The Anonymous Widower

Sun Cable’s Australia-Asia PowerLink

Two weeks ago, in How Clean Energy And Jobs Can Flow From Morocco to The UK, I talked about a plan to generate electricity using solar arrays in Southern Morocco and use an underwater interconnector to bring it to the UK.

If you think that project was ambitious and distinctly bonkers, then that project is outshone by Sun Cable‘s Australia-Asia PowerLink, which is shown in this SunCable graphic.

These are a few facts about the project.

  • Electricity will be generated by solar panels in the Northern Territories of Australia.
  • There will be 12,000 hectares of solar panels in Australia, which will create 3.2 GW of electricity for distribution.
  • There will be a 36-42 GWh battery in Australia.
  • There will be 4,200 km of submarine HVDC cable to deliver the electricity to Singapore and Indonesia.
  • It looks like there will be batteries in Darwin and Singapore.
  • The link could supply up to fifteen percent of Singapore’s electricity.

It is certainly an ambitious project, that will contain the world’s largest solar array, the world’s largest battery, and the world’s longest submarine power cable.

Note.

  1. Currently, the largest solar park in the world is Bhadia Solar Park in India, which is half the size of the solar array proposed.
  2. At 720 km, the North Sea Link is the largest undersea HVDC is operation.
  3. The largest battery in the UK is Electric Mountain in Snowdonia, which is only 9.1 GWh.
  4. A Tesla Megapack battery of the required size would probably cost at least ten billion dollars.

This is certainly, a project that is dealing in superlatives.

Is The Australia-Asia PowerLink Possible?

I shall look at the various elements.

The Solar Panels

I have flown a Piper Arrow from Adelaide to Cairns.

  • My route was via Coober Pedy, Yulara, Alice Springs and Mount Isa.
  • There didn’t seem to be much evidence of rain.
  • The circle from South to East took four days of almost continuous flying, as Australia is not a small country.
  • It left me with the impression of a flat featureless and hot country.

Having seen solar panels on flat areas in the UK, the Australian Outback could be ideal for solar farms.

Sun Cable are talking about 10,000 hectares of solar panels, which is roughly 38.6 square miles or a 6.2 mile square.

Given enough money to source the solar panels and install them, I would expect that the required solar farm could be realised.

The Cable

Consider.

  • The North Sea Link is a 1.4 GW cable that is 720 km. long.
  • I would size it as 10008 GW-km, by multiplying the units together.
  • The Australia-Asia PowerLink will be 4200 km or nearly six times as long.
  • But at 3.2 GW as opposed to 1.4 GW, it will have 2.3 times the capacity.
  • I would size it as 13,400 GW-km.

Whichever way you look at it, the amount of cable needed will be massive.

The Battery

Currently, the largest battery in the world is the Bath County Pumped Storage Station, which has these characteristics.

  • Peak power of 3 GW
  • Storage capacity of 24 GWh.

Sun Cable’s 36-42 GWh battery will be the largest in the world, by a long way.

But I don’t think pumped storage will be suitable in the usually dry climate of Northern Australia.

The largest lithium-ion battery in the world is the Hornsdale Power Reserve in South Australia, which is only 150 MW/194 MWh, so something else will have to be used.

As Highview Power are building a CRYOBattery for the Atacama region in Chile, which I wrote about in The Power Of Solar With A Large Battery, I wonder, if a cluster of these could provide sufficient storage.

 

October 12, 2021 Posted by | Energy Storage, Energy | , , , , , , , , , | Leave a comment

UK To Norway Sub-Sea Green Power Cable Operational

The title of this post is the same as that of this article on the BBC.

This is the first two paragraphs.

The world’s longest under-sea electricity cable, transferring green power between Norway and the UK, has begun operation.

The 450-mile (725km) cable connects Blyth in Northumberland with the Norwegian village of Kvilldal.

The BBC article is based on this press release from National Grid.

The link has been called the North Sea Link (NSL).

These are some thoughts.

What Is The Capacity Of The North Sea Link?

The National Grid press release says this.

[The link] will start with a maximum capacity of 700 megawatts (MW) and gradually increase to the link’s full capacity of 1400MW over a three-month period.

It also says this.

Once at full capacity, NSL will provide enough clean electricity to power 1.4 million homes.

It is more or less equivalent to two or three gas-fired power stations.

What Is The Operating Philosophy Of The North Sea Link?

The National Grid press release says this.

