The Anonymous Widower

How Do Porterbrook’s Battery/FLEX Trains Compare With Eversholt’s Hydrogen-Powered Trains?

In the two green corners of this ultra-heavyweight fight to provide electric trains for rail routes without electrification, there are two ROSCOs or rolling stock operating companies.

Eversholt Rail Group

Eversholt Rail Group‘s product is the Class 321 Hydrogen, which is an upgrade of a Class 321 train with batteries and hydrogen-power.

Porterbrook

Porterbrook‘s product is the Class 350 Battery/FLEX, which is an upgrade of a Class 350 train with batteries.

How Do The Two Trains Compare?

I will list various areas and features in alphabetical order.

Age

The Class 350 trains date from 2008-2009 and others were introduced to the UK rail network as early as 2004.

The Class 321 trains date from the 1990s, but that shouldn’t be too  much of a problem as they are based on the legendary Mark 3 Coach.

Scores: Porterbrook 4 – Eversholt 3

Batteries And Supercapacitors

This is an area, where the flow of development and innovation is very much in favour of both trains.

Currently, a 1000 kWh battery would weigh about a tonne. Expect the weight and volume to decrease substantially.

Scores: Porterbrook 5 – Eversholt 5

Battery Charging – From Electrification

No problem for either train.

Scores: Porterbrook 5 – Eversholt 5

Battery Charging – From Rapid Charging System

I believe that a third-rail based rapid charging system can be developed for battery/electric trains and I wrote about this in Charging Battery/Electric Trains En-Route.

No problem for either train.

Scores: Porterbrook 5 – Eversholt 5

Development And Engineering

Fitting batteries to rolling stock has now been done successfully several times and products are now appearing with 400 kWh and more energy storage either under the floor or on the roof of three and four-car electrical multiple units.

I feel that adding batteries, supercapacitors or a mixture of both to typical UK electric multiple units is now a well-defined process of engineering design and is likely to be achieved without too much heartache.

It should be noted, that the public test of the Class 379 BEMU train, was a rare rail project, where the serious issues found wouldn’t even fill a a thimble.

So I have no doubt that both trains will get their batteries sorted without too much trouble.

I do feel though, that adding hydrogen power to an existing UK train will be more difficult. It’s probably more a matter of space in the restricted UK loading gauge.

Scores: Porterbrook 5 – Eversholt 3

Electrification

Both types of train currently work on lines equipped with 25 KVAC overhead electrification, although other closely-related trains have the ability to work on 750 VDC third-rail electrification.

Both trains could be converted to work on both systems.

Scores: Porterbrook 5 – Eversholt 5

Interiors

The interior of both trains will need updating, as the interiors reflect the period, when the trains were designed and built.

Eversholt have already shown their hand with the Class 321 Renatus.

The interiors is a design and refurbishment issue, where train operating companies will order the trains and a complimentary interior they need, for the routes, where they intend to run the trains.

Scores: Porterbrook 5 – Eversholt 5

Operating Speed

Both trains in their current forms are 100 mph trains.

However some versions of the Class 350 trains have been upgraded to 110 mph, which allows them to work faster on busy main lines and not annoy 125 mph expresses.

I am pretty sure that all Class 350 trains can be 110 mph trains.

Scores: Porterbrook 5 – Eversholt 4

Public Perception

The public judge their trains mainly on the interiors and whether they are reliable and arrive on time.

I’ve talked to various people, who’ve used the two scheduled battery/electric services, that have run in the UK.

All reports were favourable and I heard no tales of difficulties.

In my two trips to Hamburg, I didn’t get a ride on the Coradia iLint hydrogen-powered train, but I did talk to passengers who had and their reactions were similar to those who travelled to and from Harwich in the UK.

I rode on the Harwich train myself and just like Vivarail’s Class 230 train, which I rode in Scotland, it was impressive.

I think we can say, that the concept and execution of battery/electric or hydrogen-powered trains in the UK, will be given a fair hearing by the general public.

Scores: Porterbrook 5 – Eversholt 5

Range Without Electrification

Alstom talk of ranges of hundreds of miles for hydrogen trains.and there is no reason to believe that the Class 321 Hydrogen trains will not be capable of this order of distance before refuelling.

Bombardier, Vivarail and others talk of battery ranges in the tens of miles before a recharge is needed.

The game-changer could be something like the technique for charging electric trains, I outlined in Charging Battery/Electric Trains En-Route.

This method could give battery trains a way of topping up the batteries at station stops.

