The Anonymous Widower

Holy Grail Of Energy Storage Receives Two Grants

The title of this post, is the same as that of this article on Off Grid Energy Independence.

This is the introductory paragraph.

RheEnergise is one of only a select handful of businesses to have been awarded grants under both the Sustainable Innovation Fund & the Small Business Research Initiative.

So what have RheEnergise developed?

The home page of their web site, is surprisingly detailed, unlike those of some other companies with new ideas, and not just energy storage companies!

This is the first paragraph on their home page.

RheEnergise is bringing innovation to pumped hydro storage. We call our new solution High-Density Hydro ™.

I think that is a good start, as although pumped hydro storage is well proven and the UK has the 1,728 MW Dinorwig Power Station, which has a storage capacity of 9.1 GWh, building new large pumped storage systems is fraught with difficulties and the technology has seen only modest innovation in the last few decades.

The next paragraph on their home page describes their innovation.

HD Hydro ™ uses our proprietary HD Fluid R-19 ™, which has 2.5x the density of water. R-19 gives RheEnergise projects 2.5x the power and 2.5x the energy when compared to water.

This means that for the same size of pumped hydro storage power station, you get 2.5 times the amount of energy storage.

Alongside a diagram of the system, the advantages of their systems is stated.

Projects can be installed on hills 2.5x lower than a project using water and still achieve the same power – for example, there are so many more hills at 150m than at 375m.

2.5x smaller, by volume, meaning dramatically lower construction costs, faster build times, easier reinstatement and easier landscaping – projects can be entirely hidden.

A very simple innovation has greatly increased the possibilities of pumped hydro storage.

The home page also gives a typical capacity.

RheEnergise projects provide 10MW to 50MW power and 2 to 10 hours of storage capacity.

These systems are in the same range as those of Highview Power, who are building a 50 MW system, with a five hour capacity at Carrington near Manchester, that I wrote about in Highview Power Breaks Ground on 250MWh CRYOBattery Long Duration Energy Storage Facility.

Both have the advantage, that they are easily scalable.

With RheEnergise’s HD Hydro ™, the size of the upper reservoir would need to be increased and with Highview Power’s CRYOBattery, more tanks for the liquid air would need to be added.

The Technology

I certainly agree with the principle behind ReEnergise, both mathematically and practically.

My interest scientifically, is what is the fluid they use?

  • Pure water has a specific gravity of one and everything else is measured with respect to this.
  • So aluminium, which has a specific gravity of 2.7, is 2.7 times as heavy as water.
  • Many of us will be familiar with mercury, which is a metal, that is liquid at room temperature.
  • Mercury has a specific gravity of 13.56.

It puzzles me, how someone has created a liquid, almost as heavy as aluminium, that can be pumped and handled like water, as it would need to be, to make a pumped storage system work.

 

 

November 12, 2020 Posted by | Energy, Energy Storage | , , , | Leave a comment

So, What Exactly Is Long-Duration Energy Storage?

The title of this post is the same as that of this article on Greentech Media.

This is the sub-title.

Everyone’s talking about it, and Californians are buying in. Here’s what you need to know about this emerging grid sector.

It describes what California is doing and the sector, with particular reference to Hydrostor, Form Energy and Highview Power.

The article finishes with a section entitled What’s The Catch?

This is the first two paragraphs.

The obvious barrier to a thriving long-duration storage industry is convincing generally conservative power plant customers that emerging technologies quite unlike anything the grid currently uses are safe bets for decades of operation.

Lab tests can reduce the risk, but nothing beats operational, megawatt-scale installations for proving that something works. That’s why the Form deal with Great River Energy is so crucial, as are early projects by Highview Power and Hydrostor. The big exception to technology risk is pumped hydro, which has been used at scale for decades. Those projects grapple instead with high capital expense and environmental concerns.

The article is a must-read and hopefully, this and more articles like it, will convince conservative energy company owners, regulators and governments, that long duration energy storage is the missing link between renewable power and electricity consumers.

At least, the current UK Government has backed two of the most promising British long duration energy storage companies; Gravitricity and Highview Power.

October 27, 2020 Posted by | Energy, Energy Storage | , , , , | Leave a comment

New Energy Storage “Water Battery” Breakthrough: Look Ma, No Underground Powerhouse

The title of this post, is the same as that of this article on CleenTechnoca.

Pumped hydro storage as used at Dinorwig power station or Electric Mountain in the UK is a good way to store electricity.

