The Anonymous Widower

Tees Valley Wins £1.3million Project To Bring Hydrogen Vehicles To The Region

The title of this post, is the same as that as this article on the Tees Valley Combined Authority web site.

This is the introductory paragraph.

Hydrogen vehicles and refuelling stations will soon be coming to Tees Valley after it was today (February 5) announced that a £1.3million bid to Government had been successful.

The next two paragraphs give more detail.

Tees Valley Mayor Ben Houchen welcomed the result of a Government competition that will see two refuelling stations built in Middlesbrough and Redcar, plus a fleet of cars which use hydrogen technology for long-range travel (300+ miles) and fast refuelling capability.

The new refuelling stations could allow cars, buses, bin lorries and even trains to be powered by the super fuel.

This later paragraph details the expected economic benefits.

Figures from a draft report commissioned by the Combined Authority and produced by KPMG suggest that exploiting the opportunities of the hydrogen economy could add up to £7billion to the region’s economy by 2050, with the creation of as many as 1,000 jobs.

These figures seem to say hydrogen is good for the economy and jobs.

March 30, 2020 Posted by | Transport | , , , , | Leave a comment

Demand For Green Offices Will Soar To Meet Carbon Targets

The title of this post is the same as that of this article in the Business section of The Times.

This is the introductory paragraph.

London will need much more “green” office space by 2030 to meet sustainability pledges made by businesses that are coming to the end of their leases.

The article then makes these points.

  • Looking at lease expiry dates, JLL believes that eight million square feet of green offices are needed by the end of the decade.
  • This is partly brought about by pressure from staff, shareholders and customers.
  • Microsoft and Astrazeneca want to be carbon-negative by 2030.
  • JLL’s research shows that sustainable buildings command higher rents.
  • Bloomberg’s office block is one of the best.

It was certainly an article worth buying the paper for.

Conclusion

With London office space sustainable offices are good for property companies.

March 16, 2020 Posted by | World | , , , | Leave a comment

EWR Targets Short-Term Fleet Ahead Of Possible Electrification

The title of this post is the same as that of this article on Rail Magazine.

This is the introductory paragraph.

Electrification could yet be on the agenda for East West Rail, after Government ministers confirmed that the decision not to wire the reopened railway could be reversed.

East West Railway (EWR) also announced last week, that it was looking for second-hand diesel multiple units to start services.

  • The lease will be for four years, with a possible extension of two years.
  • The deal is worth £40million and will include maintenance.
  • The deal will end on May the 10th 2028.
  • 12 to 14 three-car trains are required.
  • Services will start at the end of 2024.

It looks to me, that this deal has interim written all over it.

Could Class 170 Trains Be Used For East West Railway?

Class 170 trains come in two- and three-cars and by 2024 many could be being replaced by trains with a smaller carbon-footprint.

If you look at the three-car Class 170 trains, they are the following numbers of trains with various companies.

  • Class 170/1 – CrossCountry – 10
  • Class 170/2 – Transport for Wales – 8
  • Class 170/3 – Abellio ScotRail – 26
  • Class 170/3 – CrossCountry – 2
  • Class 170/4 – Abellio ScotRail – 13
  • Class 170/4 – Northern Trains – 16

There are also some Class 170/5 and Class 170/6 trains, that it appears will be consolidated into ten three-car trains for CrossCountry.

Could CrossCountry Provide The Trains For East West Railway?

I think one likely scenario would be for the trains for East West Rail to come from CrossCountry‘s mixed fleet of Class 170 trains.

Consider.

  • CrossCountry need a bit of a fleet change as they still ten High Speed Trains, that will need to be replaced with more modern rolling stock.
  • CrossCountry have been criticised for a lack of capacity.
  • Several of CrossCountry’s services are run by diesel trains on electrified tracks.

Perhaps, if they replaced the fleet with a customised variant of Hitachi’s Class 800 trains, they might offer a better service to their customers.

  • Each train would be five cars long.
  • Trains would be able to work in pairs.
  • Trains might have electric, battery and diesel capabilities.
  • Some would be dual-voltage trains and able to work on both 25 KVAC overhead and 750 VDC third rail electrification.

I’m sure those clever people at Rock Rail are working on an appropriate specification, just as they did for Avanti West Coast with their customised variant of Hitachi’sClass 800 trains.

Looking at the delivery schedules for various fleets of Hitachi trains, we find.

  • East Midlands Railway will be receiving 33 x five-car Class 810 bi-mode  trains in 2020-2022.
  • Avanti West Coast will be receiving 13 x five-car AT-300 bi-mode  trains in 2020-2022.
  • Avanti West Coast will be receiving 10 x seven-car AT-300 electric  trains in 2020-2022.