Scores: Porterbrook 3 – Eversholt 5

Conclusion

The total scores are level at forty-seven.

All those, who say that I fiddled it, not to annoy anybody are wrong.

The level result surprised me!

I feel that it is going to be an interesting engineering, technical and commercial battle between the two ROSCOs, where the biggest winners could be the train operating companies and the general public.

I wouldn’t be surprised to see two fleets of superb trains.

 

November 4, 2018 Posted by | Travel | , , , , , , , | Leave a comment

£18.75m Halton Curve Project Delayed A Further Six Months

The title of this post is the same as that of this article on Rail Technology News.

I could just blame politicians for the latest project to be delayed, but it is not wholly their fault.

Train companies all over the UK, Europe and the Rest of the World have been ordering new trains at an unprecedented rate for the following reasons.

  • The replacement of clapped-out trains like Pacers.
  • Extra trains to provide extra services.
  • Faster trains to provide faster services.
  • Bigger or longer trains to provide more capacity.
  • New electric trains for newly electrified routes.
  • New trains often cost less to service and maintain.
  • Affordable finance for quality new trains is available in billions of pounds, euros and dollars of all kinds.

In addition a lot of trains are being updated with new technology like signalling, autonomic systems and high-technology interiors.

All of these factors mean that there is a high level of train testing that needs to be done.

These test tracks are in Europe and listed in Wikipedia.

Note that Italy and Soain, who build substantial numbers of trains, don’t have a specialist testing centre.

I have read somewhere that each individual train has to be run for so many hours before it can be certified for service.

Consider

  • Bombardier is building 412 Aventras with lengths between three and ten cars.
  • CAF is building trains for Calodonian Sleeper, Keolis Amey Wales, Northern, TranPennine Express and West Midlands Trains.
  • Hitachi is building 182 Class 800/801/802 trains with length of five or nine cars.
  • Hitachi is building 80 Class 385 trains with lengths of 3/4 cars.
  • Siemens are building trains for Govia Thameslink Railway.
  • Stadler is building trains for Greater Anglia, Keolis Amay Wales and MerseyRail.

I haven’t done a detailed calculation must it must be at least 700 trains.

In addition there are various rebuilt and existing trains that will need to be tested.

  • ScotRail’s shorterned InterCity 125s
  • Porterbrook’s Class 769 trains.
  • Vivarail’s Class 230 trains.
  • Alstom’s Class 321 Hydrogen trains.
  • Crossrail Class 345 trains need further testing.

And there will be new orders for the following franchises and lines.

  • East Midlands.
  • London Underground Piccadilly Line.
  • South Eastern
  • West Coast Alliance

I haven’t done a detailed calculation but we must be talking of nearly a thousand new trains of which probably six hundred will be delivered in the next five years.

I’m no expert, but I feel that two short test tracks and short lengths of improvised test tracks in factories, isn’t enough to test all these trains and certify them for service.

I should also blow my own trumpet and I know that when I wrote project management software, I was probably the best programmer in the World, at automatically scheduling resources.

So I tend to know, an impossible scheduling problem, when I see one!

Conclusion

We do send trains to Europe to specialist centres like the one at Velim in the Czech Republic. But these centres are also used by other European manufacturers.

I am led to the inevitable conclusion, that we need more train testing facilities, in both the UK and mainland Europe.

The Welsh Government has come to the same conclusion and are planning a test track at Neath, which I wrote about in £100m Rail Test Complex Plans For Neath Valley.

What would help, would be if Chris Grayling oiled a few wheels with some money. It might even result in some Continental trains coming to Wales for specialist testing like curing them of dracophobia.

I would also have felt that CAF would be happy with a test track fifty miles away from their new factory in Newport.

Come on, Wales! Fire up the dragons and get started!

 

 

September 25, 2018 Posted by | Travel | , , , , , , | 2 Comments

Rolls-Royce And Porterbrook Launch First Hybrid Rail Project In The UK With MTU Hybrid PowerPacks

The title of this post is the same as that on this Press Release from Porterbrook.

Porterbrook, Eversholt and the other train leasing companies have a problem, that can be turned into an opportunity to make money in a way, few will find unacceptable.

There are several fleets of trains in the UK, that are reasonably new and have plenty of life left in their basic structure, running gear and traction equipment.

But compared to modern rolling stock, they are like a twenty-year-old BMW, Jaguar or Mercedes. Good runners and comfortable, but not up to the standards, passengers, rail operators, rail staff and environmentalists expect.

