The Anonymous Widower

Could ERTMS And ETCS Solve The Newark Crossing Problem?

This is an updated version of what, I originally published the following in Will The East Coast Main Line Give High Speed Two A Run For Its Money To The North East Of England?

The Newark Crossing is the railway equivalent of a light-controlled pedestrian crossing in the middle of a motorway.

This Google Map shows the crossing.

Note.

  1. The East Coast Main Line (ECML) running roughly North-South
  2. The A 46 road crossing the line.
  3. The Nottingham-Lincoln Line running parallel to the road.
  4. A chord allowing trains to go between the Nottingham-Lincoln Line and Newark North Gate station, which is to the South.
  5. The River Trent.

Complicated it certainly is!

I wrote about the problems in The Newark Crossing and felt something radical needed to be done.

Looking at the numbers of trains at the Newark Crossing.

  • The number of trains crossing the ECML is typically about three trains per hour (tph) and they block the ECML for about two minutes.
  • But then there could be a fast train around every four minutes on the ECML, with eight tph in both directions.

Would a Control Engineer’s solution, where all trains are computer controlled through the junction, be possible?

ERTMS,  which is digital in-cab signalling is being installed on the ECML and will allow the following.

  • Trains to be able to run at up to 140 mph.
  • Trains to be precisely controlled from a central signalling system called ETCS.

ERTMS and ETCS are already working successfully on Thameslink.

Suppose all trains going through the Junction on both the ECML  or the Nottingham-Lincoln Line, were running using ERTMS and ETCS.

  • Currently, there are three tph crossing from East to West and three tph crossing from West to East. Which means that the junction is blocked six times per hour for say two minutes.
  • Suppose the signalling could control the crossing trains, so that an East to West and a West to East train crossed at the same time.
  • To cater for contingencies like late and diverted trains, you might allow the trains to cross at up to for tph.

Instead of six tph, the frequency across the junction would be no more than four tph.

A similar paired crossing procedure can be applied to trains on the ECML.

The outcome is that you are scheduling a smaller number of double events, which must be easier.

I suspect there are other tricks they can do to increase capacity.

There’s also the problem of what happens if a crossing train fails, as it goes over the East Coast Main Line. But that must be a problem now!

Whatever happens here will be a well-thought through solution and it will add to the capacity of the East Coast Main Line and increase the line-speed from the current 100 mph.

 

July 8, 2020 Posted by | Transport | , , | Leave a comment

Beeching Reversal – Upper Wensleydale Railway

The Upper Wensleydale Railway is one of the projects that the Government and Network Rail are proposing to reverse some of the Beeching cuts.

This map from the Upper Wensleydale Railway web site, shows the location of the proposed reinstated railway.

This is the vision of how the railway will be used, taken from the web site.

It is hoped that a reinstated junction with the existing  Leeds – Settle – Carlisle railway line at Garsdale will allow ‘through’ trains to run from Hawes via Garsdale Junction, past the Yorkshire Three Peaks to Settle, then onwards through Hellifield and Clitheroe into Lancashire for Preston and Greater Manchester.

We are also hoping that some Manchester – Blackburn – Clitheroe trains can be extended to Garsdale and Hawes thereby linking Lancashire to an enhanced service through Settle to the Yorkshire Peaks and Dales.

Connections with other trains could be made at Hellifield (for West Yorkshire & Lancaster) and at Garsdale (for Carlisle, Scotland & the North East of England).

This Google map shows the current state of the railways at Garsdale.

Note.

  1. Garsdale station in the South-West corner of the map.
  2. The Settle and Carlisle Line curving away to the North over the Dandry Mire Viaduct.
  3. The trackbed of the former branch to Hawes stands out as a green scar.

I have followed the route of the railway to Hawes in my helicopter and it doesn’t appear to be a very challenging project to reinstate.

  • Although the comprehensive Routes and Structures page on the Upper Wensleydale Railway, indicates there is a lot to do.
  • It is about six miles long.
  • It is single track with a passing loop at Hawes.

This Google Map shows the town of Hawes,

It certainly looks the sort of place, where Wallace and Gromit might rent a cottage for a week and use as a base to explore the countryside.

  • There’s a Wensleydale Creamery.
  • There’s a traditional ropemaker called Outhwaite, dating from 1905, who have the web site; www.ropemakers.com.
  • The headquarters of the Yorkshire Dales National Park Authority are located in the North of the town and shown by a green arrow.

Next to the Park Authority is a blue arrow marking the Dales Countryside Museum, which incorporates the original Hawes railway station.

Services To Hawes

Looking at the data from Real Time Trains, it looks like trains on the Settle and Carlisle average about fifty mph on that line, which is generally double-track with an operating speed of sixty mph.

  • I would estimate that a modern diesel or hydrogen-powered train could do the return trip between Garsdale and Hawes station in around thirty minutes.
  • This time would probably mean that the Hawes Branch could be worked with only one train operational on the branch.
  • It would also fit in well with the service plans for the Upper Wensleydale Railway.

I am fairly certain that an hourly service could be run between Hawes and Hellifield stations, which could be extended as far South as the operator wanted.

Military Traffic To Redmire

In the Wikipedia entry for Redmire village, this is said.

Redmire is the terminus of the Wensleydale Railway. The Ministry of Defence uses trains to transport armoured vehicles from bases in the south to the Catterick military area using Redmire railway station as its terminus.

It looks like there must be a quality railway between Redmire station and the East Coast Main Line at Northallerton.

This Google Map shows the site of Redmire station.

Note.

  1. At the left hand side of the map, there look to be loading ramps for the military vehicles, at the end of two sidings.
  2. The building on the North side of the tracks appears to be the old Redmire station buildings.
  3. The blue dot to the right, is a Google Maps pointer for the station

If you type Redmire into Google Maps, it’s easy to find..

This Google Map shows the rail lines at Northallerton.

Note.

Northallerton station in the South-East corner of the map.

The East Coast Main Line runs about West-by-North from the station towards Darlington and Scotland.

The line to Middlesbrough branches off in a North-Easterly direction.

The Wensleydale Railway comes in from the West and joins the East Coast Main Line going North.

It also appears there used to be a tight chord that allowed trains to go between the Wensleydale Railway and the South.

It looks like the Army would like that chord for their vehicle trains.

This enlarged Google Map, shows the site of the chord.

It looks to me, that it was once a chord, but now it’s a substantial wood.

A Bigger Plan

In the Wikipedia entry for the Wensleydale Railway, there is a section, which is entitled Upper Wensleydale Railway, where this is said.

In late 2019/early 2020, a separate company was formed to campaign to reinstate the line between Hawes and Garsdale. The groups’ objective is to have a timetabled year-round service run by a train operating company, rather than a heritage service. This scheme was shortlisted for funding in the second round of the government’s Reverse Beeching Fund, in June 2020.

These are my thoughts on various topics.

The Eastern Terminal

There are three possible Eastern terminals.

  • Northallerton
  • Middlesbrough – There is no connection to the Wensleydale Railway.
  • Darlington – Would probably mean slow trains on the East Coast Main Line.