Could the CrossCountry fleet be delivered in 2022-2024 to allow the Class 170 trains to be released?

Could Class 185 Trains Be Used For East West Railway?

TransPennine Express have a fleet of 51 three-car Class 185 trains.

The future of these trains is uncertain, as TransPennine Express is renewing their fleet.

  • They are all fully-compliant with the latest regulations.
  • They are 100 mph trains,
  • They are the right length.
  • They can work in pairs to increase capacity.

These trains would be easy to freshen up for East West Railway.

Could Bombardier Voyagers Provide The Trains For East West Railway?

There are four fleets of Bombardier Voyagers, that by the end of 2024 could be looking for a new home.

  • Thirty-four Class 220 trains could be released by 2024 by CrossCountry, if they replace their fleet with new trains.
  • Twenty-four Class 221 trains could be released by 2024 by CrossCountry, if they replace their fleet with new trains.
  • Twenty Class 221 trains will be released by 2022 by Avanti West Coast, when they replace their fleet with new AT-300 trains.
  • Twenty-seven Class 222 trains will be released by 2022 by East Midlands Railway, when they replace their fleet with new Class 810 trains.

These fleets could be updated for the East West Railway.

  • They are all fully-compliant with the latest regulations.
  • They are 125 mph trains.
  • Bombardier have been working on various schemes to fit batteries to these trains, to reduce running on diesel.

They could also be rebuilt to any required length.

Fast Forward To May 2028

By 2028, the following will have happened.

  • High Speed Two will have been substantially completed and electrified at Calvert, where it crosses the East West Railway.
  • East West Railway will be connected to the electrified West Coast Main Line at Bletchley.
  • East West Railway will be connected to the electrified Midland Main Line at Bedford.
  • New Hitachi Class 810 trains will be running through Bedford.
  • Future connections to the electrified East Coast Main Line at Sandy and the electrified West Anglia Main Line at Cambridge South will have been designed, if not well underway or even completed.

East of Calvert, there will be plenty of electricity to power any electrification.

The article also quotes a Government minister as saying there will be passive provision for electrification. This is sensible, as the clearances required for 25 KVAC overhead electrification are not that much higher, than those needed for the largest freight containers.

So the two major requirements for 25 KVAC overhead electrification; electricity supply and gauge-clearance, appear to be met in the basic design of the East West Railway.

The East West Railway will also have one characteristic, that has been lacked, by most of the railways we have electrified in the last few years.

It will be a substantially new railway, although quite a few miles will have been rebuilt on an existing track bed.

It is my view after looking at several electrification schemes in the last ten years, that when we have electrified a substantially new railway, we have made a much better fist of it, in terms of both cost and timescale.

Could this be, that if the track-bed has just been created or relaid, it is well surveyed and the engineers and workers, who laid it, can be asked their opinion, so fewer costly mistakes are made?

It should also be said, that the route of the East West Railway goes through fairly flat country, which probably doesn’t have the sewers and mine-shafts, that have plagued the erection of electrification in recent years.

I wonder, if having looked in detail at the costs, the builders of East West Railway have found that perhaps around 2023, after a detailed survey of the route, they can build the railway at a cost, which includes electrification, that still offers benefits.

What Would Be The Benefits Of Electrification Of The East West Railway?

The benefits of electrification are generally as follows.

  • Faster passenger and freight trains because of higher cruising speed and greater acceleration.
  • Lower carbon emissions.

Faster trains would lead to more trains running over the railway.

Will The Electrification Be Full Or Partial?

I believe that Hitachi and other ,manufacturers will produce passenger trains with the following abilities.

  • To use either 25 KVAC overhead or 750 VDC third-rail electrification.
  • To use onboard energy storage for running a number of miles.
  • To charge onboard energy storage, whilst dynamically connected to electrification.
  • To charge onboard energy storage, whilst stationary in a station or siding.
  • To swap between electrification and energy storage modes at operating speed.

These trains will be able to run on partially-electrified lines, by using energy storage to bridge gaps in the electrification.

In Sparking A Revolution, I gave this specification for a Hitachi battery-electric train.

  • Range – 55-65 miles
  • Performance – 90-100 mph
  • Recharge – 10 minutes when static
  • Routes – Suburban near electrified lines
  • Battery Life – 8-10 years

It looks like a route run by Hitachi battery-electric trains could have approximately sixty mile gaps in the electrification.

The trouble with gaps, is that they would mean that electric freight locomotives could not be used on the route.

One possibility could be the new tri-mode Class 93 locomotive, which has the following power sources.

  • 1.3 MW on diesel
  • 4.055 MW on electric
  • A power boost on battery

Hopefully, it can switch seamlessly between the various modes at line speed.