So the train leasing companies are looking for ways to update their fleets, so that they can continue to earn money and satisfy everybody’s needs and aspirations.

Class 769 Train

Porterbrook started this innovation by taking redundant Class 319 trains and converting them into Class 769 trains, so they could be used on lines without electrification.

The picture shows one of Northern’s Class 319 trains.

Thirty-five of these trains have been ordered. So far, due to design and testing issues none have been delivered. Hopefully, as testing has now started, some will be in traffic before the end of the year.

This project could create upwards of fifty much-needed four-car bi-mode trains for running on partially-electrified routes.

Class 321 Hydrogen Train

Eversholt have also teamed up with Alstom to create a hydrogen-powered version of their Class 321 train.

This project could create around a hundred four-car 100 mph, zero-emission electric trains, for running on routes with no or only partial electrification.electrification.

The Four-Car High Speed Train

Everybody loves High Speed Trains and Scotrail and Great Western Railway  are taking a number of them and creating four-car quality trains to increase their rolling stock.

The picture shows a High Speed Train under test in Glasgow Queen Street station.

They are already running in Cornwall and they should be running in Scotland before the end of the year.

Updating The Class 170 Trains

The Press Release announces Porterbrook’s latest project and gives this picture.

There are 122 Class 170 trains on the UK rail network, which were built around twenty years ago. There are also nearly a hundred other Class 168, 171 and 172 trains with a similar design.

They are 100 mph trains, that are diesel-powered and some are used on long distances.

As a passenger, they are not a bad train, but being diesel, they are not that environmentally friendly.

The Class 172 trains, which are currently running on the Gospel Oak to Barking Line, would surely be a much better train with a smoother electric transmission, that had regenerative braking. Although, as they have a mechanical transmission, rather than the hydraulic of the other Turbostars, this might not be possible.

On the other hand, West Midlands Trains will soon have a fleet of thirty-five Class 172 trains of various sub-types, so fuel savings could be significant.

This is from the Press Release.

Rolls-Royce and Porterbrook, the UK’s largest owner of passenger rolling stock, have agreed the delivery of MTU Hybrid PowerPacks that can convert Class 168 and Class 170 ‘Turbostar’ DMUs from diesel-only to hybrid-electric operation. Hybrid technology allows for the cleaner and quieter operation of trains in stations and through urban areas.

As I understand it, the current hydraulic traction system will be replaced by an electric one with a battery, that will enable.

  • Regenerative braking using a battery.
  • Battery electric power in urban areas, stations and depots.
  • Lower noise levels
  • Lower maintenance costs.

This should also reduce diesel fuel consumption and carbon emissions.

Conclusion

The good Class 170 trains, are being improved and should give another twenty years of service.

How many other projects like these will surface in the next few years?

 

September 20, 2018 Posted by | Travel | , , , , , | 1 Comment

Colne To Skipton Rail Line Re-Opening Campaign Moves Forwards

The title of this post, is the same as that of this article in the Lancashire Telegraph.

This is the first paragraph.

A meeting at the House of Commons hosted by Pendle MP Andrew Stephenson and his Labour counterpart for Keighley John Grogan convened senior officials from the Department of Transport (DfT), Transport for the North (TfN), Network Rail and commercial companies with an interest in East-West rail links.

Like many at the meeting, I feel very strongly that this link should be built.

There are obviously local reasons, like better passenger services between the conurbations of Blackburn/Accrington/Burnley and Leeds/Bradford, but there is something far more important.

Extra Train Paths Across The Pennines

Currently, trains take about twenty minutes between Rose Grove and Colne stations, over the mainly single track line.

I think it would be possible for experts to design a railway between Rose grove and Skipton stations via Colne, that would offer paths for three trains per hour (tph) across the Pennines in both directions. It might even be possible to accommodate four tph, using a combination of passing loops and digital signalling.

It should be noted that currently, the traffic through Accrington on the Calder Valley Line, which is to the West of Rose Grove station is around three tph in both directions. As the route is double-track, with modern trains and modern signalling, surely a higher frequency can be achieved.

These extra paths would be invaluable during the upgrading of the main TransPennine routes from Leeds to Manchester via Huddersfield.

I have some questions about the link.

Should The Link Be Double-Track?

Given that it will probably be difficult to put a double track on the Bank Top Viaduct over Burnley, I feel that to get the needed extra capacity, where it is possible to squeeze in a double-track, this should be done.

Should The Link Be Electrified?