The Norwegian power generation is sourced from hydropower plants connected to large reservoirs, which can respond faster to fluctuations in demand compared to other major generation technologies. However, as the water level in reservoirs is subject to weather conditions, production varies throughout seasons and years.

When wind generation is high and electricity demand low in Britain, NSL will enable renewable power to be exported from the UK, conserving water in Norway’s reservoirs. When demand is high in Britain and there is low wind generation, hydro power can be imported from Norway, helping to ensure secure, affordable and sustainable electricity supplies for UK consumers.

It almost seems to me, that the North Sea Link is part of a massive pumped-storage system, where we can bank some of our wind-generated electricity in Norway and draw it out when we need it.

I would suspect that the rate and direction of electricity transfer is driven by a very sophisticated algorithm, that uses detailed demand and weather forecasting.

As an example, if we are generating a lot of wind power at night, any excess that the Norwegians can accept will be used to fill their reservoirs.

The Blyth Connection

This page on the North Sea Link web site, describes the location of the UK end of the North Sea Link.

These three paragraphs describe the connection.

The convertor station will be located just off Brock Lane in East Sleekburn. The site forms part of the wider Blyth Estuary Renewable Energy Zone and falls within the Cambois Zone of Economic Opportunity.

The converter station will involve construction of a series of buildings within a securely fenced compound. The buildings will be constructed with a steel frame and clad with grey insulated metal panels. Some additional outdoor electrical equipment may also be required, but most of the equipment will be indoors.

Onshore underground cables will be required to connect the subsea cables to the converter station. Underground electricity cables will then connect the converter station to a new 400kV substation at Blyth (located next to the existing substation) which will be owned and operated by National Grid Electricity Transmission PLC.

This Google Map shows the area.

Note.

  1. The light grey buildings in the North-West corner of the map are labelled as the NSL Converter Station.
  2. Underground cables appear to have been dug between the converter station and the River Blyth.
  3. Is the long silver building to the West of the triangular jetty, the 400 KV substation, where connection is made to the grid?

The cables appear to enter the river from the Southern point of the triangular jetty. Is the next stop Norway?

Britishvolt And The North Sea Link

Britishvolt are are building a factory at Blyth and this Google Map shows are to the North and East of the NSL Converter Station.

Note the light-coloured buildings of the NSL Converter Station.

I suspect there’s plenty of space to put Britishvolt’s gigafactory between the converter station and the coast.

As the gigafactory will need a lot of electricity and preferably green, I would assume this location gives Britishvolt all they need.

Where Is Kvilldal?

This Google Map shows the area of Norway between Bergen and Oslo.

Note.

  1. Bergen is in the North-West corner of the map.
  2. Oslo is at the Eastern edge of the map about a third of the way down.
  3. Kvilldal is marked by the red arrow.

This second Google Map shows  the lake to the North of Kvilldal.

Note.

  1. Suldalsvatnet is the sixth deepest lake in Norway and has a volume of 4.49 cubic kilometres.
  2. Kvilldal is at the South of the map in the middle.

This third Google Map shows Kvilldal.

Note.

  1. Suldalsvatnet is the dark area across the top of the map.
  2. The Kvilldal hydro-electric power station on the shore of the lake.
  3. Kvilldal is to the South-West of the power station.

Kvilldal doesn’t seem to be the biggest and most populous of villages. But they shouldn’t have electricity supply problems.

Kvilldal Power Station And The North Sea Link

The Wikipedia entry for Kvilldal power station gives this information.

The Kvilldal Power Station is a located in the municipality of Suldal. The facility operates at an installed capacity of 1,240 megawatts (1,660,000 hp), making it the largest power station in Norway in terms of capacity. Statnett plans to upgrade the western grid from 300 kV to 420 kV at a cost of 8 billion kr, partly to accommodate the NSN Link cable] from Kvilldal to England.

This power station is almost large enough to power the North Sea Link on its own.

The Kvilldal power station is part of the Ulla-Førre complex of power stations and lakes, which include the artificial Lake Blåsjø.

Lake Blåsjø

Lake Blåsjø would appear to be a lake designed to be the upper reservoir for a pumped-storage scheme.

  • The lake can contain 3,105,000,000 cubic metres of water at its fullest.
  • The surface is between 930 and 1055 metres above sea level.
  • It has a shoreline of about 200 kilometres.

This Google Map shows the Lake.