Until we see these locomotives in operation, we will not know if they can haul a maximum weight freight train all the way from Felixstowe to Ipswich and on to London, Cambridge or Peterborough.

Freight Trains Through Cambridge And Onto The East West Railway

In Roaming Around East Anglia – Freight Trains Through Newmarket, I said this.

The East West Rail Consortium plan to change the route of freight trains to and from Haven Ports; Felixstowe, Harwich and Ipswich to the West of Kennett station.

In this document on the East-West Rail Consortium web site, this is said.

Note that doubling of Warren Hill Tunnel at Newmarket and
redoubling between Coldham Lane Junction and Chippenham Junction is included
in the infrastructure requirements. It is assumed that most freight would operate
via Newmarket, with a new north chord at Coldham Lane Junction, rather than
pursuing further doubling of the route via Soham.

How would these changes affect Newmarket and the horse-racing industry in the town?

I believe that many freight trains would go straight through Cambridge and Cambridge South stations and onto the East West Railway.

One point to note, is that all of the route between Felixstowe and Cambridge South station has been gauge-cleared for the largest container trains and electrification.

This would surely make it reasonably easy to electrify all the way between Felixstowe and Cambridge South station.

Conclusion

I am coming to the conclusion, that given the importance of the rail freight route between Felixstowe and the Midlands, that something like the following will happen.

  • 2024 – Diesel passenger trains start running between Reading and Bedford via Didcot, Oxford and Bletchley
  • 2026 – Opening of Cambridge South station.
  • 2028 – Partial or full electrification is erected between Reading and Bedford
  • 2028 – Battery-electric passenger trains replace the diesel passenger trains.
  • 2030 – Opening of the full route between Reading and Cambridge.
  • 2935 – Opening of a fully-developed route though Newmarket to allow freight trains to go between Felixstowe and the East West Railway.

It appears to me, that by using diesel trains for an interim period, they can open the Reading and Bedford service early, whilst they complete the East West Railway.

 

March 16, 2020 Posted by | Transport | , , , , , , | Leave a comment

Red Diesel Cuts To Make Way For For Electric And Hydrogen

The title of this post is the same as that of this article on the Northern Echo.

It is an article worth reading, as Conservative MPs spread the message of the phase out of red diesel to their constituents.

  • It will be painful.
  • Farmers must be protected.
  • Only one person in the audience had an electric car.
  • The government is expected to enhance electric car incentives and provisions.

It was also disclosed that Teeside will be getting hydrogen-powered trains.

March 16, 2020 Posted by | Transport | , , , | 1 Comment

Volvo CE Unveils Electric Compact Wheel Loader Concept

The title of this post is the same as that of this Volvo CE press release.

This is the introduction.

Volvo Construction Equipment demonstrated the LX02 electric compact wheel loader at the Volvo Group Innovation Summit in Berlin. The prototype machine delivers zero emissions, significantly lower noise levels, improved efficiency and reduced operational costs.

I suggest that you read the press release, as it says a lot for Volvo’s plans for carbon, pollution and noise-free construction.

March 15, 2020 Posted by | Transport, World | , , , , | 2 Comments

Blackstone Acquires Battery Energy Storage Firm NRStor

The title of this post is the same as that as this article in IPE Real Assets.

The Blackstone Group is on of the largest alternative investment firms in the world, so the title of the post says it all.

I believe that we need masses of energy storage to fight global warming and it looks like Blackstone are building a portfolio.

 

March 7, 2020 Posted by | World | , , | Leave a comment

Could Battery-Electric Hitachi Trains Work Hull Trains’s Services?

Before I answer this question, I will lay out the battery-electric train’s specification.

Hitachi’s Proposed Battery Electric Train

Based on information in an article in Issue 898 of Rail Magazine, which is entitled Sparking A Revolution, the specification of Hitachi’s proposed battery-electric train is given as follows.

  • Based on Class 800-802/804 trains or Class 385 trains.
  • Range of 55-65 miles.
  • Operating speed of 90-100 mph
  • Recharge in ten minutes when static.
  • A battery life of 8-10 years.
  • Battery-only power for stations and urban areas.
  • Trains are designed to be created by conversion of existing Class 80x trains

For this post, I will assume that the train is five cars long. This is the length of Hull Trains’s Class 802 trains.

Hull Trains’s Services

Hull Trains run a train between Kings Cross and Hull, with some trains extending to Beverley.

  • The service runs at a frequency of five trains per day (tpd) to Hull station and two tpd to Beverley station.
  • Intermediate stations are Stevenage, Grantham, Retford, Doncaster, Selby, Howden, Brough and Cottingham

The Beverley service is 213 miles long and takes three hours and seven minutes.