Operationally, this would probably be preferable, but there are reasons why it could be difficult.

  • There are a lot of quality stone bridges over all routes in the area.
  • The heritage lobby might object to gantries marching across the Pennines.
  • Network Rail’s abysmal performance on installing electrification.

It would also be sensible to electrify between Preston and Rose Grove stations, which would add substantially to the cost.

Passenger services wouldn’t be too much of a problem, as I am fairly certain that hydrogen-powered or battery trains could be used. The four-car Class 321 Hydrogen would probably by ideal.

Freight trains are probably better under electric power, rather than the awful Class 66 locomotives. Especially, if freight trains were run in the middle of the night.

I think the budget will decide on electrification.

Conclusion

I feel it is imperative, that to reduce the chaos of the TransPennine upgrade, work should start on the creation of the Skipton to Colne Link immediately.

September 17, 2018 Posted by | Travel | , , , , | 1 Comment

Alstom And Eversholt Rail Develop Hydrogen Train For Britain

The title of this post, is the same as that of this article in the International Rail Journal.

This is the first paragraph.

Alstom confirmed on September 11 that it is working with British rolling stock leasing company Eversholt Rail to refit class 321 EMUs with hydrogen tanks and fuel cells for hydrogen operation, in response to the British government’s challenge to eliminate diesel operation on the national network by 2040.

Other points about the conversion of Class 321 trains include.

  • Alstom will convert trains in batches of fifteen.
  • The first trains could be ready by 2021.
  • Up to a hundred trains could be converted..
  • A range of up to 1000 km on a tank of hydrogen.
  • A maximum speed of 160 kph.

The article also suggests that the Tees Valley Line and Liverpool to Widnes could be two routes for the trains.

A few points of my own.

  • Fifteen is probably a suitable batch size considering how Class 769 trains have been ordered.
  • Hydrogen is produced in both areas for the possible routes and could be piped to the depots.
  • In Runcorn it is plentiful supply from the chlorine cell rooms of INEOS and that company is thinking of creating a pipeline network to supply the hydrogen to users with high energy needs.
  • As the maximum speed of the hydrogen train is the same as the current Class 321 trains, I would suspect that it is likely that the hydrogen-powered train will not have an inferior performance.
  • I’ve now travelled in Class 321 Renatus trains on three occasions and in common with several passengers I’ve spoken to, I like them.
  • I hope the Class 321 Hydrogen trains have as good an interior!

I very much feel that there is a good chance that the Class 321 Hydrogen could turn out to be a good train, powered by a fuel, that is to a large extent, is an unwanted by-product of the chemical industry.

A Comparison Between The Alstom Coradia iLint And The Class 321 Hydrogen

It is difficult for me to compare the Alstom Coeadia iLint or even a bog-standard iLint , as I’ve never rode in either.

Hopefully, I’ll ride the iLint in the next few weeks.

The following statistics are from various sources on the Internet

  • Cars – 321 – 4 – iLint – 2
  • Electric Operation – 321 – Yes – iLint – Not Yet!
  • Loading Gauge – 321 – UK – iLint – European
  • Operating Speed – 321 – 160 kph – iLint – 140 kph
  • Range – 321 – 1000 km. – iLint – 500-800 km.
  • Seats – 321 – 309 – iLint – 150-180

Although the Class 321 Hydrogen will be a refurbished train and the iLint will be new, I suspect passengers will just both trains as similar, given the experience with refurbished trains in the UK.

In some ways, they are not that different in terms of performance and capacity per car.

But the Class 321 Hydrogen does appear to have one big advantage – It can run at up to 160 kph on a suitable electrified line, This ability also means the following.

  • Hydrogen power is not the sole way of charging the battery.
  • On some routes, where perhaps a twenty kilometre branch line, which is not electrified, is to be served, the train might work as a battery-electric train.
  • A smaller capacity hydrogen power unit could be fitted for charging the battery, when the train is turned back at a terminal station and for rescuing trains with a flat battery.
  • The depot and associated filling station, doesn’t have to be where the trains run most of their passenger services.

I also suspect that a Class 321 hydrogen could run on the UK’s third-rail network after modification, if required.

If you were an operator choosing between the two trains, you would probably find that because of your location, there would be a strong preference for one of the two trains.

I also doubt we’ll see iLints running in the UK because of the loading gauge problem.

Will the platform height scupper the running of Class 321 Hydrogen trains in Europe?

In Riding Docklands Light Railway Trains In Essen, I reported on seeing redundant Docklands Light Railway trains running in Essen.

