The Anonymous Widower

SSE Thermal Outlines Its Vision For The UK’s Net Zero Transition

The title of this post is the same as that of this news item from SSE Thermal.

This is the opening statement.

SSE Thermal, part of SSE plc, is calling on government to turbocharge the delivery of low-carbon technologies to help deliver a net zero power system by 2035.

Two paragraphs then outline what the company is doing.

The low-carbon developer is bringing forward multiple low-carbon projects across the UK. This includes Keadby 3 Carbon Capture Power Station in the Humber – which is being developed in collaboration with Equinor and recently became the first power CCS project in the country to receive planning permission – and Aldbrough Hydrogen Pathfinder, which would unite hydrogen production, storage and power generation in one location by the middle of this decade.

These projects would form part of SSE’s £24bn investment programme in the UK, and in addition to supporting the decarbonisation of industrial heartlands and powering a low-carbon future, they would also help to secure a just transition for workers and communities.

The news item then talks about the future.

Now, SSE Thermal has published ‘A vision for the UK’s net zero transition’ which outlines the need for these low-carbon technologies and the potential of carbon capture and hydrogen in providing flexible back-up to renewables.

It also outlines the steps Government should take to facilitate this:

  • Progress the deployment of carbon capture and storage (CCS) and hydrogen infrastructure in a minimum of four industrial areas by 2030.
  • Support first-of-a-kind carbon capture and storage and hydrogen projects to investment decisions before the end of next year.
  • Increase its ambition for power CCS to 7-9GW by 2030, with regular auctions for Dispatchable Power Agreements.
  • Set out a policy ambition for hydrogen in the power sector and a strategy for delivering at least 8GW of hydrogen-capable power stations by 2030.
  • Accelerate the delivery of business models for hydrogen transport and storage infrastructure, to kickstart the hydrogen economy.

These are my thoughts.

Carbon Capture And Use

There is no mention of Carbon Capture And Use, which in my view, should go hand in hand with Carbon Capture And Storage.

  • Sensible uses for carbon dioxide include.
  • Feeding it to plants like tomatoes, flowers, salad vegetables, soft fruit and herbs in greenhouses.
  • Mineral Carbonation International can convert a dirty carbon dioxide stream into building products like blocks and plasterboard.
  • Deep Branch, which is a spin-out from Nottingham University, can use the carbon dioxide to make animal feed.
  • Companies like CarbonCure add controlled amounts of carbon dioxide to ready-mixed concrete to make better concrete and bury carbon dioxide for ever.

Surely, the more carbon dioxide that can be used, the less that needs to be moved to expensive storage.

Note.

  1. There is a lot of carbon dioxide produced in Lincolnshire, where there are a lot of greenhouses.
  2. At least three of these ideas have been developed by quality research in Universities, in the UK, Australia and Canada.
  3. I believe that in the future more uses for carbon dioxide will be developed.

The Government should do the following.

  • Support research on carbon capture.
  • Support Research on finding more uses for carbon dioxide.

Should there be a disposal premium or tax credit paid to companies, for every tonne of carbon dioxide used in their processes? It might accelerate some innovative ideas!

Can We Increase Power CCS to 7-9GW by 2030?

That figure of 7-9 GW, means that around a GW of CCS must be added to power stations every year.

Consider.

If we develop more ways of using the carbon dioxide, this will at least cut the cost of storage.

Can We Deliver At Least 8GW Of Hydrogen-Capable Power Stations By 2030?

Do SSE Thermal mean that these power stations will always run on hydrogen, or that they are gas-fired power stations, that can run on either natural gas of hydrogen?

In ‘A vision for the UK’s net zero transition’, this is said about the hydrogen power stations.

Using low-carbon hydrogen with zero carbon emissions at point of combustion, or blending hydrogen into existing stations.

So if these power stations were fitted with carbon capture and could run on any blend of fuel composed of hydrogen and/or natural gas, they would satisfy our needs for baseload gas-fired power generation.

Hydrogen Production And Storage

SSE’s vision document says this about Hydrogen Production.

Using excess renewables to create carbon-free hydrogen, alongside other forms of low-carbon hydrogen, which can then be stored and used to provide energy when needed.

SSE’s vision document also says this about Hydrogen Storage.

Converting existing underground salt caverns or creating new purpose-built caverns to store hydrogen and underpin the hydrogen economy.