These are facts about the operation of the service.

  • The train changes between diesel and electric operation at Temple Hirst Junction, which is on the electrified East Coast Main Line.
  • Temple Hirst Junction is forty-four miles from Beverley and thirty-six from Hull.
  • Beverley trains reverse at Hull and and are allowed eighteen minutes for the operation.
  • This reverse at Hull is enough time to charge the train’s batteries using a Fast-Charging system.

As these trains could have a range of between 55-65 miles on battery power, is there any point to bother with diesel?

Could Hull Trains and TransPennineExpress Share A Fast-Charger?

In Could Battery-Electric Hitachi Trains Work TransPennine Express’s Services?, I said this about their Manchester Piccadilly and Hull service.

As with the Scarborough and Redcar Central services, a Fast-Charging system would probably be needed at Hull.

As Hull Trains and TransPennine Express are both First Group companies, I would assume they would share amicably!

But would they allow LNER’s Azumas to use their Fast-Charger?

Could Hull Station Go Zero-Carbon?

If all the Hitachi trains used by Hull Trains, LNER and TransPrnnine Express were to use battery power to run between Hull station and the nearest electrification, the only diesel trains using the station would be Northern‘s assortment.

Northern run services through or to Hull as follows.

  • Sheffield and Hull
  • Sheffield and Bridlington
  • Hull and Scarborough
  • Hull and York

All services have a frequency of around one train per hour.

These services could be run by either battery-electric or hydrogen-electric trains.

Hull station is also a big bus interchange, so these would need to be converted to electric or hydrogen.

I’m sure ITM Power not far away in Sheffield, would be happy to provide a hydrogen system to fuel the buses and the trains.

Conclusion

It looks to me, that if a Fast-Charging system, were to be fitted at Hull and used during reverse or turnround at the station, that a Class 802 train fitted with batteries could work Hull Train’s service without using a drop of diesel.

I can just see the advertising – Hull Trains – Your carbon-free way between London and Hull!

It wouldn’t even need any electrification, other than the Fast-Charging system at Hull.

I also believe that Hull station and the co-located bus station could go carbon-free.

 

February 26, 2020 Posted by | Transport | , , , , , , , , , | 4 Comments

Green Hydrogen ‘Cheaper Than Unabated Fossil-Fuel H2 by 2030’: Hydrogen Council

The title of this post is the same as this article on Recharge.

This is the introductory paragraph.

Clean hydrogen derived from renewable energy will be cost-competitive with highly polluting grey hydrogen within 5-10 years, says new report.

Points about or contained in the article.

  • The report is by respected consultants; McKinsey.
  • Currently grey hydrogen produced by steam reforming produces 9-12 tonnes of carbon dioxide for every tonne of hydrogen produced, at a cost of $1.5 per Kg.
  • Green hydrogen produced by electrolysis using renewable energy, has a cost of $6 per Kg.
  • In certain parts of the world, like Chile, Australia and Saudi Arabia, with strong winds and sunshine, prices for green hydrogen could drop to $1.20 per Kg.
  • The article also talks about blue hydrogen, where the carbon dioxide is capyured and stored.

I suggest you read the article.

If you can’t be bothered just digest this paragraph.

The report adds that the blue and green hydrogen will be the cheapest options for many types of transport by 2030 — outperforming fossil fuels and battery power. These include long-distance buses, heavy- and medium-duty trucks, taxi fleets, regional trains and large passenger vehicles such as SUVs.

I can also envisage hydrogen being shipped around the world from the three countries named and others to countries like Germany,China and Japan, that need to decarbonise, in massive ships. Powered by hydrogen of course.

 

January 22, 2020 Posted by | Transport | , , , , | Leave a comment

Hitachi Trains For Avanti

The title of this post is the same as that of an article in the January 2020 Edition of Modern Railways.

The Bi-Mode Trains

Some more details of the thirteen bi-mode and ten electric Hitachi AT 300 trains are given.

Engine Size and Batteries

This is an extract from the article.

Hitachi told Modern Railways it was unable to confirm the rating of the diesel engines on the bi-modes, but said these would be replaceable by batteries in future if specified.

I do wonder if my speculation in Will Future Hitachi AT-300 Trains Have MTU Hybrid PowerPacks? is possible.

After all, why do all the hard work to develop a hybrid drive system, when your engine supplier has done it for you?

Would Avanti West Coast need a train that will do 125 mph on diesel?

The only place, they will be able to run at 125 mph or even higher will be on the West Coast Main Line, where they will be running under electric power from the pantograph.

If I were designing a bi-mode for 90 mph on diesel and 125 mph on electric, I would have batteries on the train for the following purposes.