But it is expensive to build and one of the major costs is building a large underground powerhouse. This is Wikipedia’s description of the construction of the powerhouse at Dinorwig.

Twelve million tonnes (12,000,000 long tons; 13,000,000 short tons) of rock had to be moved from inside the mountain, creating tunnels wide enough for two lorries to pass comfortably and an enormous cavern 51 metres (167 ft) tall, 180 metres (590 ft) long, and 23 metres (75 ft) wide[10] known as “the concert hall”. The power station comprises 16 kilometres (9.9 mi) of tunnels, one million tons of concrete, 200,000 tons of cement and 4,500 tons of steel.

That is big, but on the other hand, it reportedly paid for itself in two years.

According to the article, a company called Obermeyer Hydro Inc has come up with a new design of pumped storage turbine., which eliminated the need for an underground powerhouse.

  • Cost savings of 45 % are claimed.
  • Reading the full article, I get the impression, that a radical redesign of the reversible turbine will be a game-changer.
  • I suspect, it could be of benefit in small countries like the UK, where pumped storage is expensive and faces strong opposition in certain areas.

It is also significant, that this appears to be successful innovation in an area, where it was thought we had reached the ultimate design.

 

August 25, 2020 Posted by | Energy, Energy Storage | , , | Leave a comment

Sizewell C: Nuclear Power Station Plans For Suffolk Submitted

The title of this post, is the same as that as this article on the BBC.

A few points from the article.

  • It will provide enough electricity for six million homes.
  • It will create 25,000 jobs during construction.
  • Sizewell C will be a near replica to Hinckley Point C.
  • It will generate 3.2 GW of electricity.
  • It will be low-carbon electricity.

As a well-read and experienced engineer, I am not against the technologies of nuclear power.

But I do think, by the time it is completed , other technologies like wind and energy storage will be much better value. They will also be more flexible and easier to expand, should we get our energy forecasts wrong.

  • We will see higher power and more efficient wind farms, further out in the North Sea.
  • Massive energy storage systems, based on improved pumped storage technology and using new technology from companies like Highview Power, Zinc8 and others will be built.
  • Wind and solar power an energy storage are much easier to fund and financial institutions like L & G, Aberdeen Standard and Aviva have invested in the past for our future pensions.
  • If you want to go nuclear, small modular reactors, look to be much better value in the longer term.
  • I also don’t like the involvement of the Chinese in the project. History tells me, that all pandemics seem to start in the country!

It is my view that the biggest mistake we made in this country over energy was not to built the Severn Barrage.

My preferred design would be based on the ideas of Sir Frederick Snow.

There would have been a high and a low lake, either side of a central spine, behind an outer barrage.

  • Reversible turbines and pumps between the lakes would both generate and store electricity.
  • When proposed in the 1970s, it would have generated ten percent of the UK’s electricity.
  • A new road and rail crossing of the Severn, could have been built into the outer barrage.
  • A lock would have provided access for shipping.
  • It would have controlled the periodic, regular and often devastating flooding of the River Severn.

Some versions of the original design, even incorporated an international airport.

  • The runways would be in the right direction for the prevailing wind, with regard to take-off and landing.
  • Take-off would be over open sea.
  • High speed trains could speed travellers to and from London on an updated Great Western Railway.

I believe a modern design could be even better.

  • The central spine and the outer barrage would be the foundations for a large wind farm.
  • There would also be a large number of powerful floating wind turbines to the West of the outer barrage in the Severn Estuary.
  • A giant electrolyser on the central spine would produce hydrogen, that could be used to decarbonise the UK’s gas network.
  • A power interconnector could be built into the outer barrage to connect Wales to the nuclear power stations at Hinckley :Point.
  • A cluster of small nuclear reactors could be built on the central spine.
  • In the intervening fifty years, we have probably learned how to build a barrage like this, so that it can benefit birds and other wildlife.

I believe, it will never be too late to build a Severn Barrage.

 

May 27, 2020 Posted by | Energy Storage, Transport | , , , , , , , , , , | 3 Comments

150 Hours Of Storage? Company Says That’s True To Form

The title of this post, is the same as that of this article on Power Magazine.

It is very much a must-read about the emerging technology of high-capacity and long term energy storage, with particular reference to Highview Power and Form Energy.

The article fills out a lot of what I wrote in Will The Real Form Energy Please Stand Up!

I also feel that there’s also an old kid on the block, when it comes to long term energy storage and that is new methods of deploying pumped storage, that I wrote about in The New Generation Of Pumped Storage Systems.