Note the dam at the South end of the lake.

Using Omni’s Potential Energy Calculator, it appears that the lake can hold around 8 TWh of electricity.

A rough calculation indicates that this could supply the UK with 1400 MW for over eight months.

The Wikipedia entry for Saurdal power station gives this information.

The Saurdal Power Station is a hydroelectric and pumped-storage power station located in the municipality of Suldal. The facility operates at an installed capacity of 674 megawatts (904,000 hp) (in 2015). The average energy absorbed by pumps per year is 1,189 GWh (4,280 TJ) (in 2009 to 2012). The average annual production is 1,335 GWh (4,810 TJ) (up to 2012)

This Google Map shows the area between Kvilldal and Lake Blåsjø.

Note

  1. Kvilldal is in the North West of the map.
  2. Lake Blåsjø is in South East of the map.

This second Google Map shows the area to the South-East of Kvilldal.

Note.

  1. Kvilldal is in the North-West of the map.
  2. The Saurdal power station is tight in the South-East corner of the map.

This third Google Map shows a close-up of Saurdal power station.

Saurdal power station is no ordinary power station.

This page on the Statkraft web site, gives a brief description of the station.

The power plant was commissioned during 1985-1986 and uses water resources and the height of fall from Lake Blåsjø, Norway’s largest reservoir.

The power plant has four generating units, two of which can be reversed to pump water back up into the reservoir instead of producing electricity.

The reversible generating units can thus be used to store surplus energy in Lake Blåsjø.

Is Lake Blåsjø and all the power stations just a giant battery?

Economic Effect

The economic effect of the North Sea Link to both the UK and Norway is laid out in a section called Economic Effect in the Wikipedia entry for the North Sea Link.

Some points from the section.

  • According to analysis by the United Kingdom market regulator Ofgem, in the base case scenario the cable would contribute around £490 million to the welfare of the United Kingdom and around £330 million to the welfare of Norway.
  • This could reduce the average domestic consumer bill in the United Kingdom by around £2 per year.
  • A 2016 study expects the two cables to increase price in South Norway by 2 øre/kWh, less than other factors.

This Economic Effect section also talks of a similar cable between Norway and Germany called NorGer.

It should be noted, that whereas the UK has opportunities for wind farms in areas to the North, South, East and West of the islands, Germany doesn’t have the space in the South to build enough wind power for the area.

There is also talk elsewhere of an interconnector between Scotland and Norway called NorthConnect.

It certainly looks like Norway is positioning itself as Northern Europe’s battery, that will be charged from the country’s extensive hydropower and surplus wind energy from the UK and Germany.

Could The Engineering Be Repeated?

I mentioned NorthConnect earlier.

  • The cable will run between Peterhead in Scotland and Samnanger in Norway.
  • The HVDC cable will be approximately 665 km long.
  • The cable will be the same capacity as the North Sea Link at 1400 MW.
  • According to Wikipedia construction started in 2019.
  • The cable is planned to be operational in 2022.
  • The budget is €1.7 billion.

Note.

  1. Samnager is close to Bergen.
  2. NorthConnect is a Scandinavian company.
  3. The project is supported by the European Union, despite Scotland and Norway not being members.
  4. National Grid is not involved in the project, although, they will be providing the connection in Scotland.

The project appears to be paused at the moment, awaiting how North Sea Link and NordLink between Norway and Germany are received.

There is an English web site, where this is the mission statement on the home page.

NorthConnect will provide an electrical link between Scotland and Norway, allowing the two nations to exchange power and increase the use of renewable energy.

This sounds very much like North Sea Link 2.

And then there is Icelink.

  • This would be a 1000-1200 km link between Iceland and the UK.
  • It would have a capacity of 1200 MW.
  • National Grid are a shareholder in the venture.
  • It would be the longest interconnector in the world.

The project appears to have stalled.

Conclusion

I can see these three interconnectors coming together to help the UK’s electricity generation become carbon-free by 2035.

 

 

 

 

 

October 3, 2021 Posted by | Computing, Energy, Energy Storage | , , , , , , , , | 9 Comments

Cheesecake Energy Secures £1M Seed Investment

The title of this post, is the same as that of this Press Release from Cheesecake Energy.

This is the first paragraph.