This page on the SSE Thermal web site is entitled Aldbrough Has Storage, where this is said about storing hydrogen at Aldbrough.

In July 2021, SSE Thermal and Equinor announced plans to develop one of the world’s largest hydrogen storage facilities at the Aldbrough site. The facility could be storing low-carbon hydrogen as early as 2028.

With an initial expected capacity of at least 320GWh, Aldbrough Hydrogen Storage would be significantly larger than any hydrogen storage facility in operation in the world today. The Aldbrough site is ideally located to store the low-carbon hydrogen set to be produced and used in the Humber region.

From my own experience, I know there is a similar salt structure in Cheshire, which has also been used to store gas.

Earlier, I said, that one of the things, that SSE would like the Government to do is.

Progress the deployment of carbon capture and storage (CCS) and hydrogen infrastructure in a minimum of four industrial areas by 2030.

If Cheshire and Humberside are two sites, where are the other two?

Deciding What Fuel To Use

If you take the Humberside site, it can provide electricity to the grid in three ways.

  • Direct from the offshore and onshore wind farms.
  • Using natural gas in the gas-fired power stations.
  • Using hydrogen in the gas-fired power stations.

SSE might even add a battery to give them a fourth source of power.

In the 1970s, I used dynamic programming with Allied Mills to get the flour mix right in their bread, with respect to quality, cost and what flour was available.

Finance For SSE Thermal Plans

The news item says this.

These projects would form part of SSE’s £24bn investment programme in the UK.

£24bn is not the sort of money you can realise solely from profits or in sock drawers or down sofas, but provided the numbers add up, these sorts of sums can be raised from City institutions.

Conclusion

I like SSE Thermal’s plans.

 

March 8, 2023 Posted by | Energy, Energy Storage | , , , , , , , , , , | Leave a comment

ITOCHU, Taisei Corporation And Mineral Carbonation International Announce Collaboration

This collaboration is reported in this article on Market Screener, which is entitled ITOCHU : Announces Collaboration With Taisei Corporation In Initiative With MCi Testing Uses Of Concrete From Calcium Carbonate With Mineral Carbonation.

This paragraph described MCi’s mineral carbonation technologies.

MCi is a company that has pursued fifteen years of research and development into mineral carbonation and possesses the technology to produce a range of low carbon embodied materials including calcium carbonate by carbonating minerals in slag and other by-products of the steelmaking process (mainly steelmaking slag), coal ash produced by thermal power plants, and other industrial waste materials containing magnesium or calcium (mine tailings: by-products from the collection of metals and ore).

It also appears that ITOCHU invested in MCi last year.

I have read the whole article and I suggest that this collaboration could grow into something very big.

August 16, 2022 Posted by | World | , , , , | Leave a comment

Significant Step Forward For Keadby 3 Carbon Capture Power Station

The title of this post, is the same as that of this press release from SSE.

These three paragraphs outline the project.

A landmark project in the Humber which could become the UK’s first power station equipped with carbon capture technology has taken a major leap forward following an announcement by the UK Government today.

Keadby 3 Carbon Capture Power Station, which is being jointly developed by SSE Thermal and Equinor, has been selected to be taken forward to the due diligence stage by the Department for Business, Energy and Industry Strategy (BEIS) as part of its Cluster Sequencing Process.

This process will give the project the opportunity to receive government support, allowing it to deploy cutting edge carbon capture technology, and to connect to the shared CO2 pipelines being developed through the East Coast Cluster, with its emissions safely stored under the Southern North Sea. The common infrastructure will also supply low-carbon hydrogen to potential users across the region.

The press release also says this about the power station.

  • Keadby 3 power station could have a generating capacity of up to 910MW.
  • It could be operational by 2027.
  • It would capture up to one and a half million tonnes of CO2 a year.

It would provide low-carbon, flexible power to back-up renewable generation.

The H2H Saltend Project

The press release also says this about the H2H Saltend project.

Equinor’s H2H Saltend project, the ‘kick-starter’ for the wider Zero Carbon Humber ambition, has also been taken to the next stage of the process by BEIS. The planned hydrogen production facility could provide a hydrogen supply to Triton Power’s Saltend Power Station as well as other local industrial users. In June, SSE Thermal and Equinor entered into an agreement to acquire the Triton Power portfolio.