May 10, 2020 Posted by | World | , , , , | 1 Comment

Highview Power Keeping Up Momentum

The title of this post is the same as that of this article on Gas World.

This is the introductory paragraph.

It’s full steam ahead for Highview Power as the energy storage provider’s CEO and President today updated on operations.

It does look thatHighview are optimistic since their partnership with Sumitomo Heavy Industries was announced, that I wrote about in Japanese Giant Sumitomo Heavy Invests In Liquid-Air Energy Storage Pioneer.

I am optimistic too!

  • Highview’s system uses no difficult technology or rare materials.
  • The system can provide large amounts of storage, which we are going to need with all the wind farms we are developing.
  • From my Control Engineering and mathematical modelling experience, I believe, these systems can be used to boost power, where it is needed, in the same way gas-fired power stations do.

But above all, Highview Power has created a standalone energy storage system for the Twenty-First Century, that catches the needs and moods of the Age!

Our energy system is changing and it not expressed any better, than in this article on Physics World, which is entitled Does The UK Need 40 GW Of Firm Capacity?

This is the opening sentence.

Whether it comes from nuclear plants or fossil fuel-fired power stations with carbon capture and storage (CCS), the UK will need 30-40 GW of new “firm” low-carbon baseload generation by 2050 to meet the net-zero emissions target, Greg Clark reportedly said.

I don’t think that the country will allow any Government of the UK to build that much nuclear capacity and I have my doubts about the feasibility of large scale CCS. I also don’t think, the public will allow the building of large coal-fired power stations, even with CCS. And they don’t like nuclear either!

On Wikipedia, Wind Power in the UK, says this about the current Round 3 of proposals for wind farms.

Following on from the Offshore wind SEA announced by the Government in December 2007, the Crown Estate launched a third round of site allocations in June 2008. Following the success of Rounds 1 and 2, and important lessons were learnt – Round 3 was on a much bigger scale than either of its predecessors combined (Rounds 1 and 2 allocated 8 GW of sites, while Round 3 alone could identify up to 25 GW).

If you think UK politics is a lot of wind and bluster, that is pussy-cat’s behaviour compared to the roaring lions around our shores.

Wikipedia then lists nine fields, with a total power of 26.7 GW, but some are not being built because of planning.

But we ain’t seen noting yet!

Wikipedia says this about Round 4.

Round 4 was announced in 2019 and represented the first large scale new leasing round in a decade. This offers the opportunity for up to 7GW of new offshore capacity to be developed in the waters around England and Wales.

The Agreements for Lease will be announced in 2021.

Wikipedia then makes these points.

  • Nuclear power stations have funding and technical problems.
  • Since the Fukushima nuclear disaster public support for new nuclear has fallen
  • The UK government increased its previous commitment for 40 GW of Offshore wind capacity by 2030, in the Queen’s Speech in December 2019.
  • In 2020, this represents a 355% increase in ten years.
  • It is expected the Crown Estate will announce multiple new leasing Rounds and increases to existing bidding areas throughout the 2020-2030 period to achieve the governments aim of 40 GW.
  • The Scottish Government has plans to chip in 6 GW.

I will add these feelings of my own

  • I have ignored the contribution, that better wind-power technology will make to get more GW for each billion pounds of investment.
  • I can see a day, in the not too distant future, when on a day in the summer, no electricity in the UK comes from fossil fuel.
  • There will be a merging between wind power and hydrogen generation, as I described in ITM Power and Ørsted: Wind Turbine Electrolyser Integration.
  • Traditional nuclear is dead, although there may be applications for small nuclear reactors in the future.
  • In parallel to the growth of wind power, there will be a massive growth of solar power.

But we will need to store some of this energy for times when the wind isn’t blowing and the sun isn’t shining.

  • Pumped storage hydroelectric schemes, as at Electric Mountain in Snowdonia may have a part to play as I described in The New Generation Of Pumped Storage Systems. But sadly, the UK doesn’t have the terrain for another 9.1 GWh scheme.
  • A lot of electricity will be converted to hydrogen to power industrial processes and augment and possibly replace natural gas in the UK’s gas network.
  • Some electricity will be stored in batteries in houses and vehicles, when it is most affordable and used, when it is more expensive.
  • Companies and funds, like Gresham House Energy Storage Fund will fund and build storage facilities around the UK.
  • Traditional lithium-ion batteries require a lot of expensive raw materials controlled by the Chinese!
  • But if we develop all these options, and generate tens of GWs using renewables, the UK will still need a substantial amount of GW-scale affordable energy storage systems.