  • Handle regenerative braking.
  • Provide hotel power in stations or when stationery.
  • Provide an acceleration boost, if required, when running on diesel.
  • Provide emergency power, if the wires go down in electric mode.

I’m sure MTU could work out a suitable size of diesel engine and batteries in an MTU PowerPack, that would meet the required performance.

Or maybe a smaller diesel could be used. An LNER Class 800 train has 1680 kW of installed power to maintain 125 mph. But the Great Western Railway versions have 2100 kW or twenty-five percent more, as their routes are more challenging with steeper gradients.

For the less challenging routes at a maximum of 90 mph between Crewe, Chester, Shrewsbury and North Wales, I wonder what level of power is needed.

A very rough estimate based on the speed required could put the power requirement as low as 1200-1500 kW.

As the diesel engines are only electrical generators, it would not effect the ability of the train to do 125 mph between Crewe and London.

There looks to be a virtuous circle at work here.

  • Lower maximum speed on diesel means smaller diesel engines.
  • Smaller diesel engines means lighter diesel engines and less fuel to carry.
  • Less weight to accelerate needs less installed power.
  • Less power probably means a more affordable train, that uses less diesel.

It looks to me, that Hitachi have designed a train, that will work Avanti West Coast’s routes efficiently.

The Asymmetric Bi-Mode Train

It looks to me that the bi-mode train  that Avanti West Coast are buying has very different performance depending on the power source and signalling

  • 90 mph or perhaps up to 100 mph on diesel.
  • 125 mph on electric power.with current signalling.
  • Up to 140 mph on electric power with in-cab digital signalling.

This compares with the current Class 221 trains, which can do 125 mph on all tracks, with a high enough operating speed.

The new trains’ different performance on diesel and electric power means they could be called asymmetric bi-modes.

Surely, creating an asymmetric bi-mode train, with on-board power; battery, diesel or hydrogen, sized to the route, means less weight, greater efficiency, less cost and in the case of diesel, higher carbon efficiency.

Carbon Emissions

Does the improvement in powertrain efficiency with smaller engines running the train at slower speeds help to explain this statement from the Modern Railways article?

Significant emissions reduction are promised from the elimination of diesel operation on electrified sections as currently seen with the Voyagers, with an expected reduction in CO2 emissions across the franchise of around two-thirds.

That is a large reduction, which is why I feel, that efficiency and batteries must play a part.

Battery-Electric Conversion

In my quote earlier from the Modern Railways article, I said this.

These (the diesel engines) would be replaceable by batteries in future if specified.

In Thoughts On The Next Generation Of Hitachi High Speed Trains, I looked at routes that could be run by a battery-electric version of Hitachi AT-300 trains.

I first estimated how far an AT-300 train could go on batteries.

How far will an AT-300 train go on battery power?

  • I don’t think it is unreasonable to be able to have 150 kWh of batteries per car, especially if the train only has one diesel engine, rather than the current three in a five-car train.
  • I feel with better aerodynamics and other improvements based on experience with the current trains, that an energy consumption of 2.5 kWh per vehicle mile is possible, as compared to the 3.5 kWh per vehicle mile of the current trains.

Doing the calculation gives a range of sixty miles for an AT-300 train with batteries.

As train efficiency improves and batteries are able to store more energy for a given volume, this range can only get better.

I then said this about routes that will be part of Avanti West Coast’s network.

With a range of sixty miles on batteries, the following is possible.

  • Chester, Gobowen, Shrewsbury And Wrexham Central stations could be reached on battery power from the nearest electrification.
  • Charging would only be needed at Shrewsbury to ensure a return to Crewe.

Gobowen is probably at the limit of battery range, so was it chosen as a destination for this reason.

The original post was based on trains running faster than the 90 mph that is the maximum possible on the lines without electrification, so my sixty mile battery range could be an underestimate.

These distances should be noted.

  • Crewe and Chester – 21 miles
  • Chester and Shrewsbury – 42 miles
  • Chester and Llandudno – 47 miles
  • Chester and Holyhead – 84 miles

Could electrification between Crewe and Chester make it possible for Avanti West Coast’s new trains to go all the way between Chester and Holyhead on battery power in a few years?

I feel that trains with a sixty mile battery range would make operations easier for Avanti West Coast.

Eighty miles would almost get them all the way to Holyhead, where they could recharge!

Rlectrification Between Chester And Crewe

I feel that this twenty-odd miles of electrification could be key to enabling battery-electric trains for the routes to the West of Chester to Shrewsbury, Llandudno and Holyhead.

How difficult would it be to electrify between Chester and Crewe?

  • It is not a long distance to electrify.
  • There doesn’t appear to be difficult viaducts or cuttings.
  • It is electrified at Crewe, so power is not a problem.
  • There are no intermediate stations.