I think we’re left with Northallerton and the tight connection, which requires the chord to be reinstated.

But, it does say in the Wikipedia entry for Northallerton station, that the station is the terminus for the proposed extended Wensleydale Railway.

This Google Map shows the Northern end of Northallerton station.

Would it be possible to sneak a line down the Western side of the East Coast Main Line and into a new bay platform at the station?

It would certainly allow trains from the Wensleydale Railway to terminate at Northallerton station.

The Western Terminal

As I said earlier, it’s the operator’s choice.

Personally, I would choose Blackburn station.

  • It’s about fifty miles from Gardale station.
  • There is a train depot at Blackburn.
  • Blackburn station is in the Town Centre.
  • Blackburn station has good rail connections to Blackpool, Liverpool, Leeds, Manchester and Preston.

Prior to COVID-19, I regularly stayed in the convenient Premier Inn next to the station.

Rolling Stock

The trains will have to be self-powered, as I don’t think the budget will run to electrification and much of the track-bed is owned by a heritage railway.

So that must mean the trains must be self-powered, which will mean either diesel, electric or hydrogen.

  • I think diesel can be ruled out, except as a stop-gap, we are going carbon-neutral on the railways by 2040.
  • Blackburn and Northallerton stations are too far for battery power.

So that means it must be hydrogen power.

But as, it appears that Teesside is going for hydrogen, as I wrote about in Fuelling The Change On Teesside Rails, that should be a convenient fuel.

Conclusion

I like this scheme, as it sorts a lot of problems.

I also think that there’s a fair chance, it will get the nod.

The local MP is the Chancellor of the Exchequer; Rishi Sunak and this could be a case of he who pays the piper, calls the tune!

July 4, 2020 Posted by | Hydrogen, Transport | , , , , , , , , , | 4 Comments

£350m Investment For Britain’s First Mainline Digital Railway

The title of this post, is the same as that of this article on Rail Technology Magazine.

This is the introductory paragraph.

The East Coast Main Line will become Britain’s first mainline digital rail link with £350m of new investment to install state-of-the-art electronic signalling designed to cut journey times and prevent delays.

We’re finally going digital!

June 22, 2020 Posted by | Transport | , , | 1 Comment

Thoughts On East Coast Trains

According to an article and a picture, the second new Class 803 train for Open Access Operator; East Coast Trains, has arrived in the UK to be fitted out at Newton Aycliffe.

These are my thoughts on the service.

The Trains

The Class 803 trains are similar to the other Hitachi A-trains running in the UK, but with two big differences.

  • They will have a one class interior and they will be fitted with a battery, instead of a diesel engine.
  • The battery is not for traction and is to provide hotel power in stations and in the event of a dewiring. The latter has been surprisingly common on the East Coast Main Line in recent years.

Normally, these five-car trains are fitted with a single MTU 12V 1600 R80L diesel engine, which is described in this datasheet on the MTU web site.

The mass of the engine is given as 6750 Kg, when it is ready to run.

It would seem logical to replace the diesel engine with a battery of the same weight. I’ll use seven tonnes, as the fuel tank won’t be needed either.

This page on the Clean Energy institute at the University of Washington is entitled Lithium-Ion Battery.

This is a sentence from the page.

Compared to the other high-quality rechargeable battery technologies (nickel-cadmium or nickel-metal-hydride), Li-ion batteries have a number of advantages. They have one of the highest energy densities of any battery technology today (100-265 Wh/kg or 250-670 Wh/L).

Using these figures, a seven-tonne battery would be between 700 and 1855 kWh in capacity.

Incidentally, the power output of an MTU 12V 1600 R80L is 700 kW.

In Sparking A Revolution I gave Hitachi’s possible specification of a battery-electric train.

  • Range – 55-65 miles
  • Performance – 90-100 mph
  • Recharge – 10 minutes when static
  • Routes – Suburban near electrified lines
  • Battery Life – 8-10 years

These figures are credited to Hitachi.

Doing a quick calculation, it would appear that.

  • A 700 kWh battery could supply the same power as the diesel engine for an hour.
  • A 1855 kWh battery could supply the same power as the diesel engine for two hours and thirty-nine minutes.

I am drawn to the conclusion, that although Hitachi say the battery is not for traction purposes in a Class 803 train, that a battery the same weight as the current diesel engine, would be a very adequate replacement.

If say, you put a 300-500 kWh battery in a Class 803 train, it would probable give enough hotel power until the train was able to move again. but it would also reduce the weight of the train and thus improve the acceleration in normal running.

A Battery Module

I wouldn’t be surprised if Hitachi are developing a battery module, that can replace the MTU 12V 1600 R80L diesel engine.

  • The module would be used for both traction and hotel services on the train.
  • It would be charged from the electrification or by regenerative braking.
  • It would act as emergency power.
  • To the driver and the train’s computer, it would have similar performance to the diesel engine.

The diesel engine and the battery module would be plug-compatible and could be exchanged as required.

I can do a quick calculation for a 1000 kWh battery, which would weigh under four tonnes.

  • A 1000 kWh battery would provide 700 kW for 86 minutes.
  • At 90 mph, the train would travel for 129 miles.
  • At 100 mph, the train would travel for 143 miles.

That would be a very handy extended range.

As East Coast Trains will only run on a fully-electrified route, they have no need for the traction capability.

  • But it would fit well with the routes of Avanti West Coast, East Midlands Railway, Great Western Railway, Hull Trains, LNER and TransPennine Express.
  • All except East Midlands Railway and LNER, share part or full ownership with East Coast Trains.

It does look to me, that Hitachi is using East Coast Trains and their fully electrified route to give the battery module for the trains, a thorough work-out, on a route, where it will not normally be needed.

The Proposed Service

From various sources we know the following.

  • There will be five trains per day in both directions between London Kings Cross and Edinburgh. – See Wikipedia
  • East Coast Trains have ordered five trains. – See Wikipedia.
  • There will be stops at Stevenage, Durham, Newcastle and Morpeth. – See Wikipedia
  • The first Northbound service will arrive in Edinburgh before 10:00. – See Rail Advent.
  • Fares will be low-cost at around £25 – See Wikipedia.

It is also likely that East Coast Trains will want a journey time of under four hours, which is being planned for the route anyway under the L2E4  project.

As the record time between London and Edinburgh was set in 1991 by an InterCity 225 train at a minute under three-and-a-half hours, could a time of around three hours and forty-five minutes be possible, including the turnaround of the train?

10:00 Arrival In Edinburgh

This is obviously a good idea, but with a four hour journey time, it would mean leaving London before six.

  • Perhaps to make the most of clear tracks in the morning the train would leave early.
  • Currently, the first two trains from Kings Cross are the 06:15 to Edinburgh, which arrives at 11:08 and the 06:33 to Leeds.
  • How early could the train leave?

I suspect that the first train to Edinburgh would leave Kings Cross around 05:30 and arrive in Edinburgh and be ready to return before 10:00.