It is my belief, that Highview Power is the only practical GW-scale affordable energy storage system.

My only worry about their system, is that the idea could be ripped off, by an unscrupulous country with a solid process plant industry!

 

 

 

May 2, 2020 Posted by | Energy, Energy Storage | , , , , , | 1 Comment

The New Generation Of Pumped Storage Systems

This excellent article on GreenTechMedia is entitled The 5 Most Promising Long-Duration Storage Technologies Left Standing.

One of the technologies the article discusses is pumped storage, which in the UK is used at the massive Electric Mountain in Snowdonia, which can hold 9.1 GWh of electricity and supply up to 1,800 MW of electricity when needed. That’s not bad for 1970s engineering!

The GreenTechMedia article introduces pumped storage like this.

Midcentury modern design is hot again, so why not midcentury storage technology? This gravity-based concept physically moves water from a low to a high reservoir, from which the water descends, when needed, to generate electricity. This dates from way before lithium-ion’s heyday and still provides some 95 percent of U.S. grid storage, according to the U.S. Department of Energy.

The largest pumped storage system in the US is Bath County Pumped Storage Station, which is described as the biggest battery in the world. With a storage capacity of 24 GWh of electricity and a generating capacity of 3,003 MW, it dwarfs Electric Mountain. But then the Americans have bigger mountains.

Pumped storage is a good partner for intermittent renewables like wind and solar, but in a country like the UK, the US and other countries with strong planning laws getting permission to build a large pumped storage system is not easy. We tried to build one on Exmoor, but that was abandoned.

Note that the country building the most new pumped storage systems is China, where they have mountains and planning laws, that would not be acceptable anywhere else.

But engineers have come up with a new design, described in this paragraph from the GreenTechMedia article.

The new school of pumped hydro focuses on isolated reservoirs that don’t disrupt river ecosystems; this simplifies permitting, but projects still face a decade-long development timeline and billion-dollar price tags.

It then gives two examples of proposed systems.

Gordon Butte Pumped Storage Project

The operation of the Gordon Butte Pumped Storage Project is described like this in Wikipedia.

Gordon Butte will be located on a 177 acres (0.72 km2) site, and will have access to water from Cottonwood Creek, a tributary of the Musselshell River. The facility will operate as a closed system, without actively drawing or discharging water into the watershed. It will have a 4,000 acre-foot capacity reservoir, located 1,000 feet (300 m) above the base, with a power generation capacity of about 400 MW

The smaller size must make it easier to get it built.

How much energy will Gordon Butte hold in GWh?

  • A 4,000 acre-foot reservoir has a capacity of 4,933,927.42128 cubic metres.
  • As a cubic metre of water weighs a tonne, the reservoir can hold 4,933,927.42128 tonnes of water at an altitude of 300 metres.
  • Using Omni’s Potential Energy Calculator, this gives a potential energy of 4,032,108 KWh.

This is just over 4 GWh.

Ths facility could supply 400 MW for ten hours or 4 MW for a thousand hours!

It should be noted that Electric Mountain has an efficiency of 74-76%.

Eagle Mountain Pumped Storage Facility

Eagle Mountain Pumped Storage Facility is introduced like this on its web site.

The pumped storage hydropower project at Eagle Mountain, CA will transform a scarred brownfield site into a 1,300 Megawatt generator of green electricity that can light one million homes. The site is in a remote part of the Mojave Desert, more than 50 miles from the nearest city, Blythe, CA, and more than 60 miles from Palm Springs and the Coachella Valley. The construction of the project will create thousands of jobs and add millions of dollars to the local economy while adhering to the most rigorous environmental standards.

Note that it is turning an eyesore of the worst kind into a pumped storage facility. It’s surely better than using it for landfill!

Conclusion

Systems like these may have applications in the UK!

Could some of those massive quarries in the Peak District be converted into pumped storage systems, using the technology of my two examples?

This Google Map shows the quarries surrounding the town of Buxton.

Note.

  1. The white areas looking almost like clouds are quarries.
  2. Buxton has an altitude of three hundred metres, which is the altitude of the Gordon Butte Storage Project.
  3. The vast Tunstead Quarry, which is four kilometres East of Buxton has an area of over one square mile.
  4. Tunstead Quarry has a red arrow above it marked Buxton Lime and Cement.