I wrote about H2H Saltend and the acquisition of Triton Power in SSE Thermal And Equinor To Acquire Triton Power In Acceleration Of Low-Carbon Ambitions.

In the related post, I added up all the power stations and wind farms, that are owned by SSE Thermal and it came to a massive 9.1 GW, which should all be available by 2027.

Collaboration Between SSE Thermal And Equinor

The press release also says this about collaboration between SSE Thermal and Equinor.

The two companies are also collaborating on major hydrogen projects in the Humber. Keadby Hydrogen Power Station could be one of the world’s first 100% hydrogen-fuelled power stations, while Aldbrough Hydrogen Storage could be one of the world’s largest hydrogen storage facilities. In addition, they are developing Peterhead Carbon Capture Power Station in Aberdeenshire, which would be a major contributor to decarbonising the Scottish Cluster.

This collaboration doesn’t lack ambition.

I also think, that there will expansion of their ambitions.

Horticulture

Lincolnshire is about horticulture and it is a generally flat county, which makes it ideal for greenhouses.

I wouldn’t be surprised to see a large acreage of greenhouses built close to the Humber carbon dioxide system, so that flowers, salad vegetables, soft fruit, tomatoes and other plants can be grown to absorb the carbon dioxide.

It should also be noted that one of the ingredients of Quorn is carbon dioxide from a fertiliser plant, that also feeds a large tomato greenhouse.

We would have our carbon dioxide and eat it.

Other Uses Of Carbon Dioxide

Storing carbon dioxide in depleted gas fields in the North Sea will probably work, but it’s a bit like putting your rubbish in the shed.

Eventually, you run out of space.

The idea I like comes from an Australian company called Mineral Carbonation International.

We would have our carbon dioxide and live in it.

I also think other major uses will be developed.

A Large Battery

There is the hydrogen storage at Aldbrough, but that is indirect energy storage.

There needs to be a large battery to smooth everything out.

In Highview Power’s Second Commercial System In Yorkshire, I talk about Highview Power’s proposal for a 200MW/2.5GWh CRYOBattery.

This technology would be ideal, as would several other technologies.

Conclusion

Humberside will get a giant zero-carbon power station.

 

 

 

August 14, 2022 Posted by | Energy, Energy Storage, Hydrogen | , , , , , , , , , , , , , , , , | Leave a comment

The Massive Hydrogen Project, That Appears To Be Under The Radar

This page on the SSE Thermal web site, is entitled Aldbrough Gas Storage.

This is the introductory paragraph.

The Aldbrough Gas Storage facility, in East Yorkshire, officially opened in June 2011. The last of the nine caverns entered commercial operation in November 2012.

This page on Hydrocarbons Technology is entitled Aldbrough Underground Gas Storage Facility, Yorkshire.

It gives these details of how Aldbrough Gas Storage was constructed.

The facility was originally planned to be developed by British Gas and Intergen in 1997. British Gas planned to develop Aldbrough North as a gas storage facility while Intergen planned to develop Aldbrough South.

SSE and Statoil became owners of the two projects in 2002 and 2003. The two companies combined the projects in late 2003. Site work commenced in March 2004 and leaching of the first cavern started in March 2005.

The storage caverns were created by using directional drilling. From a central area of the site, boreholes were drilled down to the salt strata located 2km underground.

After completion of drilling, leaching was carried out by pumping seawater into the boreholes to dissolve salt and create a cavern. Natural gas was then pumped into the caverns and stored under high pressure.

Six of the nine caverns are already storing gas. As of February 2012, dewatering and preparation of the remaining three caverns is complete. Testing has been completed at two of these caverns.

The facility is operated remotely from SSE’s Hornsea storage facility. It includes an above ground gas processing plant equipped with three 20MW compressors. The gas caverns of the facility are connected to the UK’s gas transmission network through an 8km pipeline.

Note.

  1. The caverns are created in a bed of salt about two kilometres down.
  2. It consists of nine caverns with the capacity to store around 370 million cubic metres (mcm) of gas.
  3. Salt caverns are very strong and dry, and are ideal for storing natural gas. The technique is discussed in this section in Wikipedia.

As I worked for ICI at Runcorn in the late 1960s, I’m very familiar with the technique, as the company extracted large amounts of salt from the massive reserves below the Cheshire countryside.