Cheesecake Energy Ltd (CEL), a Nottingham, UK-based energy storage startup today announced it has raised £1M in Seed funding to fuel the development of its manufacturing capabilities and support product development of its eTanker storage system. The round was led by Imperial College Innovation Fund alongside prominent investors including Perivoli Innovations, former Jaguar Chairman, Sir John Egan and other angel investors.

And the third and fourth paragraphs describe the technology.

The company’s unique technology, dubbed eTanker, takes established compressed air energy storage concepts and revolutionises them by storing two-thirds of the electricity in the form of heat which can be stored at far lower cost. To store the energy, electric motors are used to drive compressors, which deliver high pressure air & heat into storage units. When the electricity is required, the high-pressure air and heat is passed back through the same compressor (but now working as a turbine), which turns a generator to produce electricity. The company believes its system will cut the cost of storing energy by 30-40% and offers a solution that can be used in several sectors including electric vehicle (EV) charging, heavy industry and renewable energy generation.

The startup has filed 10 patents for stationary, medium-long-duration, long-lifetime energy storage technology. It is based on innovative design work by CEL, a spin-out from over a decade of research at University of Nottingham. Employing circular economy principles, truck engines are converted into zero-emission electrical power-conversion machines for putting energy into and out of storage. Its technology brings together the low cost of thermal storage, the turnaround efficiencies of compressed air energy storage, together with the long life and robustness of a mechanical system, making a game-changing technology in a modular containerised package.

It all sounds feasible to me and if I’d have been asked, I’d have chipped in some of my pension.

The system in some ways can almost be considered a hybrid system that merges some of the principles of Highview Power’s CRYOBattery and Siemens Gamesa’s ETES system of heating large quantity of rock. Although, Cheesecake’s main storage medium is comptressed air, as opposed to the liquid air of the CRYOBattery.

One market they are targeting is the charging of fleets of electric vehicles like buses and from tales I have heard about operators of large numbers of electric buses, this could be a valuable market.

I also noted that the Press Release mentions a National Grid report, that says we will need 23 GW of energy storage by 2030. Assuming we will need to store enough electricity to provide 23 GW for five hours, that will be 115 GWh of energy storage.

At present, pumped storage is the only proven way of storing tens of GWh of energy. In 1984, after ten years of construction, Dinorwig power station (Electric Mountain) opened to provide 9.1 GWh of storage with an output of 1.8 GW.

So ideally we will need another thirteen Electric Mountains. But we don’t have the geography for conventional pumped storage! And as Electric Mountain showed, pumped storage systems are like Rome and can’t be built in a day.

Energy storage funds, like Gresham House and Gore Street are adding a large number of lithium-ion batteries to the grid, but they will only be scratching the surface of the massive amount of storage needed.

Note that at the end of 2020, Gresham House Energy Storage Fund had a fleet of 380 MWh of batteries under management, which was an increase of 200 MWh on 2019. At this rate of growth, this one fund will add 2GWh of storage by 2030. But I estimate we need 115 GWh based on National Grid’s figures.

So I can see a small number of GWh provided by the likes of Gresham House, Gore Street and other City funds going the same route.

But what these energy storage funds have proved, is that you have reliable energy storage technology, you can attract serious investment for those with millions in the piggy-bank.

I believe the outlook for energy storage will change, when a technology or engineering company proves they have a battery with a capacity of upwards of 250 MWh, with an output of 50 MW, that works reliably twenty-four hours per day and seven days per week.

I believe that if these systems are as reliable as lithium-ion, I can see no reason why City and savvy private investors money will not fund these new technology batteries, as the returns will be better than putting the money in a deposit account, with even the most reputable of banks.

At the present time, I would rate Highview Power’s CRYOBattery and Siemens Gamesa’s ETES system as the only two battery systems anywhere near to a reliable investment, that is as safe as lithium-ion batteries.

  • Both score high on being environmentally-friendly.
  • Both rely on techniques, proven over many years.
  • Both don’t need massive sites.
  • Both systems can probably be maintained and serviced in nearly all places in the world.
  • Highview Power have sold nearly a dozen systems.
  • Highview Power are building a 50 MW/250 MWh plant in Manchester.
  • Siemens Gamesa are one of the leaders in renewable energy.
  • Siemens Gamesa have what I estimate is a 130 MWh pilot plant working in Hamburg, which I wrote about in Siemens Gamesa Begins Operation Of Its Innovative Electrothermal Energy Storage System.

Other companies are also targeting this market between lithium-ion and pumped storage. Cheesecake Energy is one of them.