But there does seem to be a very large number of bridges. I counted forty-four overbridges and six underbridges. At least some of the bridges are new and appear to have been built with the correct clearance.

Perhaps it would be simpler to develop fast charging for the trains and install it at Chester station.

Conclusion On The Bi-Mode Trains

It appears to me that Avanti West Coast, Hitachi and Rock Rail, who are financing the trains have done a very good job in devising the specification for a fleet of trains that will offer a good service and gradually move towards being able to deliver that service in a carbon-free manner.

  • The initial bi-mode trains will give a big improvement in performance and reduction in emission on the current Voyagers, as they will be able to make use of the existing electrification between Crewe and London.
  • The trains could be designed for 125 mph on electric power and only 90-100 mph on diesel, as no route requires over 100 mph on diesel. This must save operating costs and reduce carbon emissions.
  • They could use MTU Hybrid PowerPacks instead of conventional diesel engines to further reduce emissions and save energy
  • It also appears that Hitachi might be able to convert the trains to battery operation in a few years.
  • The only new infrastructure would be a few charging stations for the batteries and possible electrification between Chester and Crewe.

I don’t think Avanti West Coast’s ambition of a two-thirds reduction in CO2 is unreasonable and feel it could even be exceeded.

Other Routes For Asymetric Bi-Mode Trains

I like the concept of an asymetric bi-mode train, where the train has the following performance.

  • Up to 100 mph on battery, diesel or hydrogen.
  • Up to 100 mph on electrified slower-speed lines.
  • 125 mph on electrified high-speed lines, with current signalling.
  • Up to 140 mph on electrified high-speed lines, with in-cab digital signalling.

I am very sure that Hitachi can now tailor an AT-300 train to a particular company’s needs. Certainly, in the case of Avanti West Coast, this seems to have happened, when Avanti West Coast, Hitachi, Network Rail and Rock Rail had some serious negotiation.

LNER At Leeds

As an example consider the rumoured splitting and joining of trains at Leeds to provide direct services between London and Bradford, Harrogate, Huddersfield, Ilkley, Skipton and other places, that I wrote about in Dancing Azumas At Leeds.

In the related post, I gave some possible destinations.

  • Bradford – 13 miles – 25 minutes – Electrified
  • Harrogate – 18 miles – 30 minutes
  • Huddersfield – 17 miles – 35 minutes
  • Hull – 20 miles – 60 minutes
  • Ilkley – 16 miles – 26 minutes – Electrified
  • Skipton – 26 miles – 43 minutes – Electrified
  • York – 25 miles – 30 minutes

Note, that the extended services would have the following characteristics.

They would be run by one five-car train.

  1. Services to Bradford, Ilkley and Skipton would be electric
  2. Electrification is planned from Leeds to Huddersfield and York, so these services could be electric in a few years.
  3. All other services would need independent power; battery, diesel or hydrogen to and from Leeds.
  4. Two trains would join at Leeds and run fast to London on the electrified line.
  5. Services would probably have a frequency of six trains per day, which works out at a around a train every two hours and makes London and back very possible in a day.
  6. They would stop at most intermediate stations to boost services to and from Leeds and give a direct service to and from London.

As there are thirty trains per day between London and Leeds in each direction, there are a lot of possible services that could be provided.

Currently, LNER are only serving Harrogate via Leeds.

  • LNER are using either a nine-car train or a pair of five-car trains.
  • The trains reverse in Platforms 6 or 8 at Leeds, both of which can handle full-length trains.
  • LNER allow for a generous time for the reverse, which would allow the required splitting and joining.
  • All trains going to Harrogate are Class 800 bi-mode trains.

Note that the Class 800 trains are capable of 125 mph on diesel, whereas the average speed between Harrogate and Leeds is just 35 mph. Obviously, some of this slow speed is due to the route, but surely a train with a maximum speed of 90-100 mph, with an appropriate total amount of diesel power, would be the following.

  • Lighter in weight.
  • More efficient.
  • Emit less pollution.
  • Still capable of high speed on electrified lines.
  • Bi-mode and electric versions could run in pairs between Leeds and London.

LNER would probably save on track access charges and diesel fuel.

LNER To Other Places

Could LNER split and join in a similar way to other places?

  • Doncaster for Hull and Sheffield
  • Edinburgh for Aberdeen and Inverness
  • Newark for Lincoln and Nottingham
  • York for Middlesbrough and Scarborough.

It should be noted that many of the extended routes are quite short, so I suspect some train diagrams will be arranged, so that trains are only filled up with diesel overnight,

GWR

Great Western Railway are another First Group company and I’m sure some of their routes could benefit, from similar planning to that of Avanti West Coast.