This Google Map shows the location of the Aldbrough Gas Storage to the North-East of Hull.

Note.

  1. The red-arrow marks the site of the Aldbrough Gas Storage.
  2. It is marked on the map as SSE Hornsea Ltd.
  3. Hull is in the South-West corner of the map.

This Google Map shows the site in more detail.

It appears to be a compact site.

Atwick Gas Storage

This page on the SSE Thermal web site, is entitled Atwick Gas Storage.

This is said on the web site.

Our Atwick Gas Storage facility is located near Hornsea on the East Yorkshire coast.

It consists of nine caverns with the capacity to store around 325 million cubic metres (mcm) of gas.

The facility first entered commercial operation in 1979. It was purchased by SSE in September 2002.

This Google Map shows the location of the Atwick Gas Storage to the North-East of Beverley.

Note.

  1. The red-arrow marks the site of the Atwick Gas Storage.
  2. It is marked on the map as SSE Atwick.
  3. Beverley is in the South-West corner of the map.

This Google Map shows the site in more detail.

As with the slightly larger Aldbrough Gas Storage site, it appears to be compact.

Conversion To Hydrogen Storage

It appears that SSE and Equinor have big plans for the Aldbrough Gas Storage facility.

This page on the SSE Thermal web site is entitled Plans For World-Leading Hydrogen Storage Facility At Aldbrough.

These paragraphs introduce the plans.

SSE Thermal and Equinor are developing plans for one of the world’s largest hydrogen storage facilities at their existing Aldbrough site on the East Yorkshire coast. The facility could be storing low-carbon hydrogen as early as 2028.

The existing Aldbrough Gas Storage facility, which was commissioned in 2011, is co-owned by SSE Thermal and Equinor, and consists of nine underground salt caverns, each roughly the size of St. Paul’s Cathedral. Upgrading the site to store hydrogen would involve converting the existing caverns or creating new purpose-built caverns to store the low-carbon fuel.

With an initial expected capacity of at least 320GWh, Aldbrough Hydrogen Storage would be significantly larger than any hydrogen storage facility in operation in the world today. The Aldbrough site is ideally located to store the low-carbon hydrogen set to be produced and used in the Humber region.

Hydrogen storage will be vital in creating a large-scale hydrogen economy in the UK and balancing the overall energy system by providing back up where large proportions of energy are produced from renewable power. As increasing amounts of hydrogen are produced both from offshore wind power, known as ‘green hydrogen’, and from natural gas with carbon capture and storage, known as ‘blue hydrogen’, facilities such as Aldbrough will provide storage for low-carbon energy.

I have a few thoughts.

Will Both Aldbrough and Atwick Gas Storage Facilities Be Used?

As the page only talks of nine caverns and both Aldbrough and Atwick facilities each have nine caverns, I suspect that at least initially only Aldbrough will be used.

But in the future, demand for the facility could mean all caverns were used and new ones might even be created.

Where Will The Hydrogen Come From?

These paragraphs from the SSE Thermal web page give an outline.

Equinor has announced its intention to develop 1.8GW of ‘blue hydrogen’ production in the region starting with its 0.6GW H2H Saltend project which will supply low-carbon hydrogen to local industry and power from the mid-2020s. This will be followed by a 1.2GW production facility to supply the Keadby Hydrogen Power Station, proposed by SSE Thermal and Equinor as the world’s first 100% hydrogen-fired power station, before the end of the decade.

SSE Thermal and Equinor’s partnership in the Humber marks the UK’s first end-to-end hydrogen proposal, connecting production, storage and demand projects in the region. While the Aldbrough facility would initially store the hydrogen produced for the Keadby Hydrogen Power Station, the benefit of this large-scale hydrogen storage extends well beyond power generation. The facility would enable growing hydrogen ambitions across the region, unlocking the potential for green hydrogen, and supplying an expanding offtaker market including heat, industry and transport from the late 2020s onwards.

Aldbrough Hydrogen Storage, and the partners’ other hydrogen projects in the region, are in the development stage and final investment decisions will depend on the progress of the necessary business models and associated infrastructure.

The Aldbrough Hydrogen Storage project is the latest being developed in a long-standing partnership between SSE Thermal and Equinor in the UK, which includes the joint venture to build the Dogger Bank Offshore Wind Farm, the largest offshore wind farm in the world.

