The Anonymous Widower

The Power Of Battery Storage

This article on Fastmarkets is entitled Neoen To Expand Li-ion Battery Capacity at Hornsdale Plant.

This is the introductory paragraph.

Australia’s Hornsdale Power Reserve, the world’s biggest lithium-ion battery plant, is set to expand capacity by 50% to 150 megawatts, according to Neoen SA, the French power producer that owns and operates the site.

If you read the article and the Wikipedia entry for Hornsdale Power Reserve (HPR), you’ll see why it is being expanded.

This paragraph is from Wikipedia.

After six months of operation, the Hornsdale Power Reserve was responsible for 55% of frequency control and ancillary services in South Australia.[11] By the end of 2018, it was estimated that the Power Reserved had saved A$40 million in costs, most in eliminating the need for a 35 MW Frequency Control Ancillary Service.

Somewhat surprisingly, the power is mainly generated by the associated Hornsdale Wind Farm.

These are some statistics and facts of the installation at Hornsale.

  • There are 99 wind turbines with a total generation capacity of 315 megawatts.
  • HPR is promoted as the largest lithium-ion battery in the world.
  • HPR can store 129 MWh of electricity.
  • HPR can discharge 100 MW into the grid.
  • The main use of HPR is to provide stability to the grid.

HPR also has a nice little earner, in storing energy, when the spot price is low and selling it when it is higher.

It certainly explains why investors are putting their money in energy storage.

Wikipedia lists four energy storage projects using batteries in the UK, mainly of an experimental nature in Lilroot, Kirkwall, Leighton Buzzard and six related sites in Northern |England.  One site of the six  has a capacity of 5 MWh, making it one of the largest in Europe.

But then we have the massive Dinorwig power station or Electric Mountain, which  can supply ,1,728-MW and has a total storage capacity of 9.1 GWh

Coinsider.

  • Electric Mountain has seventy times the capacity of Hornsdale Power Reserve.
  • Electric Mountain cost £425 million in 1984, which would be a cost of £13.5 billion today.
  • Another Electric Mountain would cost about £1.6 billion per GWh of energy storage.
  • Hornsdale Power Reserve cost $ 50 million or about £26 million.
  • Hornsdale Power Reserve would cost about £0.2 billion per GWh of energy storage.

So it would appear that large batteries are better value for money than large pumped storage systems like Electric Mountain.

But it’s not as simple as that!

  • There aren’t many places, as suitable as North Wales for large pumped storage systems.
  • Omce built, it appears pumped storage system can have a long life. Electric Mountain is thirty-five years old and with updating, I wouldsn’t be surprised to see Electric Mountain in operation at the end of this century.
  • Battery sites can be relatively small, so can be placed perhaps in corners of industrial premises or housing developments.
  • Battery sites can be built close to where power is needed, but pumped storage can only be built where geography allows.
  • Pumped strage systems can need long and expensive connections to the grid.
  • I think that the UK will not build another Electric Mountain, but will build several gigawatt-sized energy storage facilities.
  • Is there enough lithium and other elements for all these batteries?
  • Electric Mountain is well-placed in Snowdonia for some wind farms, but many are in the North Sea on the other side of the country.

In my view what is needed is a series of half-gigawatt storage facilities, spread all over the country.

Highview Power looks to be promising and I wrote about it in British Start-Up Beats World To Holy Grail Of Cheap Energy Storage For Wind And Solar.

But there will be lots of other good ideas!

 

November 20, 2019 Posted by | World | , , , , , , , , | Leave a comment

British Start-Up Beats World To Holy Grail Of Cheap Energy Storage For Wind And Solar

The title of this post is the same as that of this article on the Daily Telegraph.

If you think it sounds too good to be true, then watch this video from the company behind the technology; Highview Power.

The basic principle is very simple.

  • Electricity is used to turn air into liquefied air using refrigeration technology, that has been around for donkeys years.
  • This is stored in tanks under pressure.
  • To retrieve the energy, the liquid air is allowed to evaporate and creates electricity through a turbine and generator.

These engineers have taken several pieces of readily available industrial equipment, put it together in a novel way. to create an energy storage system.