Could we not extract as much limestone as is possible from Tunstead and then convert it into a pumped storage system like Gordon Butte? It could have an area of 2.5 square kilometres and an altitude of nearly a thousand feet. A rough estimate, based on Gordon Butte, indicates it could store over 10 GWh.

Hopefully, better hydro-electric power engineers than myself, are looking at the quarries in the Peak District, with eyes flashing like cash registers.

There is one pumped storage project under development in the UK at the present time; Snowdonia Pumped Hydro, which obtained planning permission in 2017.

These are some characteristics.

  • Situated in Snowdonia in old slate quarries at Glyn Rhonwy.
  • 99.9 MW of power
  • 700 MWh of storage capacity.
  • 2 reversible turbines
  • Start to full power in 12 seconds
  • Cycle efficiency of around 81%
  • Project lifespan of 125 years
  • Estimated carbon saving of 50,000 tonnes per year

It is under a tenth the size to Electric Mountain, but every little helps.

I would also feel that with a 125 year life, it could be the sort of investment, that would appeal to a Pension Fund.

 

 

 

April 1, 2020 Posted by | Energy Storage | , , , , | 6 Comments

BBC Click On Batteries

This weekend’s Click on the BBC is a cracker and it’s all about batteries.

Electric Mountain

It starts with pictures of the UK’s largest battery at Dinorwig Power Station or Electric Mountain, as it is colloquially known.

The pumped storage power station was completed in 1984 and with a peak generating capacity  of 1.6 GW, it was built to satisfy short term demand, such as when people make a cup of tea in advert breaks in television programs. Under Purpose of the Wikipedia entry for Dinorwig Power Station, there is a very good summary of what the station does.

To build Dinorwig was a wonderful piece of foresight by the CEGB, over forty years ago.

Would environmentalists allow Dinorwig Power Station to be built these days?

That is a difficult question to answer!

On the one hand it is a massive development in an outstanding area of natural beauty and on the other Dinorwig and intermittent power sources like solar and wind power, is a marriage made in heaven by quality engineering.

As solar and wind power increase we will need more electric mountains and other ways of storing considerable amounts of electricity.

Close to Electric Mountain, another much smaller pumped storage power station of 100 MW capacity is being proposed in disued slate quarries at Glyn Rhonwy. This article on UK Hillwalking, is entitled Opinion: Glyn Rhonwy Hydro is Causing a Stir.

The article was written in 2015 and it looks like Planning Permission for the new pumped storage power station at Glyn Rhonwy has now been given.

The UK’s particular problem with pumped storage power stations, is mainly one of geography, in that we lack mountains.

However Electric Mountain is in the top ten pumped storage power stations on this list in Wikipedia.

I doubt in today’s economy, Electric Mountain would be built, despite the fact that it is probably needed more than ever with all those intermittent forms of electricity generation.

The Future Of Pumped Storage Technology

But if you read Wikipedia on pumped-storage technology, there are some interesting and downright wacky technologies proposed.

I particular like the idea of underwater storage, which if paired with offshore wind farms could be the power of the future. That idea is a German project called StEnSea.

Better Batteries

Click also talks about work at the Warwick Manufacturing Group about increasing the capacity of existing lithium-ion batteries for transport use by improved design of the battery package. Seventy to eighty percent increases in capacity were mentioned, by a guy who looked serious.

I would reckon that within five years, that electric vehicle range will have doubled, just by increments in chemistry, design and manufacture.

Batteries will also be a lot more affordable.

Intelligent Charging

Warwick Manufacturing Group are also working on research to create an intelligent charging algorithm, as a bad charging regime can reduce battery life and performance.

I rate this as significant, as anything that can improve performance and reduce cost is certainly needed in battery-powered transport.

The program reclons it would improve battery performance by ten percent in cars.

Surely, this would be most applicable to buses or trains, running on a regular route, as predicting energy use would be much easier, especially if the number of passengers were known.

In Technology Doesn’t Have To Be Complex, I discussed how Bombardier were using the suspension to give a good estimate of the weight of passengers on a Class 378 train. I suspect that bus and train manufacturers can use similar techniques to give an estimate.

So a bus or train on a particular route could build a loading profile, which would be able to calculate, when was the optimum time for the battery to be charged.

As an example, the 21 bus, that can be used from Bank station to my house, is serviced by hybrid new Routemasters. It has a very variable passenger load and sometimes after Old Street, it can be surprisingly empty.