It does seem to be, a bit of an inefficient route to create blue hydrogen, which will require carbon dioxide to be captured and stored or used.

Various scenarios suggest themselves.

  • The East Riding of Yorkshire and Lincolnshire are agricultural counties, so could some carbon dioxide be going to help greenhouse plants and crops, grow big and strong.
  • Carbon dioxide is used as a major ingredient of meat substitutes like Quorn.
  • Companies like Mineral Carbonation International are using carbon dioxide to make building products like blocks and plasterboard.

I do suspect that there are teams of scientists in the civilised world researching wacky ideas for the use of carbon dioxide.

Where Does The Dogger Bank Wind Farm Fit?

The Dogger Bank wind farm will be the largest offshore wind farm in the world.

  • It will consist of at least three phases; A, B and C, each of which will be 1.2 GW.
  • Phase A and B will have a cable to Creyke Beck substation in Yorkshire.
  • Phase C will have a cable to Teesside.

Creyke Beck is almost within walking distance of SSE Hornsea.

Could a large electrolyser be placed in the area, to store wind-power from Dogger Bank A/B as hydrogen in the Hydrogen Storage Facility At Aldbrough?

Conclusion

SSE  and Equinor may have a very cunning plan and we will know more in the next few years.

 

 

May 22, 2022 Posted by | Energy, Energy Storage, Hydrogen | , , , , , , , , , , , , | 1 Comment

Affordable Blue Hydrogen Production

The title of this post, is the same as that of this page on the Shell Catalysts & Technologies web site.

This is said at the top of the page.

Natural gas producers are at a crossroads. They face a shifting regulatory landscape emphasising emissions reduction and an economic environment where cash preservation is critical. Shell Catalysts & Technologies offers resource holders a phased approach to diversifying their portfolios towards clean hydrogen fuels by leveraging proven and affordable capture technologies and catalysts.

My knowledge of advanced chemical catalysts is small, but I did work in the early 1970s on a project with one of ICI’s experts in the field and he told me some basics and how he believed that in the future some new catalysts would revolutionise chemical process engineering.

Wikipedia’s definition of catalysis, or the action of catalysts is as follows.

Catalysis is the process of increasing the rate of a chemical reaction by adding a substance known as a catalyst.

When I heard that Velocys were going to develop a catalyst-based system to turn household waste into sustainable aviation fuel, I did make a small investment in the company, as I thought the project could have legs.

Shell’s process takes natural gas and converts one molecule of methane (CH4) into two molecules of hydrogen (H2) and one of carbon dioxide (CO2) using one molecule of oxygen (O2) from the air.

In the Shell Blue Hydrogen Process, does a clever catalyst extract the carbon atom from the methane and combine it with two oxygen atoms to create a molecule of carbon dioxide? If it does, then this would leave the four atoms of hydrogen to form two molecules of H2 and the catalyst to go and repeat its magic on another methane molecule.

The video on the Shell site claims to do the conversion 10-25 % cheaper than current carbon intensive methods like steam reforming.

For every two molecules of hydrogen produced, both the Shell Blue Hydrogen Process and steam reforming will produce one molecule of carbon dioxide.

If you look at steam reforming it is an endothermic process, which means heat has to be added. The classic endothermic process is dissolving ice cubes in a glass of water.

Shell don’t say, but does their process need less energy to be added, because their clever catalyst does a lot of the work?

I wouldn’t be surprised if the reaction takes place in a liquid, with hydrogen and carbon dioxide bubbling out.

  • The two gases would be separated by using their different physical properties.
  • Carbon dioxide is heavier for a start.

Whatever Shell have done, it is probably pretty impressive and has probably taken many years to develop.

If as I suspect, it produces pure carbon dioxide, that would be an added bonus, as some uses of carbon dioxide wouldn’t want impurities.

Uses of pure carbon dioxide include.

  • Feeding it to soft fruits, flowers, salad vegetables and tomatoes growing in large greenhouses.
  • Dry ice.
  • Mineral Carbonation International can use carbon dioxide to make building products like blocks or plasterboard.
  • It can be added to concrete.

The more of the carbon dioxide that can be used rather than stored the better.

May 18, 2022 Posted by | Energy, Hydrogen | , , , , , , , , | Leave a comment

What is Mineral Carbonation And How Could It Transform The Building Industry?