I believe that this could be the Holy Grail of energy storage!

Why?

In World’s Largest Wind Farm Attracts Huge Backing From Insurance Giant, I discussed how Aviva have invested a billion pounds in wind farms, as it gives them the sort of long-term return they need to provide pensions and pay out insurance claims.

But if you own a Gigawatt-sized wind farm in the North Sea, one thing is missing; the ability to store that energy in an affordable way.

So by investing in this type of energy storage and coupling it with their own wind farms, Aviva can control the output of the wind farms to what the National Grid needs.

All it needs is some more money, that needs a home. And Aviva have lots of that!

It’s also an investment with an ethical and green profile.

  • No polluting technology.
  • Proven technology.
  • Zero-carbon technology.
  • Non-toxic technology.
  • No use of exotic and scant resources.
  • No expensive or dangerous fuel
  • Affordable technology

Systems can also be distributed to where they are needed or where there is surplus electricity.

If you want to know more, watch the video and then look at other videos for Highview Power.

How Much Energy Can Highview Power’s Systems Store?

The biggest energy storage system in the UK is Electric Mountain, which has a power output of 1,728 MW and an energy storage capacity of 9.1 GWh.

That is some battey and it was built in the 1970s for a cost of £425 million, which would be £1.3billion today.

In a video it is claimed that Highview Power are designing a storage system, which has a power output of 200 MW and an energy storage capacity of 1.2 GWh.

You would only need to build nine and you’ve got another Electric Mountain!

Perhaps to maximise security of supply and obtain a fast response, the systems could be placed in Cumbria, Essex, Humberside, Kent, Merseyside, Norfolk, Suffolk, Thurso and Yorkshire.

Would We Need Nuclear Power?

Probably not!

For the same amount of money as a large nuclear power station, you’d get an awful lot of offshore wind farms and the storage thrown in.

Conclusion

This technology could solve the world’s energy problems.

 

 

I

 

August 26, 2019 Posted by | World | , , , , | 1 Comment

Thoughts On Last Week’s Major Power Outage

This article on the BBC is entitled Major Power Failure Affects Homes And Transport.

This is the first two paragraphs.

Nearly a million people have been affected by a major power cut across large areas of England and Wales, affecting homes and transport networks.

National Grid said it was caused by issues with two power generators but the problem was now resolved.

This second article on the BBC is entitled UK power cut: Why it caused so much disruption, and gives these details.

It started with a routine blip – the gas-fired power station at Little Barford in Bedfordshire shut down at 16:58 BST due to a technical issue.

Then, a second power station, the new Hornsea offshore wind farm, also “lost load” – meaning the turbines were still moving, but power was not reaching the grid.

These are my thoughts on the incident.

Power Stations Do Fail

Any complex electro-mechanical system like Little Barford gas-fired power station or Hornsea offshore wind farm can fail.

  • Little Barford gas-fired power station was built in 1994 and is a 746 MW gas-fired power station.
  • Hornsea offshore wind farm obtained planning permission in 2014 and is being built in phases. It will eventually have a maximum capacity of 8 GW or 8,000 MW.

Compare these figures with the iconic coal-fired Battersea power station, which had a maximum output of 503 MW in 1955.

I will not speculate as to what wet wrong except to say that as the Hornsea wind-farm is relatively new, it could be what engineers call an infant mortality problem. Complex systems or even components seem to fail in the first few months of operation.

Why Do We Have Gas-Fired Stations?

According to this page on Wikipedia, there are around forty natural gas fired power stations in England.

Most gas-fired stations are what are known as CCGT (Combined Cycle Gas Turbine), where a Jumbo-sized gas-turbine engine is paired with a steam turbine powered by the heat of the exhaust from the engine.

This form of power generation does produce some carbon dioxide, but to obtain a given amount of electricity, it produces a lot less than using coal or ioil.

By combining the gas turbine with a steam turbine, the power station becomes more efficient and less carbon dioxide is produced.

Power stations of this type have three various advantages.