10:00 Arrival In London

If arriving in Edinburgh before ten is a good idea, then surely arriving in London by the same time is worthwhile.

  • Currently, the first train from Edinburgh to London is the 05:48, which arrives at 10:40.

As with the Northbound service, I suspect the first train to Kings Cross would leave Edinburgh around 05:30 and arrive in Kings Cross and be ready to return before 10:00.

Five Services Per Day

If the first Edinburgh and  Kings Cross services left at 05:30 and after unloading and loading, were ready to return before 10:00, that would be the first service.

The simplest way to handle the rest of the day would be to split the time into four and run the trains continuously.

Suppose, the last train got to its destination at one in the morning, that would mean that fifteen hours were available for four trains or three hours and forty-five minutes for each trip between London and Edinburgh and the turnaround.

The train starting from Kings Cross would run the following services.

  • Kings Cross to Edinburgh – Leaves 05:30 – Arrives before 10:00
  • Edinburgh to Kings Cross – Leaves 10:00
  • Kings Cross to Edinburgh – Leaves 13:45
  • Edinburgh to Kings Cross- Leaves 17:30
  • Kings Cross to Edinburgh – Leaves 21:15 – Arrives 01:00 on the next day.

The train starting from Edinburgh would run the following services.

  • Edinburgh to Kings Cross – Leaves 05:30 – Arrives before 10:00
  • Kings Cross to Edinburgh – Leaves 10:00
  • Edinburgh to Kings Cross – Leaves 13:45
  • Kings Cross to Edinburgh – Leaves 17:30
  • Edinburgh to Kings Cross – Leaves 21:15 – Arrives 01:00 on the next day.

There would be two very tired trains at the end of every day, that would be looking forward to some well-deserved tender loving care.

This has been my best guess at what the timetable will be! But!

  • Travellers can catch an early train, do a full days work in the other capital and return at the end of the day.
  • There are three services during the day; one each in the morning, the afternoon and the early evening, for those who want affordable, slightly less frenetic travelling.
  • I suspect the intermediate stops have been chosen with care.
  • Improvements at Stevenage station could make the station, the preferred interchange for many between East Coast, LNER and local services for Cambridgeshire, Hertfordshire and North London. Car parking is probably easier than Kings Cross!
  • Is Durham station an alternative station on the other side of the Tyne from Newcastle, with better parking?
  • Could Durham City Centre be the terminal of a Leamside Line extension of the Tyne and Wear Metro?
  • Newcastle station is very well-connected to all over the North East.
  • Morpeth station could attract a large number of travellers from over the Border. It also looks to have space to expand the parking!

It looks a well-designed route and timetable.

How Many Trains Would Be Needed?

Consider.

  • Each train could be two five-car trains working together as a ten-car train.
  • This would maximise the use of paths on the East Coast Main Line.
  • Four trains would be needed for the full five trains per day ten-car service.

As there is going to be a fleet of five trains, the fifth train would either be in maintenance or waiting to enter the action as a substitute.

Improving Efficiency

It looks to me, that the efficiency of this service could be improved by good old-fashioned time and motion study.

  • Will  drivers use stepping-up to speed the reverse of trains?
  • Would cleaning teams board at Morpeth and Stevenage stations and clean the train on the last leg?
  • Will the buffet be designed for fast replenishment?
  • Will drivers be given all possible aids to go faster?

Every little will help!

Conclusion

I like this system and the competition will keep LNER on its toes!

Would a similar system work on the West Coast Main Line?

  • Grand Union have proposed a service between Euston and Stirling stations.
  • There will be stops at Milton Keynes Central, Nuneaton, Crewe, Preston, Carlisle, Lockerbie, Motherwell, Whifflet, Greenfaulds and Larbert.
  • Trains will be InterCity 225s.

The service could start in 2021.

 

 

 

 

 

 

 

 

 

 

 

June 3, 2020 Posted by | Transport | , , , , , | 1 Comment

Will The East Coast Main Line Give High Speed Two A Run For Its Money To The North East Of England?

I have looked up High Speed Two timings on their Journey Time Calculator and compared them with current LNER timetables.

  • London-Leeds – Current – 136 minutes – HS2 – 81 minutes
  • London-York – Current – 111 minutes – HS2 – 84 minutes
  • London – Darlington – Current – 141 minutes – HS2 – 112 minutes
  • York- Darlington – Current – 27 minutes – HS2 – 26 minutes
  • London – Durham – Current – 170 minutes – HS2 – 138 minutes
  • York – Durham – Current – 45 minutes – HS2 – 44 minutes
  • London – Newcastle – Current – 170 minutes – HS2 – 137 minutes
  • York – Newcastle – Current – 55 minutes – HS2 – 51 minutes
  • London – Edinburgh – Current – 259 minutes – HS2 – 220 minutes
  • Newcastle – Edinburgh – Current – 83 minutes – HS2 – 83 minutes
  • York – Edinburgh – Current – 138 minutes – HS2 – 134 minutes

Note.

  1. I have assumed that Newcastle and Edinburgh takes 83 minutes, which is the current timing.
  2. The time savings possible to the North of Leeds are only a few minutes.
  3. As an example, the straight route between York and Darlington is 34 miles, which means an average speed of only 75 mph.

Serious work needs to be done North of York to improve timings.

Improvements To The East Coast Main Line

Various improvements to the East Coast Main Line are in process of building designed or built.

Extra Tracks

These example of more tracks are from the Wikipedia entry for the East Coast Main Line.

  • Four tracks are being restored between Huntington and Woodwalton.
  • Freight loops between York and Darlington.

There are probably other places, which will see extra tracks in the next few years.

Power Supply And Electrification

Wikipedia identified places where the power supply and the electrification could be better.

This sentence indicates the comprehensive nature of the planned work.

Power supply upgrades (PSU) between Wood Green and Bawtry (Phase 1 – completed in September 2017) and Bawtry to Edinburgh (Phase 2), including some overhead lines (OLE) support improvements, rewiring of the contact and catenary wires, and headspan to portal conversions (HS2P) which were installed at Conington in January 2018.

The Hertford Loop Line is also due to have some power supply upgrades.

Station Improvements

Darlington, Kings Cross, Stevenage and York will have track improvements, which will improve the capacity of the tracks through the stations.

Werrington Junction

Werrington Junction will be a big improvement. This is an extract from the Wikipedia entry.

The project will see the construction of 1.9 miles (3 km) of new line that will run underneath the fast lines, culverting works on Marholm Brook and the movement of the Stamford lines 82 feet (25 m) westwards over the culverted brook. This will mean that trains for the GN/GE line no longer need to cross the fast lines on the level, nor use the Up Fast line between Peterborough station and the junction. The project, coupled with other ECML improvement schemes (such as the four tracking from Huntingdon to Woodwalton) will improve capacity on the line through Peterborough by 33% according to Network Rail. This equates to two extra train paths an hour by 2021, when the work is scheduled to be completed. In turn, this will remove 21 minutes from the fastest King’s Cross to Edinburgh Waverley service, and 13 minutes from the fastest King’s Cross to Leeds service. It will also see an increase of 1,050 ‘intercity’ seats per hour on express trains through Peterborough.