For this reason, I wouldn’t totally rule out Class 321 Hydrogen trains invading Europe!

 

September 14, 2018 Posted by | Travel | , , , , , | 4 Comments

Cost Studies Could See Electrification Comback

The title of this post is the same as that of an article by Roger Ford in the September 2018 Edition of Modern Railways

There are now two studies into the cost of railway electrification.

Both arudies expected to be completed in October.

The article gives some examples of electrification costs per single track kilometre (stkm).

  • A sustained rolling program – £1million/stkm
  • Great Western Main Line – £3million/stkm
  • Northern England – Below £2million/stkm.
  • Cumbernauld-Springburn – £1.2million/stkm
  • East Coast Main Line – £500,000/stkm (At current prices)

The article finishes with these words.

£1million/stkm would be a feasible target.

That the Department for Transport has commissioned the independent review suggests electrification could still be on the agenda.

Roger is very much a respected commentator and his conclusions are more likely to be spot on, than wide of the mark.

Does Running Electric Trains On A Route Count As Electrification?

I ask this question deliberately, as over the last few years several schemes have been proposed to electrify perhaps two miles of line to a new development or city or town centre.

The Midland Metro is being extended to Wolverhampton station by building a tram line, that will be run using battery power on the existing trams.

Another example of this type of line is the extension of the Gospel Oak to Barking Line to Barking Riverside. After reading all the documentation, I have found that electric trains are mentioned several times, but electrification is not. As Bombardier Aventras probably can run on battery power, does this mean that the extension will be built without wires?

There are also some electrified branch lines, where the overhead electrification is unadulterated crap.

Could we see the electrification on these branches removed to save on replacement and maintenance costs and the trains replaced by battery trains charged on the electrified main lines?

Recent Developments

I think various developments of recent years will help in the containing of electrification costs.

Batteries On Trains

It is my belief that batteries on trains could revolutionise the approach to electrification.

In my view, batteries are the only way to handle regenerative braking, which cuts energy costs.

This means, that if no trains using a route, return their braking energy through the electrification, then costs are saved by using simpler transformers.

Adequate battery capacity also gives other advantages.

  • Bombardier are fitting remote wake-up to Aventras. I wrote about this in Do Bombardier Aventras Have Remote Wake-Up?
  • Depots and sidings can be built with only limited electrification.
  • Hitachi use batteries charged by regenerative braking to provide hotel power for Class 800 trains.
  • Batteries are a simple way of moving trains in a Last Mile application on perhaps a short branch line.
  • Battery power can be used to rescue a train, when the electrification fails.

Reports exist of Alstom, Bombardier, CAF, Hitachi, Siemens and Stadler using or researching the use of batteries in trains.

Hydrogen Power

I am becoming more enthusiastic about hydrogen power, which is primarily being developed by Alstom.

  • The UK could produce a lot of hydrogen easily from electrolysis of either brine to produce chlorine or water to produce hydrogen and oxygen.
  • Wind power would be a convenient way to provide the electricity needed.
  • Alstom are starting a project at Widnes to convert redundant Class 321 trains to hydrogen power.

A hydrogen powered Class 321 train would appear to be a powerful concept.

  • The trains will still be able to run on electrification.
  • The trains are pollution-free.
  • The trains make extensive use of batteries.
  • Alstom quote ranges of several hundred kilometres.
  • It would appear that the trains will still be capable of 100 mph after conversion.
  • Class 321 trains can be updated with quality interiors.

I believe these trains could find a solid market extending electrified routes.

Porterbrook’s Class 769 Trains

The Class 769 trains have been a long time coming, but companies have ordered 35 of these bi-mode upgrades of Class 319 trains.

  • They will be capable of 100 mph on electricity
  • They will be capable of 90 mph-plus on diesel
  • They will be able to use 25 KVAC overhead or 750 VDC third rail electrification.
  • They have been designed with a powerful hill-climbing capability.

Looking at the orders,some need the hill-climbing capability and GWR’s proposal to use the trains on the dual-voltage Reading-Gatwick route is a sensible one.

Bombardier’s 125 mph Bi-Mode Aventra With Batteries

I think that this train and others like it will be the future for many rail routes in the UK and around the world.

I will use the Midland Main Line as an example of the use of this type of train.

In a few years time, this important route will have the following characteristics.

  • A high proportion of 125 mph running.
  • Electrification between St. Pancras and Kettering/Corby
  • Possibly, electrification between Sheffield and Clay Cross courtesy of High Speed Two.