The title of this post, is the same as that of this article on AZO CleanTech.

This is the introductory paragraph.

Natural carbonates have been prime building materials for centuries, but synthetic carbonates are a modern, robust building material, created via mineral carbonation.

The article is a must-read introduction to this fascinating Australian technology, which could be very important in combating climate change.

There is also an explanatory video, which is worth a watch.

January 21, 2022 Posted by | World | , , | Leave a comment

What Happens When The Wind Doesn’t Blow?

In Future Offshore Wind Power Capacity In The UK, I analysed future offshore wind power development in the waters around the UK and came to this conclusion.

It looks like we’ll be able to reap the wind. And possibly 50 GW of it! 

The unpredictable nature of wind and solar power means that it needs to be backed up with storage or some other method.

In The Power Of Solar With A Large Battery, I describe how a Highview Power CRYObattery with a capacity of 500 MWh is used to back up a large solar power station in the Atacama desert in Chile.

But to backup 50 GW is going to need a lot of energy storage.

The largest energy storage system in the UK is Electric Mountain or Dinorwig power station in Wales.

  • It has an output of 1.8 GW, which means that we’d need up to nearly thirty Electric Mountains to replace the 50 GW.
  • It has a storage capacity of 9.1 GWh, so at 1.8 GW, it can provide that output for five hours.
  • To make matters worse, Electric Mountain cost £425 million in 1974, which would be over £4 billion today, if you could fine a place to build one.

But it is not as bad as it looks.

  • Battery technology is improving all the time and so is the modelling of power networks.
  • We are now seeing large numbers of lithium-ion batteries being added to the UK power network to improve the quality of the network.
  • The first Highview Power CRYObattery with an output of 50 MW and a capacity of 250 MWh is being built at Carrington in Manchester.
  • If this full size trial is successful, I could see dozens of CRYOBatteries being installed at weak points in the UK power network.
  • Other battery technology is being developed, that might be suitable for application in the UK.

Put this all together and I suspect that it will be possible to cover on days where the wind doesn’t blow.

But it certainly will need a lot of energy storage.

Gas-Fired Power Stations As A Back Up To Renewable Power

Last summer when the wind didn’t blow, gas-fired power stations were started up to fill the gap in the electricity needed.

Gas-fired power-stations normally use gas turbines similar to those used in airliners, which have a very fast startup response, so power can be increased quickly.

If you look at the specification of proposed gas-fired power stations like Keadby2, they have two features not found in current stations.

  • The ability to be fitted in the future with carbon-capture technology.
  • The ability to be fuelled by hydrogen.

Both features would allow a gas-fired power-station to generate power in a zero-carbon mode.

Carbon Capture And Storage

I am not in favour of Carbon Capture And Storage, as I believe Carbon Capture and Use is much better and increasingly engineers, researchers and technologists are finding ways of using carbon-dioxide.

  • Feeding to tomatoes, salad vegetables, soft fruits and flowers in greenhouses.
  • Producing meat substitutes like Quorn.
  • Producing sustainable aviation fuel.
  • An Australian company called Mineral Decarbonation International can convert carbon dioxide into building products like blocks and plasterboard.

This list will grow.

Using or storing the carbon-dioxide produced from a gas-fired power station running on natural gas, will allow the fuel to be used, as a backup, when the wind isn’t blowing.

Use Of Hydrogen

Hydrogen will have the following core uses in the future.

  • Steelmaking
  • Smelting of metal ores like copper and zinc
  • As a chemical feedstock
  • Natural gas replacement in the mains.
  • Transport

Note that the first four uses could need large quantities of hydrogen, so they would probably need an extensive storage system, so that all users had good access to the hydrogen.

If we assume that the hydrogen is green and probably produced by electrolysis, the obvious place to store it would be in a redundant gas field that is convenient. Hence my belief of placing the electrolyser offshore on perhaps a redundant gas platform.

If there is high hydrogen availability, then using a gas-fired power-station running on hydrogen, is an ideal way to make up the shortfall in power caused by the low wind.

Conclusion

Batteries and gas-fired power stations can handle the shortfall in power.

January 2, 2022 Posted by | Energy, Energy Storage | , , , , | 21 Comments

Thoughts On The Cambo Oil Field

There is an article in The Times today which is entitled Sturgeon Faces Backlash After Shell Pulls Out Of North Sea Oilfield.