Splitting and joining might take place at Reading, Swindon, Bristol and Swansea.

South Western Railway

South Western Railway will need to replace the three-car Class 159 trains to Exeter, that generally work in pairs with a total number of around 400 seats, in the next few years.

These could be replaced with a fleet of third-rail Hitachi trains of appropriate length.

  • Seven cars sating 420 passengers?
  • They would remove diesel trains from Waterloo station.
  • All South Western Railway Trains running between Waterloo and Basingstoke would be 100 mph trains.

I wonder, if in-cab digital signalling on the route, would increase the capacity? It is sorely needed!

Southeastern

Southeastern need bi-mode trains to run the promised service to Hastings.

  • Trains would need a third-rail capability.
  • Trains need to be capable of 140 mph for High Speed One.
  • Trains need to be able to travel the 25 miles between Ashford International and Ore stations.
  • Trains would preferably be battery-electric for working into St. Pancras International station.

Would the trains be made up from six twenty-metre cars, like the Class 395 trains?

The Simple All-Electric Train

The Modern Railways article, also says this about the ten all-electric AT-300 trains for Birmingham, Blackpool and Liverpool services.

The electric trains will be fully reliant on the overhead wire, with no diesel auxiliary engines or batteries.

It strikes me as strange, that Hitachi are throwing out one of their design criteria, which is the ability of the train to rescue itself, when the overhead wires fail.

In Do Class 800/801/802 Trains Use Batteries For Regenerative Braking?, I published this extract from this document on the Hitachi Rail web site.

The system can select the appropriate power source from either the main transformer or the GUs. Also, the size and weight of the system were minimized by designing the power supply converter to be able to work with both power sources. To ensure that the Class 800 and 801 are able to adapt to future changes in operating practices, they both have the same traction system and the rolling stock can be operated as either class by simply adding or removing GUs. On the Class 800, which is intended to run on both electrified and non-electrified track, each traction system has its own GU. On the other hand, the Class 801 is designed only for electrified lines and has one or two GUs depending on the length of the trainset (one GU for trainsets of five to nine cars, two GUs for trainsets of 10 to 12 cars). These GUs supply emergency traction power and auxiliary power in the event of a power outage on the catenary, and as an auxiliary power supply on non-electrified lines where the Class 801 is in service and pulled by a locomotive. This allows the Class 801 to operate on lines it would otherwise not be able to use and provides a backup in the event of a catenary power outage or other problem on the ground systems as well as non-electrified routes in loco-hauled mode.

This is a very comprehensive power system, with a backup in case of power or catenary failure.

So why does it look like Hitachi are throwing that capability out on the trains for Avanti West Coast.

There are several possibilities.

  • The reliability of the trains and the overhead wire is such, that the ability of a train to rescue itself is not needed.
  • The auxiliary generator has never been used for rescuing the train.
  • The West Coast Main Line is well-provided with Thunderbird locomotives for rescuing Pendelinos, as these trains have no auxiliary generator or batteries.
  • Removal of the excess weight of the auxiliary engine and batteries, enables the Hitachi AT-300 trains to match the performance of the Pendelinos, when they are using tilt.

Obviously, Hitachi have a lot of train performance statistics, from the what must be around a hundred trains in service.

It looks like Hitachi are creating a lightweight all-electric train, that has the performance or better of a Pendelino, that it achieves without using tilt.

  • No tilt means less weight and more interior space.
  • No auxiliary generator or batteries means less weight.
  • Wikipedia indicates, that Hitachi coaches are around 41 tonnes and Pendelino coaches are perhaps up to ten tonnes heavier.
  • Less weight means fast acceleration and deceleration.
  • Less weight means less electricity generated under regenerative braking.
  • Pendelinos use regenerative braking, through the catenary.
  • Will the new Hitachi trains do the same instead of the complex system they now use?

If the train fails and needs to be rescued, it uses the same Thunderbird system, that the Pendelinos use when they fail.

Will The New Hitachi Trains Be Less Costly To Run?

These trains will be lighter in weight than the Pendelinos and will not require the track to allow tilting.

Does this mean, that Avanti West Coast will pay lower track access charges for their new trains?

They should also pay less on a particular trip for the electricity, as the lighter trains will need less electricity to accelerate them to line speed.

Are Avanti West Coast Going To Keep The Fleets Apart?

Under a heading of Only South Of Preston, the Modern Railways article says this.

Unlike the current West Coast fleet, the Hitachi trains will not be able to tilt. Bid Director Caroline Donaldson told Modern Railways this will be compensated for by their improved acceleration and deceleration characteristics and that the operator is also working with Network Rail to look at opportunities to improve the linespeed for non-tilting trains.