I believe they could be one of the winners, as they have designed a system, that stores both compressed air and the heat generated in compressing it. Simple but efficient.

I estimate that of the 115 GWh of energy storage we need before 2030, that up to 5 GWh could be provided by lithium-ion, based on the growth of installations over the last few years.

So we will need another 110 GWh of storage.

Based on  50 MW/250 MWh systems, that means we will need around 440 storage batteries of this size.

This picture from a Google Map shows Siemens Gamesa’s pilot plant in Hamburg.

I estimate that this plant is around 130 MWh of storage and occupies a site of about a football pitch, which is one hectare.

I know farmers in Suffolk, who own more land to grow wheat, than would be needed to accommodate all the batteries required.

Conclusion

I believe that National Grid will get their 23 GW of energy storage.

 

 

September 28, 2021 Posted by | Energy Storage | , , , , , , , , | 1 Comment

The Immense Potential Of Solar Panels Floating On Dams

The title of this post, is the same as that of this article on the Anthropocene.

The article reviews the practice of floating solar panels on ponds, lakes and reservoirs.

I like the practice, as the two technologies are compatible.

  • The panels reduce evaporation and help to curb algae growth.
  • Floating panels are cooled by the environment and more efficient.
  • Solar and hydro power can share electricity transmission systems.

But best of all. they use land twice.

The article claims that as much as forty percent of the world’s power can be generated this way.

The article is certainly an interesting read.

August 14, 2021 Posted by | Energy, Energy Storage | , , , | 8 Comments

How Long-Duration Energy Storage Will Accelerate The Renewable Energy Transition

The title of this post, is the same as that of this article on Renew Economy, which is an Australian publication.

It is very much a must-read and although it was part-written by the President of Hydrostor, who are a Canadian long duration energy storage company, who store energy by compressing air in underground caverns.

The article gives some details on how investment is flowing into long duration energy storage.

We’re also seeing significant and sustained levels of investment in long-duration energy storage happen beyond Australia’s borders.

For example; Saudi Aramco Energy Ventures invested in Energy Vault to accelerate its global deployment of its energy storage solution; Bill Gates and Jeff Bezos invested in iron-flow batteries via Breakthrough Energy Ventures; Sumitomo Corporation invested in UK-start up Highview Power and their cryogenic liquified air storage system; and our team at Hydrostor closed a financing round including a strategic partnership with infrastructure investor Meridiam.

Big players like these, generally don’t back losers. Or at least they pour in more money and expertise, to make sure they succeed.

This paragraph also describes Hydrostor’s sale to Australia.

In 2020, Hydrostor’s 200 MW and 8 hours (or 1,600 MWh) A-CAES system was selected by New South Wales’ Transmission Network Service Provider, TransGrid, as the preferred option in its RIT-T process for reliable supply for Broken Hill.

They are also developing a large system in California.

With Highview Power having sold perhaps ten systems around the world, it does appear that long duration energy storage is taking off for Highview and Hydrostor, who both use that most eco-friendly of storage mediums – air.

The article is fairly scathing about developing more of the most common form of long duration energy storage – pumped storage using water. Especially in Australia, where water can be scarce. But with the world getting warmer, I don’t think we need to design systems, where all our stored energy can evaporate.

Conclusion

I agree very much with the writers of the article, that more long duration energy storage is needed, but that pumped storage is not the long term answer.

July 3, 2021 Posted by | Energy Storage | , , | 2 Comments

Australian Coal Mine To Transform Into Pumped Hydro Facility

The title of this post, is the same as that of this article on PV Magazine.

This is the introductory paragraph.

Australian utility AGL is transforming its operations in a number of ways, from restructuring the company itself, to building energy storage facilities for flexible distribution of renewable energy into the future. The company is also planning to build a pumped-hydro facility at a disused open-cut coal mining site in eastern Australia.

It is an interesting proposition to say the least to reuse an opencast coal mine for something useful.

It would appear to be able to supple 250 MW for eight hours, which would make it a 2 GWh facility.

But then Australia is a country, that needs a lot of energy storage as they transform their economy to zero carbon.

April 20, 2021 Posted by | Energy, Energy Storage | , , , , | Leave a comment

Tesla And PG&E Are Working On A Massive ‘Up To 1.1 GWh’ Powerpack Battery System

The title of this post, is the same as that of this article on electrek.

This is the first two paragraphs.