The upgrade will add two more train paths to the route and knock 21 and 13 minutes off the faster Edinburgh and Leeds services respectively.

The Newark Flat Crossing

This is the railway equivalent of a light-controlled pedestrian crossing in the middle of a motorway.

This Google Map shows the crossing.

Note.

  1. The East Coast Main Line running roughly North-South
  2. The A 46 road crossing the line.
  3. The Nottingham-Lincoln Line running parallel to the railway.
  4. A chord allowing trains to go between the Nottingham-Lincoln Line and Newark North Gate station, which is to the South.
  5. The River Trent.

Complicated it certainly is!

I wrote about the problems in The Newark Crossing and felt something radical needed to be done.

Looking at the numbers of trains at the Newark Crossing.

  • The number of trains crossing the East Coast Main Line, is typically about three to five trains per hour (tph) and they block the East Coast Main Line for about two minutes.
  • But then there could be a fast train around every four minutes on the East Coast Main Line, with eight tph in both directions.

The numbers of trains and their speeds would probably cut out a Control Engineer’s solution, where all trains are computer controlled through the junction.

Although, it might be possible to reduce the number of conflicting trains on the East Coast Main Line dramatically, by arranging a Northbound and a Southbound express passed each other at the flat junction.

There’s also the problem of what happens if a crossing train fails, as it goes over the East Coast Main Line. But that must be a problem now!

Whatever happens here will be a well-thought through solution and it will add to the capacity of the East Coast Main Line and increase the line-speed from the current 100 mph.

Level Crossings

Wikipedia says this about level crossings.

Level crossing closures between King’s Cross and Doncaster: As of July 2015 this will no longer be conducted as a single closure of 73 level crossings but will be conducted on a case-by case basis (for example, Abbots Ripton Level Crossing will close as part of the HW4T scheme).

It is my personal view that all should be removed.

ERTMS Signalling

Wikipedia says this about the installation of ERTMS digital in-cab signalling.

The line between London King’s Cross and Bawtry, on the approach to Doncaster, will be signalled with Level 2 ERTMS. The target date for operational ERTMS services is December 2018 with completion in 2020.

Note that, ERTMS is needed for 140 mph running.

140 mpg Running

Wkipedia says this about 140 mph running.

Increasing maximum speeds on the fast lines between Woolmer Green and Dalton-on-Tees up to 140 mph (225 km/h) in conjunction with the introduction of the Intercity Express Programme, level crossing closures, ERTMS fitments, OLE rewiring and the OLE PSU – est. to cost £1.3 billion (2014). This project is referred to as “L2E4” or London to Edinburgh (in) 4 Hours. L2E4 examined the operation of the IEP at 140 mph on the ECML and the sections of track which can be upgraded to permit this, together with the engineering and operational costs.

A rough calculation indicates that up to eleven minutes could be saved by this upgrade, between London and Darlington.

Prospective Timings On The East Coast Main Line

Consider.

  • The package of new trains level crossing closures, ERTMS, OLE rewiring and the OLE PSU, which is collectively known as L2E4 should deliver Edinburgh in four hours.
  • Nineteen minutes need to be saved on current times.
  • I believe that if the train takes four hours or less, travellers will switch from the airlines.
  • High Speed Two are aiming for a time of 220 minutes, but is this by the West or East Coast routes?
  • As their proposed Glasgow service has a similar time, I assume it is by the West Coast route.
  • Wikipedia states that an Open Access Operator was thinking of running Class 390 trains or Pendelinos between London Kings Cross and Edinburgh in 223 minutes.

If the managers of LNER are the least bit ambitious, I can see them wanting to run a service between London and Edinburgh, in a time that is several minutes under four hours.

It should always be remembered that the East Coast Main Line was built for speed, as these true stories illustrate.

  • Mallard set the world speed record for steam locomotives in 1938 of 126 mph, on the line.
  • The record time between London and Edinburgh was set in 1991 by an InterCity 225 train at a minute under three-and-a-half hours.

I even have my own special memory of the line, which I wrote about in The Thunder of Three-Thousand Three-Hundred Horses. Behind a Deltic or Class 55 locomotive, I went from Darlington to London in two hours and fifteen minutes, which is faster than today’s fastest trains. Not bad for a 1960s design, but the train was a coach short and had a clear run. And was probably extremely-well driven.

Is the East Coast Main Line and especially the section South of Darlington, a route, where a knowledgeable driver can coax the maximum out of a high speed train?

Possible savings over the next few years include.

Werrington Junction

When this is completed, it could knock twenty-one minutes off the timings to Edinburgh.

Newark Crossing

How much time could be saved here?

There must be some time savings if the line speed can be increased from 100 mph.

140 mph Running

The various improvements in L2E4 are intended to enable services to run between London and Edinburgh in under four hours.

  • Does L2E4 include any possible time savings from Werrington Junction?
  • Does L2E4 include any possible time savings from improvements at Newark?
  • What is the completion date for L2E4?
  • Most of the time savings for L2E4 will be South of Darlington as the track is straighter.

As I said earlier a rough calculation indicates that L2E4 will save about eleven minutes to the South of Darlington.

Conclusion

There must be over thirty minutes of savings to be accumulated on the East Coast Main Line. Much of it because of the Werrington and Newark improvements will be South of Darlington.

I wouldn’t be surprised to see timings like these.

  • London-Leeds – Current – 136 minutes – HS2 – 81 minutes – Possible ECML – 120 minutes
  • London-York – Current – 111 minutes – HS2 – 84 minutes – Possible ECML – 90 minutes
  • London – Darlington – Current – 141 minutes – HS2 – 112 minutes – Possible ECML – 115 minutes
  • London – Durham – Current – 170 minutes – HS2 – 138 minutes – Possible ECML – 130 minutes
  • London – Newcastle – Current – 170 minutes – HS2 – 137 minutes – Possible ECML – 130 minutes
  • London – Edinburgh – Current – 259 minutes – HS2 – 220 minutes – Possible ECML – 210 minutes

It looks to me, that the East Coast Main Line could be fulfilling the aspirations of British Rail’s engineers of the 1980s.

 

 

 

 

 

 

 

 

 

June 1, 2020 Posted by | Transport | , , , , , , , , , , | 9 Comments

The Concept Of Electrification Islands

Consider how Imperial Airways and BOAC used to fly long routes to places like Sydney, Hong Kong and Cape Town before the days of long distance jet airliners. They used to fly from airport to airport, picking up fuel and supplies on the way.

If you want to know more about the details, read what is my favourite travel book, Beyond The Blue Horizon by Alexander Frater.

He followed the Imperial Airways route to Sydney, on what was reputed to be the most complicated ticket, that British Airways ever issued.

But can the concept of flying a short range airliner over a long distance refuelling as necessary, be applied to running a battery electric train by charging the batteries on a series of electrification islands?