The routes on which the Hitachi trains will operate have been chosen with the lack of tilt capability in mind, with this having the greatest impact north of Preston, where only Class 390 Pendelinos, which continue to make use of their tilting capability will be used.

Avanti West Coast have said that the Hitachi trains will run from London to Birmingham, Blackpool and Liverpool.

All of these places are on fully-electrified branches running West from the West Coast Main Line, so it looks like there will be separation.

Will The New Hitachi Trains Be Faster To Birmingham, Blackpool And Liverpool?

Using data from Real Time Trains, I find the following data about the current services.

  • Birmingham and Coventry is 19 miles and takes 20 minutes at an average speed of 57 mph
  • Blackpool and Preston is 16.5 miles and takes 21 minutes at an average speed of 47 mph
  • Liverpool and Runcorn is 3.15 miles and takes 15 minutes at an average speed of 52 mph

All the final legs when approaching the terminus seem to be at similar speeds, so I doubt there are much savings to be made away from the West Coast Main Line.

Most savings will be on the West Coast Main Line, where hopefully modern in-cab digital signalling will allow faster running at up to the design speed of both the Hitachi and Pendelino trains of 140 mph.

As an illustration of what might be possible, London to Liverpool takes two hours and thirteen minutes.

The distance is 203 miles, which means that including stops the average speed is 91.6 mph.

If the average speed could be raised to 100 mph, this would mean a journey time of two hours and two minutes.

As much of the journey between London and Liverpool is spent at 125 mph, which is the limit set by the signalling, raising that to 135 mph could bring substantial benefits.

To achieve the journey in two hours would require an overall average speed of 101.5 mph.

As the proportion of track on which faster speeds, than the current 125 mph increase over the next few years, I can see Hitachi’s lightweight all-electric expresses breaking the two hour barrier between London and Liverpool.

What About The Pendelinos And Digital Signalling?

The January 2020 Edition of Modern Railways also has an article entitled Pendolino Refurb Planned.

These improvements are mentioned.

  • Better standard class seats! (Hallelujah!)
  • Refreshed First Class.
  • Revamped shop.

Nothing is mentioned about any preparation for the installation of the equipment to enable faster running using digital in-cab signalling, when it is installed on the West Coast Main Line.

Surely, the trains will be updated to be ready to use digital signalling, as soon as they can.

Just as the new Hitachi trains will be able to take advantage of the digital signalling, when it is installed, the Pendellinos will be able to as well.

Looking at London and Glasgow, the distance is 400 miles and it takes four hours and thirty minutes.

This is an average speed of 89 mph, which compares well with the 91.6 mph between London and Liverpool.

Raise the average speed to 100 mph with the installation of digital in-cab signalling on the route, that will allow running at over 125 mph for long sections and the journey time will be around four hours.

This is a table of average speeds and journey times.

  • 100 mph – four hours
  • 105 mph – three hours and forty-eight minutes
  • 110 mph – three hours and thirty-eight minutes
  • 115 mph – three hours and twenty-eight minutes
  • 120 mph – three hours and twenty minutes
  • 125 mph – three hours and twelve minutes
  • 130 mph – three hours and four minutes

I think that I’m still young enough at 72 to be able to see Pendelinos running regularly between London and Glasgow in three hours twenty minutes.

The paragraph is from the Wikipedia entry for the Advanced Passenger Train.

The APT is acknowledged as a milestone in the development of the current generation of tilting high speed trains. 25 years later on an upgraded infrastructure the Class 390 Pendolinos now match the APT’s scheduled timings. The London to Glasgow route by APT (1980/81 timetable) was 4hrs 10min, the same time as the fastest Pendolino timing (December 2008 timetable). In 2006, on a one off non-stop run for charity, a Pendolino completed the Glasgow to London journey in 3hrs 55min, whereas the APT completed the opposite London to Glasgow journey in 3hrs 52min in 1984.

I think it’s a case of give the Pendelinos the modern digital in-cab signalling they need and let them see what they can do.

It is also possible to give an estimate for a possible time to and from Manchester.

An average speed of 120 mph on the route would deliver a time of under one hour and forty minutes.

Is it possible? I suspect someone is working on it!

Conclusion

I certainly think, that Avanti West Coast, Hitachi and Network Rail, have been seriously thinking how to maximise capacity and speed on the West Coast Main Line.

I also think, that they have an ultimate objective to make Avanti West Coast an operator, that only uses diesel fuel in an emergency.

 

 

January 1, 2020 Posted by | Transport | , , , , , , , , , , , , , , , , | 3 Comments

Record Drop In Coal Use As Rich Nations Go Green

This is an article in today’s Times.

November 25, 2019 Posted by | World | , , | 2 Comments