Full electrification would be difficult as part of the route is through a World Heritage Site.

But Bombardier’s train would swap power source intelligently as it powered its way along at 125 mph.

Stadler’s Electric/Diesel/Battery Hybrid Train

This version of Greater Anglia’s Class 755 train, has been ordered for the South Wales Metro.

It can run on the following power sources.

  • 25 KVAC overhead electrification.
  • Onboard diesel generators.
  • Batteries

An intelligent control system will select the best power source.

With a central power pack between passenger cars, the design of this train is slightly quirky.

  • It is a 100 mph train with lots of acceleration.
  • I’m sure it could be equipped for 750 VDC electrification.
  • The power pack can be configured for different operators and types of routes.
  • Stadler are quite happy to sell small fleets of trains into niche markets.
  • It is a member of the successful Flirt family of trains, which are selling all over the world.

I wouldn’t be surprised to see more of these trains sold to the UK.

Hitachi’s Class 800 Trains and Class 802 Trains

Hitachi’s Class 800 trains are already running on the Great Western Railway.

  • They have an operating speed of 125 mph on both electricity and diesel.
  • TransPennine Express have ordered nineteen Class 802 trains.
  • Hull Trains have ordered five Class 802 trains.

I have gone from London to Swansea and back in a day in Class 800 trains and they the new trains seem to be perfirming well.

They will get even better, as electrification is extended to Cardiff.

100/125 mph Bi-Mode Trains

In the previous sub-sections I have talked about four new bi-mode trains, that can run using electrification and under their own power.

  • Class 321 Hydrogen
  • Porterbrook’s Class 769 Train
  • High Speed Bi-Mode Aventra
  • Tri-Mode Stadler Flirt
  • Hitachi’s Class 800 Trains and Class 802 Trains

The designs are different, but they have common features.

  • An operating speed of at least 100 mph on electrified lines.
  • 90 mph-plus operating speed, when independently powered.
  • An out-and-back range of at least 200 miles away from electrification.
  • Proven designs from large families of trains.

Only one new route for these trains has been fully disclosed and that is Greater Anglia’s new Liverpool Street-Lowestoft service.

  • There will be three round trips a day between Lowestoft and London, using Class 755 trains.
  • North of Ipswich, diesel power will be used.
  • South of Ipswich, electric power will be used and trains will join the 100 mph queues to and from London.
  • Extra trains North of Ipswich, will use additional Class 755 trains, shuttling up and down the East Suffolk Line.

As the Class 755 trains and the express Class 745 trains on London-Ipswich-Norwich services will share the same team of drivers, it is an efficient use of bi-mode trains to extend an electric network.

Several of the proposed electrification schemes in the UK in addition to allowing electric trains, will also open up new routes for bi-mode and tri-mode trains.

  • Stirling to Perth electrification would allow bi-mode trains to run between Glasgow and Aberdeen via Dundee.
  • Leeds to York electrification would improve TransPennine bi-mode performance and allow electric trains access to Neville Hill TMD from the East Coast Main Line.
  • Sheffield to Clay Closs electrification for High Speed Two would also improve bi-mode performance on the Midland Main Line.

I think it should be born in mind, that the rolling out of the Class 800 trains all over the GWR, seems to have generated few bad reports, after a few initial problems.

In Thoughts On The Introduction Of Class 800 Trains On The Great Western Railway, I came to this conclusion.

There’s nothing much wrong operationally or passenger-wise with the Class 800 trains, that will not be put right by minor adjustments in the next couple of years.

So perhaps extending an electric network with quality bi-mode trains works well.

Used creatively bi-mode trains will increase the return on the money invested  in electrification.

Tram-Trains

I first saw tram-trains in Kassel in 2015 and I wrote about them in The Trams And Tram-Trains Of Kassel.

We are now embracing this technology in a trial in Sheffield using new Class 399 tram-trains.

I believe that, the UK is fertile territory for this technology.

  • KeolisAmey Wales haven’t waited for the results of the Sheffield trial and have already ordered thirty-six tram-trains with batteries for the South Wales Metro.
  • It also looks as if the West Midlands are planning to use the technology on an extension of the Midland Metro to Brierley Hill.
  • Glasgow are investigating a tram-train route to Glasgow Airport.

Although Network Rail and the Department for Transport seem to be only lukewarm on the technology, it does appear that local interests are much more enthusiastic.