In Ipswich And Peterborough In A Battery Train, I described how an Ipswich and Peterborough service could be run by a battery-equipped Class 755 train.

The Ipswich and Peterborough route is 82.5 miles long and it can be split as follows.

  • Ipswich and Haughley Junction – 13.8 miles – Electrified
  • Haughley Junction and Ely – 38.2 miles – Not Electrified
  • Ely and Peterborough – 30.5 miles – Not Electrified

Legs two and three, should be within the capability of a battery-equipped Class 755 train. No definite figure has been given, but in the July 2018 Edition of Modern Railways, this was said about the similar Class 756 trains, ordered for the South Wales Metro.

The units will be able to run for 40 miles between charging, thanks to their three large batteries.

Perhaps, what is needed is to create an electrification island at Ely, that can be used to charge the batteries.

An Electrification Island At Ely

This map from Wikipedia shows the complicated railways at Ely,

Note.

  1. Ely station is fully electrified.
  2. The line to Cambridge,Kings Cross, Liverpool Street and Stansted Airport is fully electrified. Greater Anglia’s Class 755 trains between Norwich and Stansted Airport, change between diesel and electrification at Ely.
  3. The line to Kings Lynn is fully electrified.
  4. The lines to Bury St. Edmunds, Norwich and Peterborough are not electrified.
  5. Ely is a city of 20,000 inhabitants, so I suspect it must have a robust electricity supply.
  6. Freight trains take about five minutes to pass between Ely West and Ely Dock Junctions.
  7. Ely West and Ely Dock Junctions are 2.5 miles apart.
  8. There appears to be an avoiding line South-East of Ely station, where I’ve seen trains from Felixstowe to Peterborough sometimes wait for a few minutes before proceeding.
  9. There is also a lot of space at March station, where a passing loop with a charging station could be built.

I believe it would be possibly to do the following at Ely.

  • Electrify the West Curve and the South-East avoiding line.
  • Electrify the Bury St. Edmunds, Norwich and Peterborough lines for perhaps five miles.
  • If required, put a high capacity charging station on the avoiding line.

There would be plenty of electrification to charge the trains.

An alternative plan might be to electrify between March station and the new Soham station, which has been planned to open in 2021.

  • This would be around eighteen miles of electrification.
  • This would certainly be enough electrification to fully-charge passing freight and passenger trains.
  • Soham to Ely could be doubled.
  • The extra electrification would mean the two unelectrified sections of the Ipswich and Peterborough route; Haughley Junction-Soham and March-Peterborough would be well within range of a battery-electric train.
  • The proposed service between Cambridge and Wisbech would only have the twelve miles of the Bramley Line between March and Wisbech to run on battery power.

It might also be possible to put in an extra curve to make Ely Dock Junction, a full triangular junction. This would allow the new Soham station to have direct services to both Cambridge and Cambridge North stations, without a reverse at Ely station.

Other Possible Electrification Islands

I’ll break these down by regions and train operators.

East Anglia (Greater Anglia)

Greater Anglia only runs trains on diesel to the North of Cambridge and Ipswich, which are both fully electrified, as is Norwich.

I would consider Cambridge, Ely, Ipswich and Norwich to be electrification islands.

  • All have a good connection to the electrification power supply, as they handle main line electric trains.
  • All or most platforms at the stations are electrified to charge trains.
  • There are electrified sidings at Cambridge and Norwich and possibly at Ipswich.

Lowestoft and Yarmouth might be fitted with charging systems to make sure a fault doesn’t strand a train.

In Battery Power Lined Up For ‘755s’, I talked about a report in Rail Magazine, which said that the Class 755 trains will get a battery fitted at the first overhaul.

I wouldn’t be surprised, that in a couple of years, Greater Anglia announces the end of diesel power on some or all of their services.

East Coast Main Line (LNER and Others)

Hitachi AT-300 Trains On The East Coast Main Line

The East Coast Main Line (ECML), is increasingly becoming a railway where the vast majority of services are run by versions of Hitachi AT-300 trains.

Classes 800, 802 and 803 are bi-modes and can probably have some or all of their diesel engines replaced by batteries.

In Sparking A Revolution, I gave this specification for a Hitachi battery-electric train.

  • Range – 55-65 miles
  • Performance – 90-100 mph
  • Recharge – 10 minutes when static
  • Routes – Suburban near electrified lines
  • Battery Life – 8-10 years

I will use these figures from Hitachi in this post.

Electrification Islands On The East Coast Main Line

There are several large and smaller stations along the ECML, that can act as electrification islands to support either local services or long-distance services from London.

Cleethorpes

Consider

  • Cleethorpes station would need a decent electricity supply. Offshore wind?
  • Doncaster is 52 miles away.
  • Lincoln is 37 miles away.
  • Newark is 63 miles away.
  • Scunthorpe is 29 miles away.

If you can get battery-electric trains to Cleethorpes, you also serve Grimsby Town station, which is three miles closer to the ECML.

With electrification islands at Lincoln and Scunthorpe and Hitachi AT-300 trains with a battery range of at least sixty miles, electric trains could be run to Cleethorpes and Grimsby.

Would that improve the economy of the area?

Darlington

Darlington station is on the electrified ECML, so it must have a top class electricity supply.

  • Bishop Auckland is 12 miles away.
  • Middlesbrough is 15 miles away.
  • Nunthorpe is 20 miles away.
  • Saltburn is 27 miles away.
  • Whitby is 47 miles away.

Darlington could support battery-electric operation of the Tees Valley Line, if the route doesn’t go for hydrogen. Note that hydrogen would probably also handle services from Middlesbrough to Newcastle, Nunthorpe and Whitby with ease.

Note my views on the definitive hydrogen train, which will be a battery-electric-hydrogen hybrid train, able to use power from a variety of sources.

Doncaster

Doncaster station is on the electrified ECML, so it must have a top class electricity supply.

  • Cleethorpes is 52 miles away.
  • Hull is 40 miles away.
  • Scunthorpe is 25 miles away.
  • Sheffield is 19 miles away.

Doncaster could certainly support some battery-electric services.

Grantham

Grantham station is on the electrified ECML, so it must have a top class electricity supply.

  • Nottingham is 22 miles away.
  • Sleaford is 18 miles away.
  • Nottingham and Skegness services seem to take about four minutes to reverse in the station.

The Nottingham and Skegness service could take advantage of the driver changing ends to top up the battery.

Hull

Consider.

  • Hull is a city of nearly 300,000 people, so it must have a decent electricity supply.
  • Hull station is under forty miles from the electrification of the ECML.
  • Doncaster is 40 miles away.
  • Scarborough is 54 miles away.
  • York is 52 miles away, with about 20 miles electrified.

I would certainly suspect that with an electrification island at Hull, the Hitachi AT-300 trains of Hull Trains and LNER could certainly run fully electric services to the city, if they were fitted with batteries.

With an electrification island at Scarborough, could Hull Trains and LNER services be extended to Scarborough?

Leeds

Leeds station is already an electrification island, as it is fully electrified.