I have been following the technology of Carbon Capture and Use and some very good ideas have come forward in the last couple of years.

  • Carbon dioxide is becoming increasingly important in the growing of flowers, salad vegetables, soft fruits and tomatoes in greenhouses.
  • At COP26, Australian company, Mineral Carbonation International won an award for their process that turns carbon dioxide into building materials like blocks and plasterboard.
  • A big investment was also made recently in an Italian company, who are using the properties of liquid and gaseous carbon dioxide to store energy.
  • Carbon dioxide has for years made a good fire extinguisher, which can’t be said for some chemicals currently used.
  • I suspect that some clever chemists are working on using carbon dioxide to create sustainable aviation fuel.

If the number of ideas for the use of carbon dioxide continues to increase, I can see gas-fired power stations being built, that are also used to produce much-needed high-quality carbon dioxide.

It should also be noted, that many like me, live in houses that are unsuitable for the fitting of heat pumps at an economical cost.

So we must wait for better technology or for hydrogen to be piped into our houses.

In the meantime, we will have to rely on gas. Or freeze!

I don’t know whether Cambo will produce any gas, but if it doesn’t, I can’t see much point in developing it.

Perhaps, Shell would prefer to develop a gas field.

December 3, 2021 Posted by | Energy, Hydrogen | , , , , , , , , , | Leave a comment

BP Plans To Turn Teesside Into First Green Hydrogen Hub

The title of this post, is the same as that of this article in The Times.

This is the first paragraph.

BP plans to build Britain’s biggest “green hydrogen” facility on Teesside to produce the clean fuel for use in new hydrogen-powered lorries and other transport.

Note.

The plans appear to be ambitious starting with a £100 million investment to build a 60 MW electrolyser by 2025, which would rise to as much as 500 MW by 2030.

The electrolyser will be paired with an upwards of a billion pound one gigawatt facility called H2Teesside, that will produce blue hydrogen.

I think there could be more to this than meets the eye.

Using The Carbon Dioxide Rather than Storing It!

I followed the carbon dioxide pipe from the CF fertiliser plant on Teesside using Google maps after seeing a film about it on the BBC. It goes to the Quorn factory and a massive greenhouse. I do wonder, if BP is talking to other companies, who also have a need for large quantities of good quality carbon dioxide.

One could be an Australian company, called Mineral Carbonation International, who have developed a process to convert carbon dioxide into building products like blocks and plasterboard. MCI won a prize at COP26, so could BP be looking at integrating one of these plants into their complex on Teesside?

The Electrolysers

Will BP be purchasing their electrolysers for green hydrogen from ITM Power in Sheffield?

This press release from ITM Power is entitled 12MW Electrolyser Sale.

The customer is not named, but could this be a starter kit for BP?

Alstom’s Hydrogen Aventras

In Alstom And Eversholt Rail Sign An Agreement For The UK’s First Ever Brand-New Hydrogen Train Fleet, I came to this conclusion.

This modern hydrogen train from Alstom is what is needed.

I also felt there could be three similar trains; electric, battery-electric and hydrogen, which would help operators hedge their bets on what type of traction to use.

Teesside must be one of the more likelier places where the Hydrogen Aventras will be carrying passengers.

I wrote about this possibility in Alstom Hydrogen Aventras And Teesside.

A deal between BP and Alstom would surely be in the interest of both companies.

  • Alstom would get a local hydrogen supply.
  • BP would get a first sale.
  • BP would get excellent publicity and a local demonstration of the possibilities of hydrogen.

It might even be possible to supply the hydrogen by pipeline.

November 29, 2021 Posted by | Finance, Hydrogen, World | , , , , , , , , , , , | 3 Comments

Mineral Carbonation International Win COP26 Clean Energy Pitch Battle

The title of this post, is the same as that of this article on Gasworld.

I have been following Australian company; Mineral Carbonation International for a few months and I am glad to see their technology, which turns carbon dioxide into bulk solid materials like building blocks and plasterboard, has now been recognised at a high level.

This is a screen capture of their home page.

The company certainly has a dream!

Read the website.

I believe that it is technology like this that will help to save the world from climate change.

I am glad that the great and good at COP26 are thinking along the same lines as myself!

November 4, 2021 Posted by | World | , , , , , , | 3 Comments