Intelligent charging must surely offer advantages on a bus route like this, in terms of battery life and the use of the onboard diesel engine.

But is on trains, where intelligent charging can be of most use.

I believe that modern trains like Aventras and Hitachi’s Class 800 trains are designed to use batteries to handle regenerative braking.

If you take a Class 345 train running on Crossrail, the battery philosophy might be something like this.

  • Enough energy is stored in the battery at all times, so that the train can be moved to a safe place for passenger evacuation in case of a complete power failure.
  • Enough spare capacity is left in the battery, so that at the next stop, the regnerative braking energy can be stored on the train.
  • Battery power would be used where appropriate to reduce energy consumption.
  • The control algorithm would take inputs from route profile and passenger loading.

It may sound complicated, but philosophies like this have been used on aircraft for around forty years.

Reusing Vehicle Batteries In Homes

Click also had detailed coverage about how vehicles batteries could be remanufactured and used in homes. Especially, when solar panels are fitted.

Other Batteries

On the on-line version, the program goes on to look at alternative new ideas for batteries.

Inside Electric Mountain

The on-line version, also gives a tour of Electric Mountain.

Conclusion

The future’s electric, with batteries.

 

 

 

 

October 1, 2017 Posted by | Energy, Energy Storage, Transport | , , | Leave a comment

We Need More Electricity

Everything we do, seems to need more and more electricity.

  • We are greening our transport and every electric train, car, bus and truck will need to be charged.
  • Unless it is hydrogen-powered, in which case we’ll need electricity to split water into hydrogen and oxygen.
  • Computing and the Internet needs more electricity and is leading to companies putting server farms in countries like Iceland, where there are Gigawatts of low-cost electricity.
  • We’re also using more energy hungry equipment like air-conditioning and some household appliances.
  • And then there’s industry, where some processes like metal smelting need lots of electricity.

At least developments like LED lighting and energy harvesting are helping to cut our use.

Filling The Gap

How are we going to fill our increasing energy gap?

Coal is going and rightly so!

A lot of nuclear power stations, which once built don’t create more carbon dioxide, are coming to the end of their lives. But the financial and technical problems of building new ones seem insoluble. Will the 3,200 MW Hinckley Point C ever be built?

That 3,200 MW size says a lot about the gap.

It is the sort of number that renewables, like wind and solar will scarcely make  a dent in.

Unfortunately, geography hasn’t donated us the terrain for the massive hydroelectric schemes , that are the best way to generate loe-carbon electricity.

Almost fifty years ago, I worked briefly for Frederick Snow and Partners, who were promoting a barrage of the River |Severn. I wrote about my experiences in The Severn Barrage and I still believe , that this should be done, especially as if done properly, it would also do a lot to tame the periodic flooding of the River.

The Tilbury Energy Centre

An article in The Times caught my eye last week with the headline of Tilbury Planned As Site Of UK’s Biggest Gas-Fired Power Station.

It said that RWE were going to build a massive 2,500 MW gas-fired power station.

This page on the RWE web site is entitled Tilbury Energy Centre.

This is from that page.

RWE Generation is proposing to submit plans to develop Tilbury Energy Centre at the former Tilbury B Power Station site. The development would include the potential for a Combined Cycle Gas Turbine (CCGT) power station with capacity of up to 2,500 Megawatts, 100 MW of energy storage facility and 300MW of open Cycle Gas Turbines (OCGT). The exact size and range of these technologies will be defined as the project progresses, based on an assessment of environmental impacts, as well as market and commercial factors.

The development consent application will also include a 3km gas pipeline that will connect the proposed plant to the transmission network which runs to the east of the Tilbury power station. The proposed CCGT power station would be located on the coal stock yard at the site of the former power station, but would be physically much smaller than its predecessor (a coal/biomass plant).

I will now look at the various issues.

Carbon Dioxide

But what about all that carbon dioxide that will be produced?

This is the great dilemma of a gas-powered power-station of this size.

But the advantage of natural gas over coal is that it contains several hydrogen atoms, which produce pure water under combustion. The only carbon in natural gas is the one carbon atom in methane, where it is joined to four hydrogen atoms.

Compared to burning coal, burning natural gas creates only forty percent of the carbon dioxide in creating the same amount of energy.

If you look at Drax power station, which is a 3,960 MW station, it produces a lot of carbon dioxide, even though it is now fuelled with a lot of imported biomass.