In my view, the South Wales Metro is going to be a game changer, as it uses existing tracks, virtually standard tram-trains, electric/diesel/battery trains and a modicum of street running to transform a city’s transport system.

Intelligent Pantographs

I have read that the electro-diesel Class 88 locomotive can change between electric and diesel modes at line speed.

As a Control Engineer, I don’t believe it would be an impossible problem for a train powered by a mixture of 25 KVAC overhead electrification and diesel, battery, hydrogen or some other fuel to raise and lower a pantograph efficiently, to take advantage of any overhead wires that exist.

The raising and lowering could even be GPS controlled and totally automatic, with the driver just monitoring.

Ingenious Electrification Techniques

In Novel Solution Cuts Cardiff Bridge Wiring Cost, I wrote about how two simple techniques; an insulating coating and surge arresters, saved about ten million pounds, by avoiding a bridge reconstruction.

How much can be saved on electrification schemes by using simple and proven techniques like these?

Better Surveying And Site Information

A lot of the UK’s railways are like long Victorian buildings.

If you’ve ever tried to renovate a cottage that was built around the middle of the nineteenth century, you will understand the following.

  • It is unlikely you will have any accurate plans.
  • Some of the construction will be very good, but other parts will be downright shoddy.
  • You have no idea of the quality of the foundations.
  • If the building is Listed you’ll have a whole new level of bureaucracy to deal with.

Now scale your problems up to say a ten mile stretch of rail line, that needs to be electrified.

Instead of dealing with a cottage-sized plot, you may now be dealing with the following.

  • A double track railway with four train per hour (tph) in both directions.
  • A site that is several miles long.
  • Access to the work-site could be difficult.

So just surveying what has to be done and making sure you have details on any unforeseen underground structures like sewers, gas and water mains and old mine workings, can be a major undertaking.

Reading local newspaper reports on the Gospel Oak to Barking electrification, you get the impression the following happened.

  • Various overhead gantries were built to the wrong size.
  • A sewer was found, that had been missed by surveyors.
  • It was wrongly thought that the bridge at Crouch Hill station had sufficient clearance for the electrification. So much more work had to be done.

At least there weren’t any mine workings in East London, but as you can imagine these are a major problem in areas in the North.

Surely, nearly twenty years into the 21st century, we can avoid problems like these.

Discontinuous Electrification

Low bridges and and other structures crossing the tracks, can be  a big and expensive problem, when it comes to electrifying railway lines.

In the proposed electrification of the lines for the South Wales Metro, look at these statistics.

  • A total of 172 km. of track will be electrified.
  • Fifty-six structures were identified as needing to be raised.

The cost savings of eliminating some of this bridge raising would not be small.

In the July 2018 Edition of Modern Railways, there is an article entitled KeolisAmey Wins Welsh Franchise.

This is said about the electrification on the South Wales Metro.

KeolisAmey has opted to use continuous overhead line equipment but discontinuous power on the Core Valley Lnes (CVL), meaning isolated OLE will be installed under bridges. On reaching a permanently earthed section, trains will automatically switch from 25 KVAC overhead to on-board battery supply, but the pantograph will remain in contact with the overhead cable, ready to collect power after the section. The company believes this method of reducing costly and disruptive engineering works could revive the business cases of cancelled electrification schemes. Hopes of having money left over for other schemes rest partly on this choice of technology.

In the final design, KeolisAmey have been able to use this discontinuous power solution at all but one of the fifty-six structures.

These structures will be checked and refurbished as required, but they would be unlikely to need lengthy closures, which would disrupt traffic, cyclists and walkers.

Each structure would need a bespoke structure to create a rail or wire on which the pantograph, would ride from one side of the structure to the other. But installing these would be a task of a much smaller magnitude.

There must be a lot of scope for both cost and time savings.

I think in the future, when it comes to electrifying existing lines, I think we’ll increasing see, this type of discontinuous electrification used to avoid rebuilding a structurally-sound bridge or structure.

I also think, that experience will give engineers a more extensive library of solutions.

Hopefully, costs could be driven downwards, instead of spiralling upwards!

Complimentary Design Of Trains And New Electrified Routes

In recent years two major electric rail projects have been planned, which have gone much further than the old philosophy of just putting up wires and a adding fleet of new trains.

I believe that the Crossrail Class 345 trains and the tunnel under London were designed to be complimentary to each other to improve operation and safety and cut operating costs.

But the interesting project is the South Wales Metro, where discontinuous electrification and battery power have been used to design, what should be a world-class metro at an affordable cost.