For the past few months, Tesla and CEO Elon Musk have been teasing a giant battery project that would dwarf even the company’s 129 MWh Powerpack project in Australia.

Today, we learn that Tesla is working with PG&E on a massive battery system with a capacity of “up to 1.1 GWh” in California.

It certainly, is a big lithium-ion battery.

  • It will be able to provide 182.5 MW for four hours.
  • It looks like it could be the largest  lithium-ion battery in the world.

It is worth comparing with the Castaic Power Plant, which is also in California.

  • This is a pumped storage plant.
  • It can produce 1566 MW and has a capacity of 12470 MWh.

This Google Map shows the plant.

Note.

  1. The power plant is also part of the California State Water Project, which transfer water from North to South.
  2. The low-lake is Elderberry Forebay to the East.
  3. The high-lake is Pyramid Lake to the North.

It is a complicated system that includes the Angeles Tunnel, which takes water between Pyramid Lake and the Castaic power plant.

It cost a lot more than the 1.1 GWh battery, but it can generate a lot more power.

 

April 5, 2021 Posted by | Energy, Energy Storage | , , , | Leave a comment

Spanish Govt Approves Energy Storage Strategy, Sees 20 GW In 2030

The title of this post, is the same as that of this article on Renewables Now!

This is the introductory paragraph.

The Spanish government on Tuesday approved the energy storage strategy, targeting some 20 GW of storage capacity in 2030 and reaching 30 GW by 2050 from today’s 8.3 GW.

How will Spain increase their storage capacity?

Pumped Storage Systems

Spain already has a couple of large pumped storage systems.

The La Muela II Pumped Storage Power Station

The La Muela II Pumped Storage power station is based on the Cortes-La Muela Reservoir

This Google Map shows the dam.

In terms of generating capacity, it is about the same size as Dinorwig power station in Snowdonia., which is the UK’s largest pumped storage power station.

The Aldeadávila Dam

The Aldeadávila Dam is a 1243 MW hydro-electric power station with a pumped storage addition on the River Douro between Spain and Portugal.

This Google Map shows the dam.

It certainly looks like a place to visit.

Both these pumped storage station seem to have been converted from earlier hydro-electric power stations.

I wouldn’t be surprised to learn, that the Spaniards, were going to increase their number of pumped storage power stations.

  • Spain certainly has the mountains, with big rivers running through!
  • Bolarque dam already uses pumped-storage techniques.

Are there any other existing hydro-electric power stations in Spain, that can be converted to pumped storage or be upgraded?

Concentrated Solar Power

Spain has around thirty concentrated solar power or CSP power stations, either in operation, under construction or planned.

Some also store electricity as heat.

Spain is not short of sun.

Spain is considered a world leader in this technology.

This Google Map shows the Andasol solar power station.

The specification includes.

  • It uses technology called a parabolic trough.
  • A nameplate capacity of 149.7 MW
  • A capacity factor of 37.7 %
  • Annual net output of 495 GWh
  • a storage capacity of 1.123 GWh
  • The energy storage is based on a mixture of potassium and sodium nitrates.
  • The power station takes up an area of six square kilometres.

Will Spain build more of these CSP power stations or add energy storage to some of the existing stations?

Batteries

The article has this sentence.

the government wants to add large-scale batteries, behind-the-metre batteries — minimum 400 MW in 2030 — and make the most of the vehicle-to-grid technology, according to the document.

It should be noted that Spain has installed capacity of over 25 GW of wind power, according to this article on Wikipedia, which is entitled Wind Power In Spain.

These are some points from the article.

  • Spain has a lot of indigenous wind turbine manufacture.
  • The Spanish wind-power industry employs upwards of 60,000 people.
  • A central control centre for Spanish wind power needs to be developed.
  • There is little opposition to onshore wind, although perhaps somewhat surprisingly, there is some opposition to offshore wind.

After reading what Wikipedia had to say, it appears to me, that Spain needs a ;pt of batteries to support all these wind turbines.

The world’s second largest wind-turbine manufacturer is Siemens Gamesa, who are Spanish-based.

Siemens Gamesa have an innovation storage battery based on hot volcanic rock, which I wrote about in Siemens Gamesa Begins Operation Of Its Innovative Electrothermal Energy Storage System.

This gives a brief description of the pilot plant.