On the other hand, we could always eat the carbon dioxide.

This document on the Horticultural Development Council web site, is entitled Tomatoes: Guidelines for CO2 enrichment – A Grower Guide.

This and other technologies will be developed for the use of waste carbon-dioxide in the next couple of decades.

The great advantage of a gas-fired power station, is that, unlike coal, there are little or no impurities in the feedstock.

The Site

This Google Map shows the site, to the East of Tilbury Docks.

Note that the site is in the South East corner of the map, with its jetty for coal in the River.

These pictures show the area.

The CCGT power station would be built to the North of the derelict Tilbury B power station. I’ll repeat what RWE have said.

The proposed CCGT power station would be located on the coal stock yard at the site of the former power station, but would be physically much smaller than its predecessor (a coal/biomass plant).

Hopefully, when complete, it will improve the area behind partially Grade II* Listed Tilbury Fort.

Another development in the area is the Lower Thames Crossing, which will pass to the East of the site of the proposed power station. As this would be a tunnel could this offer advantages in the design of electricity and gas connections to the power station.

What Is A CCGT (Combined Cycle Gas Turbine) Power Station?

Combined cycle is described well but in a rather scientific manner in Wikipedia. This is the first paragraph.

In electric power generation a combined cycle is an assembly of heat engines that work in tandem from the same source of heat, converting it into mechanical energy, which in turn usually drives electrical generators. The principle is that after completing its cycle (in the first engine), the temperature of the working fluid engine is still high enough that a second subsequent heat engine may extract energy from the waste heat that the first engine produced. By combining these multiple streams of work upon a single mechanical shaft turning an electric generator, the overall net efficiency of the system may be increased by 50–60%. That is, from an overall efficiency of say 34% (in a single cycle) to possibly an overall efficiency of 51% (in a mechanical combination of two cycles) in net Carnot thermodynamic efficiency. This can be done because heat engines are only able to use a portion of the energy their fuel generates (usually less than 50%). In an ordinary (non combined cycle) heat engine the remaining heat (e.g., hot exhaust fumes) from combustion is generally wasted.

Thought of simply, it’s like putting a steam generator on the hot exhaust of your car and using the steam generated to create electricity.

The significant figures are that a single cycle has an efficiency of say 34%, whereas a combined cycle could be possibly as high as 51%.

In a section in the Wikipedia entry called Efficiency of CCGT Plants, this is said.

The most recent[when?] General Electric 9HA can attain 41.5% simple cycle efficiency and 61.4% in combined cycle mode, with a gas turbine output of 397 to 470MW and a combined output of 592MW to 701MW. Its firing temperature is between 2,600 and 2,900 °F (1,430 and 1,590 °C), its overall pressure ratio is 21.8 to 1 and is scheduled to be used by Électricité de France in Bouchain. On April 28, 2016 this plant was certified by Guinness World Records as the worlds most efficient combined cycle power plant at 62.22%. The Chubu Electric’s Nishi-ku, Nagoya power plant 405MW 7HA is expected to have 62% gross combined cycle efficiency.

There is also a section in the Wikipedia entry called Boosting Efficiency, where this is said.

The efficiency of CCGT and GT can be boosted by pre-cooling combustion air. This is practised in hot climates and also has the effect of increasing power output. This is achieved by evaporative cooling of water using a moist matrix placed in front of the turbine, or by using Ice storage air conditioning. The latter has the advantage of greater improvements due to the lower temperatures available. Furthermore, ice storage can be used as a means of load control or load shifting since ice can be made during periods of low power demand and, potentially in the future the anticipated high availability of other resources such as renewables during certain periods.

So is the location of the site by the Thames, important because of all that cold water.

But surely using surplus electricity to create ice, which is then used to improve the efficiency of the power produced from gas is one of those outwardly-bonkers, but elegant ideas, that has a sound scientific and economic case.

It’s not pure storage of electricity as in a battery or at Electric Mountain, but it allows spare renewable energy to be used profitably for electricity generators, consumers and the environment.

The location certainly isn’t short of space and it is close to some of the largest wind-farms in the UK in the Thames Estuary, of which the London Array alone has a capacity of 630 MW.

Wikipedia also has a section on an Integrated solar combined cycle (ISCC), where a CCGT power station is combined with a solar array.

I can’t see RWE building a new CCGT plant without using the latest technology and the highest efficiency.

Surely the higher the efficiency, the  less carbon dioxide is released for a given amount of electricity.