Too many electrification schemes have been designed by dull people, who don’t appreciate the developments that are happening.

Conclusion On Recent Developments

UK railways are doing better on electrification than many think.

Possible Developments

These are ideas I’ve seen talked about or are my own speculation.

Intelligent Discontinuous Third Rail Electrification

New third rail electrification is not installed much these days, due to perceived safety problems.

I have seen it proposed by respected commentators, that third rail electrification could play a part in the charging of train batteries.

Discontinuous third-rail electrification is already used extensively, at places like level crossings and where a safe route is needed for staff to cross the line.

But it is done in a crude manner, where the contact shoes on the train run up and down the sloping ends of the third rail.

As a time-expired Control Engineer, I’m fairly sure that a much better, safer system can be designed.

On the South Wales Metro, where discontinuous overhead electrification is to be used, battery power will be used to bridge the gaps.

Supposing trains on a third-rail electrified route, were fitted with batteries that gave the train a range of say two kilometres. This would give sufficient range to recover a train, where the power failed to a safe evacuation point.

The range on battery power would mean that there could be substantial gaps between sections of electrification, which would be sized to maximise safety, operational efficiency and minimise energy use.

Each section of electrification would only be switched on, when a train was present.

Train drivers could also have an emergency system to cut the power in a particular section, if they saw anything untoward, such as graffiti artists on the line.

Third Rail Electrification In Stations

I have seen it proposed by respected commentators, that third rail electrification could play a part in the charging of train batteries.

When you consider that trains often spend fifteen or twenty minutes at a terminal station, it could make it easier to run electric or bi-mode trains with batteries on branch lines.

The rail would normally be switched off and would only be switched on, when a train was above and connected to the rail.

As a time-expired Control Engineer, I’m fairly sure that a safe system can be designed.

Third Rail Electrification On Viaducts

To some overhead electrification gantries on top of a high viaduct are an unnecessary eyesore.

So why not use third-rail electrification, on top of viaducts like these?

Trains would need to be able to swap efficiently and reliably between modes.

Gravity-Assisted Electrification

For a country with no really high mountains, we have quite a few railways, that have the following characteristics.

  • Heavily-used commuter routes.
  • Double-track
  • A height difference of perhaps two hundred metres.

These are a few examples.

  • Cardiff Queen Street to Aberdare, Merthy Tydfil, Rhymney and Treherbert
  • Exeter to Barnstaple
  • Glasgow Central to East Kilbride
  • Manchester to Buxton

All are in areas, where putting up overhead gantries may be challenging and opposed by some campaigners.

As an example consider the Manchester to Buxton route.

  • The height difference is 220 metres.
  • One of Northern’s Class 319 trains weighs 140.3 tonnes.
  • These trains have a capacity of around 320 passengers.
  • If each passenger weighs 90 Kg with baggage, bikes and buggies, this gives a train weight of 167.3 tonnes.

These figures mean that just over 100 kWh of electricity would be needed to raise the train to Buxton.

Coming down the hill, a full train would convert the height and weight into kinetic energy, which would need to be absorbed by the brakes. Only small amounts of new energy would need to be applied to nudge the train onto the hill towards Manchester.

The brakes on trains working these routes must take a severe hammering.

Supposing, we take a modern train with these characteristics.

  • Four cars.
  • Electric traction.
  • 200 kWh of battery capacity to handle regenerative braking.

Such a train would not be a difficult design and I suspect that Bombardier may already have designed an Aventra with these characteristics.

Only the uphill line would be electrified and operation would be as follows.

  • Climbing to Buxton, the train would use power from the electrification.
  • On the climb, the train could also use some battery power for efficiency reasons.
  • The train would arrive at Buxton with enough power left in the batteries to provide hotel power in the stop at Buxton and nudge the train down the hill.
  • On the descent, regenerative braking would be used to slow the train, with the energy created being stored in the batteries.
  • On the level run to Manchester, battery power could be used, rather than electrification power to increase efficiency.

How efficient would that be, with respect to the use of electricity?

I would also investigate the use of intelligent third-rail electrification, to minimise visual impact and the need to raise any bridges or structures over the line.

Gravity is free and reliable, so why not use it?

We don’t know the full

Conclusion On Possible Developments

Without taking great risks, there are lots of ideas out there that will help to electrify routes in an affordable manner.

Conclusion

I very much feel we’ll be seeing more electrification in the next few years.

 

 

 

 

 

 

 

 

August 26, 2018 Posted by | Travel | , , , , , | Leave a comment