  • They have a very fast start-up time, so are ideal power stations to respond to sudden increases in electricity demand.
  • As they are a gas-turbine engine with extra gubbins, they are very controllable, just like their cousins on aircraft.
  • They are relatively quick, easy and affordable to build. The Wikipedia entry for a CCGT says this. “The capital costs of combined cycle power is relatively low, at around $1000/kW, making it one of the cheapest types of generation to install.”
  • They don’t need a complicated and expensive transport infrastructure to bring in coal or nuclear fuel.
  • They can also be powered by biogas from agricultural or forestry waste, although I don’t think that is a comm practice in the UK.

The carbon dioxide produced is the only major problem.

Gas-Fired Power Stations In The Future

If you read the Wikipedia entry for combined cycle power plants, there is a lot of information on CCGTs, much of which is on various ways of improving their efficiency.

I believe that one particular method of increasing efficiency could be very applicable in the UK.

Under Boosting Efficiency in the Wikipedia entry, the following is said.

The efficiency of CCGT and GT can be boosted by pre-cooling combustion air. This is practised in hot climates and also has the effect of increasing power output. This is achieved by evaporative cooling of water using a moist matrix placed in front of the turbine, or by using Ice storage air conditioning. The latter has the advantage of greater improvements due to the lower temperatures available. Furthermore, ice storage can be used as a means of load control or load shifting since ice can be made during periods of low power demand and, potentially in the future the anticipated high availability of other resources such as renewables during certain periods.

The UK is the world’s largest generator of power using offshore wind and as we are surrounded with sea and wind, the UK is only going to produce more of the power it needs in this or other way.

This  method could be used to store the wind energy produced when the demand is low and recover it, when it is needed.

Could The UK Develop A Chain Of Carbon-Neutral Gas-Fired Power Stations?

In parts of the UK, there is a unique mix of resources.

  • A plentiful supply of natural gas, either from offshore fields or interconnectors to Norway.
  • Large amounts of electricity generated by offshore wind, which will only get larger.
  • Worked out gas-fields still connected to the shore, through redundant platforms and pipes.
  • Closeness to agricultural areas.

Technologies under development or already working include.

  • Offshore creation of hydrogen using electricity generated by offshore wind and then using the redundant gas pipes to bring the hydrogen to the shore.
  • Using a hydrogen-fired CCGT power station without producing any carbon-dioxide.
  • Feeding carbon dioxide to plants like salad and fruit to make them grow better.
  • Using excess electricity from renewable sources to cool the air and improve the efficiency of CCGT power stations.

I can see all these technologies and development coming together in the next few years and a chain of carbon-neutral gas-fired power stations will be created

  • Hydrogen produced offshore on redundant gas platforms, using electricity from nearby wind farms, will be turned back into electricity, where it is needed by onshore hydrogen-fired power stations.
  • Redundant gas platforms will be refurbished and reused, rather than demolished at great expense.
  • Some natural gas will still be used for power generation
  • I’m not quite sure, but I think there could be dual-furled CCGTs, that could run on either hydrogen or natural gas.
  • Any carbon dioxide generated will be stored in the worked out gas fields or fed to the crops.
  • Gas storage onshore will ensure that the gas-fired power station can respond quickly.

I also believe that there is no technological and engineering challenges, that are too difficult to solve.

This strategy would have the following advantages.

  • It should be carbon-neutral.
  • Because there could have as many as two hundred individual power stations, the system would be very reliable and responsive to the loss of say a cluster of five stations, due to a tsunami, a volcanic eruption or a major eathquake.
  • If power from renewable sources like offshore wind is low, extra stations can be quickly switched in.
  • It is not dependent on fuel from dodgy dictators!
  • It would probably be more affordable than developing nuclear power stations.

There is also the possibility of bringing more hydrogen onshore to be used in the decarbonisation of the gas-grid.

Conclusion

A chain of carbon-neutral gas-fired power stations, linked to hydrogen created offshore by wind farms is very feasible.

Last week, after the double failure, extra stations would have immediately been switched in.

Energy Storage

The fastest response system is energy storage, where a giant battery holds several gigawatt-hours of eklectricity.

Electric Mountain

The biggest energy storage facility in the UK is Dinorwig Power Station.

This is the introduction to its Wikipedia entry.