  • It also has electrified services to Bradford, Ilkley and Skipton.
  • Leeds and Huddersfield will be electrified in the next few years.

Harrogate is 18 miles away, so a return journey is within range of a Hitachi AT-300 train with a battery, that is charged on the ECML.

Lincoln

Consider.

  • Lincoln station would need a decent electricity supply.
  • Cleethorpes is 37 miles away.
  • Doncaster is 40 miles away.
  • Newark is 16 miles away, so a return journey is within range of a Hitachi AT-300 train with a battery, that is charged on the ECML.
  • Nottingham is 34 miles away and Leicester is 61 miles away.
  • Peterborough is 57 miles away.
  • Sleaford is 21 miles away.

With an electrification island at Lincoln, the following should be possible.

  • Electric services between Cleethorpes and Lincoln using battery-electric trains.
  • Electric services between Doncaster and Lincoln using battery-electric trains.
  • Electric services between Nottingham/Leicester and Lincoln using battery-electric trains. Electrify the Midland Main Line (MML) and this is easy.
  • Electric services between Peterborough and Lincoln using battery-electric trains. It may need an electrification island at Sleaford.
  • Electric services between London Kings Cross and Grimsby/Cleethorpes using Hitachi AT-300 trains with a battery, that is charged on the ECML and at Lincoln.

The London Kings Cross and Lincoln services could top up their batteries if required if they were run using Hitachi AT-300 trains with a battery

Surely, if Class 755 trains are good enough for Norfolk and Suffolk and both franchises are run by Abellio, then battery versions of these trains would be ideal for running services from Lincoln to Cleethorpes/Grimsby, Doncaster, Newark, Nottingham, Peterborough and Skegness.

Middlesbrough

If required an electrification island could be placed at Middlesbrough station.

  • Darlington is 15 miles away.
  • Newcastle is 47 miles away.
  • Saltburn is 13 miles away.
  • Whitby is 35 miles away.

This area might opt for hydrogen, but I believe battery-electric trains could also work the routes through Middlesbrough and Darlington. Note my views on the definitive hydrogen train, which will be a battery-electric-hydrogen hybrid train, able to use power from a variety of sources.

Newark

Consider.

  • Newark North Gate station is on the electrified ECML, so it must have a top class electricity supply.
  • Cleethorpes is 63 miles away.
  • Grimsby is 60 miles away.
  • Lincoln is 16 miles away.
  • Nottingham is 17 miles away.

With an electrification island at Cleethorpes/Grimsby, battery-electric services could be extended to either town. They would need to use the electrification island at Lincoln station to top-up the battery.

Newcastle

Newcastle station is on the electrified ECML, so it must have a top class electricity supply.

  • Carlisle is 61 miles away.
  • Middlesbrough is 47 miles away.
  • Nunthorpe is 52 miles away.

Newcastle could surely support local services using battery-electric trains. They could be dual-voltage, so they can use Tyne and Wear Metro electrification.

Peterborough

Peterborough station is on the electrified ECML, so it must have a top class electricity supply.

  • Ely is 31 miles away.
  • Leicester is 52 miles away, with Birmingham another 40 miles further.
  • Lincoln is 57 miles away.
  • Sleaford is 35 miles away.

It might even be possible for Hitachi AT-300 trains with a battery to be able to run between Stansted Airport and Birmingham for CrossCountry.

  • Stansted and Ely – 38 miles – Electrified
  • Ely and Peterborough – 30.5 miles – Not Electrified
  • Through Peterborough – 6 miles – Electrified (ECML)
  • Peterborough and Leicester – 52 miles – Not Electrified
  • Leicester and Nuneaton – 19 miles – Not Electrified
  • Through Nuneaton – 3 miles – Electrified (WCML)
  • Nuneaton and Birmingham – 21 miles – Not Electrified

Note.

  1. Trains would charge when running under electrification and also during station stops in Cambridge, Ely, Peterborough  Leicester and Nuneaton.
  2. Trains would automatically raise and lower their pantographs as required.
  3. There may be scope to add sections of extra electrification.
  4. For example, electrification of the MML could add as much as eight miles of electrification, through Leicester.

As much as forty percent of the route between Birmingham and Stansted could be electrified.

Sandy/St. Neots

It is planned that the East West Railway (EWR) and the ECML will cross at an interchange station somewhere in this area.

Consider.

Both stations are on the electrified ECML, so must have a top class electricity supply.

  • Bedford is 10 miles away.
  • The electrification South of Cambridge is about 20 miles away.

It would surely be possible to create an electrification island, where the two major routes cross at Sandy/St. Neots.

Scarborough

Consider.

  • Scarborough station would need a decent electricity supply.
  • Hull is 54 miles away.
  • York is 42 miles away.

With charging facilities at Scarborough battery-electric trains could be run to the seaside resort.

  • I also think it would be possible to run a direct service between London Kings Cross and Scarborough using Hitachi AT-300 trains with batteries, either via York or Hull.
  • TransPennine’s Hitachi trains could also read Scarborough from York, if fitted with batteries.

Would battery-electric trains between Hull, Scarborough and York attract more users of the services?

Sleaford

If required an electrified island could be placed at Sleaford station.

  • Sleaford would need a decent electricity supply.
  • The station is where the Nottingham and Skegness and Peterborough and Lincoln routes cross.
  • Grantham on the ECML is 18 miles away.
  • Lincoln is 21 miles away.
  • Nottingham is 40 miles away.
  • Peterborough is 35 miles away.
  • Skegness is 40 miles away.

Services through Sleaford would be run as follows.

As Lincoln and Peterborough are likely to both have the ability to charge trains, the Peterborough and Lincoln route can probably be run using a battery-electric train, that also charges during the stop at Sleaford.

To run the Nottingham and Skegness route, there will need to be a charging facility or an electrification island at Skegness, as forty miles is to far from an out and back from Sleaford on battery power. The section between Sleaford and Nottingham is easier, as there is a reverse at the fully-electrified Grantham station, where the trains could top-up their batteries.

York

York station is already an electrification island, as it is fully electrified.

  • Harrogate is 20 miles away, with Leeds another 18 miles further.
  • Hull is 52 miles away, with about 20 miles electrified.
  • Scarborough is 42 miles away.

It would appear that battery-electric trains could work the routes between Doncaster, Harrogate, Hull, Leeds, Scarborough and York.

Midland Main Line (East Midlands Railway)

Hitachi AT-300 Trains On The Midland Main Line

The Midland Main Line (MML) is a mixture of electrified and non-electrified sections. East Midlands Railway have chosen Hitachi Class 810 trains to cope with the mixed infrastructure.

  • There will be thirty-three five car trains.
  • They will have four diesel engines instead of three in the Class 800 trains.
  • They will have a redesigned nose.

Are East Midlands Railway ordering a dual-purpose design?

In the January 2020 Edition of Modern Railways, this is said about the bi-mode Hitachi Class AT-300 trains for Avanti West Coast.

Hitachi told Modern Railways it was unable to confirm the rating of the diesel engines on the bi-modes, but said these would be replaceable by batteries in future if specified.

