Humber Bank Power Station is towards the South East corner of the map.

It would appear that the Altalto plant, will be located on an 80 acre site between the port and the power station.

There would also appear from Google Maps that the Barton Line runs through the area, which would surely be handy for bringing in the waste and taking out the fuel.

This picture from the Altalto web site, shows a visualisation of the plant, looking North East.

INote, what looks to be the railway, through the site in the foreground.

There are also a couple of informative videos, including one from the BBC, on this page of the Velocys web site.

t looks to be the ideal site.

How Much Fuel Will The Plant Produce?

According to the video on the web site, the plant will convert 500,000 tonnes of waste into 60,000,000 litres of fuel. I estimate that would be about 48,000 tonnes of jet fuel.

Could The Diesel Fuel Be Used To Decarbonise The Railways In The UK?

I believe that a substantial amount of the use of diesel on the UK’s railways will be cut by the use of battery and hydrogen power in multiple units and locomotives.

But some services like the heavy stone trains moving aggregates from the Mendips and the Peak District to London will be difficult to decarbonise, unless a locomotive manufacturer produces a hydrogen-powered locomotive with upwards of five megawatts of power. And that is a tough design challenge.

Low sulpur diesel produced from waste would be one way to reduce the carbon footprint.

Conclusion

It sounds a crazy idea to create aviation fuel and diesel from household waste!

Will It Work?

Consider.

  • It appears that most of the technology used to produce this fuel has been around for decades.
  • Sasol opened their first commercial plant in South Africa, using the Fischer-Tropsch process in 1952 and still use the technique today.
  • Oxford University have added magic ingredients to the Fischer-Tropsch process.
  • Velocys seem to have put in a lot of serious thought to get the Altalto project ticking all the right boxes.

The project could be late, but I feel it will deliver the main objective of converting household and commercial waste to jet fuel and diesel.

 

 

June 14, 2020 Posted by | Transport, World | , , , , , , , , | 2 Comments