The heat storage facility, which was ceremonially opened today in Hamburg-Altenwerder, contains around 1,000 tonnes of volcanic rock as an energy storage medium. It is fed with electrical energy converted into hot air by means of a resistance heater and a blower that heats the rock to 750°C. When demand peaks, ETES uses a steam turbine for the re-electrification of the stored energy. The ETES pilot plant can thus store up to 130 MWh of thermal energy for a week. In addition, the storage capacity of the system remains constant throughout the charging cycles.

It was taken from this press release from Siemens Gamesa.

This page on the Siemens web site gives the nominal output of the system as 30 MW.

So it would need just over a dozen systems like these to perhaps be strategically-placed near large wind farms to meet Spain’s target of 400 MW of energy storage.

Highview Power’s liquid air systems would be another possibility, but I doubt, they’d perform as well in the heat of Spain, as a system based on hot rocks.

Conclusion

Spain’s plan seems achievable and could create a lot of employment.

It also seems to me, that their natural resources of mountains, big rivers and lots of sun are a great help.

 

 

 

February 11, 2021 Posted by | Energy, Energy Storage | , , , , , | 3 Comments

Spot The Battery

RheEnergise have just released this picture, of one of how one of their pumped storage systems might look.

They describe it as a typical small site after landscaping.

This is their description of the image.

This is an image of a small water works in Fife Scotland, you can just see 2 small water tanks at the base of the hill. This is an example of what a small High-Density Hydro project could look like after landscaping.

How many times have you seen a scene like this in the UK, Europe and all over the world.

They didn’t disclose the storage capacity of this system.

February 2, 2021 Posted by | Energy, Energy Storage | , | Leave a comment

Holy Grail Of Energy Storage Receives Two Grants

The title of this post, is the same as that of this article on Off Grid Energy Independence.

This is the introductory paragraph.

RheEnergise is one of only a select handful of businesses to have been awarded grants under both the Sustainable Innovation Fund & the Small Business Research Initiative.

So what have RheEnergise developed?

The home page of their web site, is surprisingly detailed, unlike those of some other companies with new ideas, and not just energy storage companies!

This is the first paragraph on their home page.

RheEnergise is bringing innovation to pumped hydro storage. We call our new solution High-Density Hydro ™.

I think that is a good start, as although pumped hydro storage is well proven and the UK has the 1,728 MW Dinorwig Power Station, which has a storage capacity of 9.1 GWh, building new large pumped storage systems is fraught with difficulties and the technology has seen only modest innovation in the last few decades.

The next paragraph on their home page describes their innovation.

HD Hydro ™ uses our proprietary HD Fluid R-19 ™, which has 2.5x the density of water. R-19 gives RheEnergise projects 2.5x the power and 2.5x the energy when compared to water.

This means that for the same size of pumped hydro storage power station, you get 2.5 times the amount of energy storage.

Alongside a diagram of the system, the advantages of their systems is stated.

Projects can be installed on hills 2.5x lower than a project using water and still achieve the same power – for example, there are so many more hills at 150m than at 375m.

2.5x smaller, by volume, meaning dramatically lower construction costs, faster build times, easier reinstatement and easier landscaping – projects can be entirely hidden.

A very simple innovation has greatly increased the possibilities of pumped hydro storage.

The home page also gives a typical capacity.

RheEnergise projects provide 10MW to 50MW power and 2 to 10 hours of storage capacity.

These systems are in the same range as those of Highview Power, who are building a 50 MW system, with a five hour capacity at Carrington near Manchester, that I wrote about in Highview Power Breaks Ground on 250MWh CRYOBattery Long Duration Energy Storage Facility.

Both have the advantage, that they are easily scalable.

With RheEnergise’s HD Hydro ™, the size of the upper reservoir would need to be increased and with Highview Power’s CRYOBattery, more tanks for the liquid air would need to be added.

The Technology

I certainly agree with the principle behind ReEnergise, both mathematically and practically.

My interest scientifically, is what is the fluid they use?

  • Pure water has a specific gravity of one and everything else is measured with respect to this.
  • So aluminium, which has a specific gravity of 2.7, is 2.7 times as heavy as water.
  • Many of us will be familiar with mercury, which is a metal, that is liquid at room temperature.
  • Mercury has a specific gravity of 13.56.

It puzzles me, how someone has created a liquid, almost as heavy as aluminium, that can be pumped and handled like water, as it would need to be, to make a pumped storage system work.

 

 

November 12, 2020 Posted by | Energy, Energy Storage | , , , | Leave a comment