Consider.

  • Both fleets of trains are for delivery in 2022.
  • Ease of manufacture would surely mean, that Hitachi would want the two fleets to be substantially the same.
  • A train with four engines could be needed to cruise at 125 mph on diesel.
  • Four engine slots would mean that, if you were replacing some engines with batteries, you’d have more flexibility.

Hitachi seem to be playing an inscrutable game.

This section entitled Powertrain in the Wikipedia entry for the Class 800 train, says this about the powertrain for Class 800/801/802 trains.

Despite being underfloor, the generator units (GU) have diesel engines of V12 formation. The Class 801 has one GU for a five to nine-car set. These provide emergency power for limited traction and auxiliaries if the power supply from the overhead line fails. The Class 800 and Class 802 bi-mode has three GU per five-car set and five GU per nine-car set. A five-car set has a GU situated under vehicles 2/3/4 and a nine-car set has a GU situated under vehicles 2/3/5/7/8.

Hitachi must have found a way to arrange four GUs under a Class 810 train.

  • They could be using slightly smaller engines. Smaller engines could be fitted to curb overheating.
  • The engines might be in pairs under vehicles 2 and 4, possibly sharing utilities like fuel tanks and cooling systems.

But as the vehicles are two metres shorter, it wouldn’t be a shoe-in.

When the trains are to be upgraded to battery electric trains, an appropriate number of GUs would be replaced by batteries.

I wouldn’t be surprised to find out that both Avanti West Coast and East Midlands Railway will have trains that can be converted from five-car bi-mode trains into battery-electric trains, with a range of between 55 and 65 miles.

  • As a control engineer, I believe that a battery could be made to be plug compatible with a GU.
  • An extra battery could be placed under vehicle 3, in the spare engine position.

I reckon that Hitachi’s quote of a sixty-five mile range would at 3 kWh per vehicle-mile need about one MWh of batteries.

That is 200 kWh per vehicle, so I feel it should be possible.

Electrification Of The Midland Main Line

Current plans for electrified sections of the MML are as follows.

  • London St. Pancras and Corby – 79.5 miles – Opening December 2020
  • London St. Pancras and Market Harborough – 83 miles – Opening December 2020
  • Clay Cross North Junction and Sheffield – 15.5 miles – To be built in conjunction with High Speed Two

The gap between Market Harborough and Clay Cross North Junction is about 66 miles.

Electrification Islands On The Midland Main Line

As with the ECML, there are several large and smaller stations along the MML, that can act as electrification islands to support either local services or long-distance services from London.

I will deal with the electrification islands, starting in London.

Bedford

In Looking At The East West Railway Between Bedford And Cambridge, I came to the conclusion, that the East West Railway (EWR) and the MML, would share electrified tracks through Bedford station.

  • There are also rumours of electrification of the East West Railway, which I wrote about in EWR Targets Short-Term Fleet Ahead Of Possible Electrification, after an article in Rail Magazine with the same title.
  • But even so Bedford and Cambridge are only thirty miles apart, which is well within the capability of a battery-electric train.
  • Continuing to the West on the EWR, it is under twenty miles to the electrification at Bletchley on the West Coast Main Line (WCML).

It looks to be that battery-electric trains running on the EWR would be able to charge their batteries as they pass through Bedford.

  • It does appear to me, that the EWR chose a route through Bedford that would make this feasible.
  • It would also be relatively easy to electrify the EWR to the East and/or West of Bedford to increase the time using electrification, to fully charge the trains.
  • As Cambridge and Bletchley are around fifty miles apart, this journey between two fully-electrified stations, would be possible for a battery-electric train, especially, if it were able to take a sip of electricity in the possible stops at Bedford and Sandy or St. Neots.

If in the end, it is decided to electrify the EWR, Bedford would surely be a location, with enough power to feed the electrification.

Leicester

Leicester station is an important station on the MML.

But it would be a difficult station to electrify because of a bridge with limited clearance.

In Discontinuous Electrification Through Leicester Station, I discussed how the following.

  • Discontinuous electrification through Leicester station.
  • Electrification between Leicester and Derby stations.
  • Electrifying the High Speed Two route between Clay Cross Junction and Sheffield.

Would allow Hitachi Class 810 trains, equipped with batteries to run between London and Sheffield on electric power alone.

 

East Midlands Parkway

East Midlands Parkway station is nineteen miles North of Leicester station.

This Google Map shows its unique position.

Ratcliffe-on-Soar power station is the eighteenth highest emitter of CO2 in Europe and will surely be closed soon.

But then, a power station, will have a good connection to the National Grid, ensuring there could be plenty of power for electrification, even after the current power station is long gone, as it will surely be replaced by another power station or energy storage.

East Midlands Parkway station is also well-connected.

  • Clay Cross North Junction is 31 miles away.
  • Derby is 10 miles away.
  • Leicester is 18 miles away.
  • Nottingham is 8 miles away.
  • Sheffield is 47 miles away.

It should be possible to reach all these places on battery-power from East Midlands Parkway.

Electrification Between Leicester And East Midlands Parkway

The more I look at this stretch of the MML, the more I feel that this eighteen mile stretch should be electrified to create what could become a linear electrification island.

Consider.

  • It is a 125 mph multi-track railway across fairly flat countryside.
  • Connecting electrification to the grid is often a problem, but Ratcliffe-on-Soar power station is adjacent to East Midlands Parkway station.
  • The section is only eighteen miles long, but this is surely long enough to fully-charge a battery train speeding to and from the capital.
  • There are only four intermediate stations; Syston, Sileby, Barrow-on-Soar and Loughborough.
  • The engineering for gauge clearance and electrification, looks to be no more difficult, than it will be between Kettering and Market Harborough.
  • Between Leicester and Market Harborough stations is only sixteen miles.
  • Between East Midlands Parkway and Nottingham is only eight miles, so it would be possible for Nottingham services to run without a charge at Nottingham station.
  • Between East Midlands Parkway and Derby is only ten miles, so it would be possible for Derby services to run without a charge at Derby station.
  • Between East Midlands Parkway and the shared electrified section with High Speed Two at Clay Cross North Junction is thirty-one miles, so it would be possible for Sheffield services to be run without using diesel, once the shared electrification is complete between Clay Cross North Junction and Sheffield.
  • Battery-electric trains between East Midlands Parkway and Clay Cross North Junction could also use the Erewash Valley Line through Ikeston, Langley Mill and Alfreton.
  • There would be no need to electrify through the World Heritage Site of the Derwent Valley Mills that lies between Derby and Clay Cross North Junction, as trains will be speeding through on battery power. Electrifying through this section, might be too much for some people.
  • If the trains can’t switch between battery and overhead electrification power, the changeover can be in Leicester and East Midlands Parkway stations. However, I believe that Hitachi’s AT-300 trains can do the changeover at line speed.

The electrification could also be used by other services.