Building A CCGT Power Station

The power station itself is just a big building, where large pieces of machinery can be arranged and connected together to produce electricity.

To get an idea of scale of power stations, think of the original part of Tate Modern in London, which was the turbine hall of the Bankside power station, which generated 300 MW.

Turbines are getting smaller and more powerful, so I won’t speculate on the size of RWE’s proposed 2,500 MW station.

It will also only need a gas pipe in and a cable to connect the station to the grid. There is no need to use trains or trucks to deliver fuel.

Wikipedia has a section entitled Typical Size Of CCGT Plants, which says this.

For large-scale power generation, a typical set would be a 270 MW primary gas turbine coupled to a 130 MW secondary steam turbine, giving a total output of 400 MW. A typical power station might consist of between 1 and 6 such sets.

I feel that this raises interesting questions about the placement of single unit CCGT power stations.

It also means that at somewhere like Tilbury, you can build the units as required in sequence, provided the services are built with the first unit.

So on a large site like Tilbury, the building process can be organised in the best way posible and we might find that the station is expanded later.

RWE say this on their web site.

The exact size and range of these technologies will be defined as the project progresses, based on an assessment of environmental impacts, as well as market and commercial factors.

That sounds like a good plan to me!

100 MW Of Energy Storage At Tilbury

RWE’s plan also includes 100 MW of energy storage, although they say market and commercial factors could change this.

Energy storage is the classic way to bridge shortages in energy, when demand rises suddenly, as cin the classic half-time drinks in the Cup inal.

In Wikipedia’s list of energy storage projects, there are some interesting developments.

The Hornsdale Wind Farm in Australia has the following.

  • 99 wind turbines.
  • A total generating capacity of 315 MW.

Elon Musk is building the world’s largest lithium-ion battery next door with a capacity of 129 MwH

But those energy storage projects aren’t all about lithium-ion batteries.

Several like Electric Mountain in Wales use pumped storage and others use molten salt.

Essex doesn’t have the mountains for the former and probably the geology for the latter.

But the technology gets better all the time, so who knows what technology will be used?

The intriguing idea is the one I mentioned earlier to make ice to cool the air to improve the efficiency of the CCGT power station.

What Is The Difference Between A CCGT (Combined Cycle Gas Turbine) And An OCGT (Open Cycle Gas Turbine) Power Station?

RWE have said that they will provide 300 MW of 300MW of Open Cycle Gas Turbines, so what is the difference.

This page from the MottMacdonald web site gives a useful summary.

OCGT plants are often used for the following applications:

  • Providing a peak lopping capability
  • As a back- up to wind and solar power
  • As phase 1 to generate revenue where phase 2 may be conversion to a CCGT

CCGT plants offer greater efficiency.

I’ve also read elsewhere, that OCGT plants can use a much wider range of fuel. Used cooking oil?

Conclusion

There is a lot more to this than building a 2,500 MW gas-fired power station.

RWE will be flexible and I think we could see a very different mix to the one they have proposed.

 

 

 

 

 

 

July 23, 2017 Posted by | Energy, Energy Storage | , , , | 1 Comment

An Appropriate Story For Today

On Page 58, The Times has an article entitled Frictionless Flywheels Hold Balance Of Power.

This is the first two paragraphs.

Flywheels will be used to balance supply and demand on Britain’s electricity grid in a £3.5million project that could help the country to cope with more wind and solar power.

Sophisticated flywheels that can store electricity for long periods of time are to be installed next to the University of Sheffield’s battery storage facility at Willenhall near Wolverhampton, in the first project of its kind in the UK.

By using batteries and flywheels together, this makes a responsive battery that can fill in demand and overcome the degradation problems of lithium-ion batteries.

It looks a promising way of creating an affordable and reliable energy storage system.

Who needs coal? Trumkopf obviously does to buy votes!

In the United States, with its massive mountain ranges, it would be better to create construction jobs by creating hydro-based energy storage systems, as we did in the 1970s at Dinorwig and the Americans, themselves did at Bath County Pumped Storage Station a few years later.

To gauge the size of these plants, Bath County has about the same generating capacity as the UK’s largest power station at Drax, with Dinorwig being about 55% of the size.

Bath County and Dinorwig are big bastards, but their main feature, is the ability to pump water to store the energy.

Energy is like money, the best thing to do with excess is to put it in a secure storage facility.

 

June 2, 2017 Posted by | Energy Storage | , , , , , , , | Leave a comment