The Dinorwig Power Station , known locally as Electric Mountain, is a pumped-storage hydroelectric scheme, near Dinorwig, Llanberisin Snowdonia national park in Gwynedd, northern Wales. The scheme can supply a maximum power of 1,728-megawatt (2,317,000 hp) and has a storage capacity of around 9.1-gigawatt-hour (33 TJ)

It is large and has a rapid response, when more electricity is needed.

We probably need another three or four Electric Mountains, but our geography means we have few suitable sites for pumped-storage, especially in areas, where large quantities of electricity are needed.

There are one other pumped-storage system in Wales and two in Scotland, all of which are around 350 MW or a fifth the size of Electric Mountain.

In the Wikipedia entry entitled List Of Power Stations In Scotland, this is said.

SSE have proposed building two new pumped storage schemes in the Great Glen; 600 MW at Balmacaan above Loch Ness, and 600 MW at Coire Glas above Loch Lochy, at £800m. Scotland has a potential for around 500 GWh of pumped storage

I’m sure the Scots will find some way to fill this storage.

If all else fails, there’s always Icelink. This is the description from Wikipedia.

Icelink is a proposed electricity interconnector between Iceland and Great Britain. As of 2017, the project is still at the feasibility stage. According to current plans, IceLink may become operational in 2027.

At 1000–1200 km, the 1000 MW HVDC link would be the longest sub-sea power interconnector in the world.

The project partners are National Grid plc in the UK, and Landsvirkjun, the state-owned generator in Iceland, and Landsnet, the Icelandic Transmission System Operator (TSO)

Plugging it in to Scotland, rather than London, probably saves a bit of money!

Conclusion

Increasing our pumped-storage energy capacity is feasible and would help us to survive major power failures.

Batteries In Buildings

Tesla have a product called a Powerwall, which puts energy storage into a home or other building.

This was the first product of its kind and there will be many imitators.

The Powerwall 2 has a capacity of 13.5 kWh, which is puny compared to the 9.1 GWh or 9,100,000 kWh of Electric Mountain.

But only 674,074 batteries would need to be fitted in the UK to be able to store the same amount of electricity as Electric Mountain.

The big benefit of batteries in buildings is that they shift usage from the Peak times to overnight

So they will reduce domestic demand in the Peak.

Conclusion

Government should give incentives for people to add batteries to their houses and other buildings.

Could Hydrogen Work As Energy Storage?

Suppose you had a hydrogen-fired 500 MW hydrogen-fired CCGT with a hydrogen tank that was large enough to run it at full power for an hour.

That would be a 0.5 GWh storage battery with a discharge rate of 500 MW.

In an hour it would supply 500MWh or 500,000 kWh of electricity at full power.

In Hydrogen Economy on Wikipedia, this is said, about producing hydrogen by electroysis of water.

However, current best processes for water electrolysis have an effective electrical efficiency of 70-80%, so that producing 1 kg of hydrogen (which has a specific energy of 143 MJ/kg or about 40 kWh/kg) requires 50–55 kWh of electricity.

If I take the 40 KWh/Kg figure that means that to provide maximum power for an hour needs 12,500 Kg or 12.5 tonnes of hydrogen.

Under a pressure of 700 bar, hydrogen has a density of 42 Kg/cu. m., so 12.5 tonnes of hydrogen will occupy just under 300 cubic metres.

If I’ve got the figures right that could be a manageable amount of hydrogen.

Remember, I used to work in a hydrogen factory and I had the detailed guided tour. Technology may change in fifty years, but the properties of hydrogen haven’t!

Gas-Fired Versus Coal-Fired Power Stations

Consider.

  • The problem of the carbon dioxide is easier with a gas-fired power station, than a coal-fired power station of the same generating capacity, as it will generate only about forty percent of carbon dioxide.
  • Gas-fired power stations can be started up very quickly, whereas starting a coal-fired power station probably takes all day.
  • Coal is much more difficult to handle than gas.

Using hydrogen is even better than using natural gas, as it’s zero-carbpn.

Conclusion

I believe we can use our unique geographic position and proven technology to increase the resilience of our power networks.

We need both more power stations and energy storage.

 

 

August 12, 2019 Posted by | World | , , , , , , , , | 5 Comments