  • Between Corby and Syston North Junction is only thirty-six miles, so it would be possible to run electric services between London St. Pancras and Derby, Nottingham and Sheffield via Corby, if the main route were to be blocked by engineering work.
  • Between Peterborough and Syston East Junction is forty-seven miles, so it should be possible to run CrossCountry’s Stansted Airport and Birmingham service using battery-electric trains. If the train could leave Leicester with a full battery, both Birmingham New Street and Peterborough should be within range.
  • East Midlands Railway’s Lincoln and Leicester service run for a distance of sixty-one miles via East Midlands Parkway, Nottingham and Newark stations. Electrification between Leicester and East Midlands Parkway, would mean there was just forty-two miles to do on battery power. An electrification island at Lincoln would charge the train for return.

Battery-electric trains with a range of between 55 and 65 miles would really open up the East Midlands to electric services if between Leicester and East Midlands Parkway were to be electrified.

London And Sheffield In A Battery-Electric Class 810 Train

This is speculation on my part, but I think this could be how trains run London to Sheffield before 2030.

  • London to Market Harborough – 83 miles – Using electrification
  • Switch to battery power at line speed.
  • Market Harborough to Leicester – 16 miles – Using battery power
  • Switch to electrification in Leicester station
  • Leicester to East Midlands Parkway – 19 miles – Using electrification
  • Switch to battery power at line speed.
  • East Midlands Parkway to Clay Cross North Junction – 31 miles – Using battery power
  • Switch to electrification at line speed.
  • Clay Cross North Junction to Sheffield – 15.5 miles – Using electrification

Note.

  1. 118 miles would be run using electrification and 47 miles using battery power.
  2. Battery power has been used to avoid the tricky electrification at Leicester station and along the Derwent Valley.

I don’t believe any of the engineering will be any more difficult, than what has been achieved on the MML in the last year or so.

Nottingham

Consider

  • Nottingham station would probably have access to a reliable electricity supply, as Nottingham is a large city of over 300,000 people.
  • Nottingham station has a comprehensive network of local services.
  • Nottingham station has an excellent connection to Nottingham Express Transit.
  • Birmingham New Street is 57 miles away, via Derby and Burton.
  • Burton-on-Trent is 27 miles away.
  • Derby is 16 miles away.
  • Grantham is 23 miles away.
  • Lincoln is 34 miles away.
  • Matlock is 33 miles away.
  • Newark is 17 miles away.
  • Sheffield is 40 miles away.
  • Worksop is 32 miles away.
  • Most of these local services are run by East Midlands Railway, with some services run by Northern and CrossCountry.
  • Some services run back-to-back through Nottingham.

I feel very strongly that if charging is provided in Nottingham, when trains turnback or pass through the station, that many of the local services can be run by battery-electric trains.

Previously, I have shown, that if between Leicester and East Midlands Parkway is electrified, then services between London and Nottingham, can be run by battery-electric trains.

There is also a fall-back position at Nottingham, as the local services could be run by hydrogen-powered trains.

Sheffield

Sheffield station would at first glance appear to be very similar to Nottingham.

  • Sheffield station would probably have access to a reliable electricity supply, as Sheffield is a large urban area of 700,000 people.
  • Sheffield station has a comprehensive network of local services.
  • Sheffield station has an excellent connection to the Sheffield Supertram.

But it looks like Sheffield station will see the benefits of electrification the Northern section of the MML from Clay Cross North Junction.

  • The 15.5 miles of electrification will be shared with the Sheffield spur of High Speed Two.
  • Currently, trains take sixteen minutes between Sheffield and Clay Cross North Junction.
  • Electrification and an improved high-speed track will allow faster running, better acceleration and a small saving of time.
  • A Sheffield train will be charged going to and from Sheffield, so will leave Clay Cross North Junction for Derby and the South with full batteries.
  • There must also be opportunities for local trains running between Sheffield and Class Cross Junction North to use the electrification and be run by battery-electric trains.

Current destinations include.

  • Derby is 36 miles away.
  • Doncaster is 19 miles away.
  • Huddersfield is 36 miles away.
  • Leeds is 45 miles away.
  • Lincoln is 49 miles away.
  • Manchester Piccadilly is 42 miles away.
  • Nottingham is 40.5 miles away.

Note.

  1. Doncaster, Leeds and Manchester Piccadilly stations are fully electrified.
  2. Work on electrifying Huddersfield and Leeds will start in a year or so, so Huddersfield will be electrified.
  3. I am firly sure that Lincoln and Nottingham will have enough electrification to recharge and turn trains.
  4. Some routes are partially electrified.

As with Nottingham, I am fairly sure, that local services at Sheffield could be run by battery-electric trains. And the same fall-back of hydrogen-powered trains, would also apply.

Sheffield And Manchester Piccadilly In A Battery-Electric Train

Consider.

  • Once Sheffield and Clay Cross North Junction is electrified in conjunction with High Speed Two, at least five miles of the Hope Valley Line at the Sheffield end will be electrified.
  • It may be prudent to electrify through Totley Tunnel to increase the electrification at Sheffield to ten miles.
  • The route via Stockport is 43 miles long of which nine miles at the Manchester End is electrified.
  • The route via Marple is 42 miles long of which two miles at the Manchester End is electrified.

There would appear to be no problems with running the TransPennine Express service between Manchester Airport and Cleethorpes using battery-electric trains, as from Hazel Grove to Manchester Airport is fully electrified and in the East, they can charge the batteries at Sheffield, Doncaster and a future electrification island at Cleethorpes.

The Northern service between Manchester Piccadilly and Sheffield could be run using battery-electric trains with some more electrification at the Manchester End or an extended turnback in Manchester Piccadilly.

Transport for Manchester has plans to run improve services at their end of the Hope Valley Line, with tram-trains possible to Glossop and Hadfield.

It would probably be worthwhile to look at the Hope Valley Line to make sure, it has enough future capacity. I would suspect the following could be likely.

  • More electrification.
  • More stations.
  • Battery-electric trains or tram-trains from Manchester to Glossop, Hadfield, New Mills Central, Rose Hill Marple and Sheffield.

I would suspect one solution would be to use more of Merseyrail’s new dual-voltage Class 777 trains, which have a battery capability.

Sheffield And Nottingham In A Battery-Electric Train

Consider.

  • Once Sheffield and Clay Cross North Junction is electrified in conjunction with High Speed Two, 15.5 miles of the route will be electrified.
  • The total length of the route is 40.5 miles.
  • There are intermediate stops at Dronfield, Chesterfield, Alfreton, Langley Mill and Ilkeston.
  • Currently, journeys seem to take around 53 minutes.

I think it would be likely that the battery would need to be topped up at Nottingham, but I think a passenger-friendly timetable can be developed.

West Coast Main Line (Avanti West Coast)

Hitachi AT-300 Trains On The West Coast Main Line

The West Coast Main Line (WCML) is a mainly electrified and with some non-electrified extended routes. Avanti West Coast have chosen Hitachi AT-300 trains to cope with infrastructure.

  • There will be ten seven-car electric trains.
  • There will be thirteen five-car bi-mode trains.

As these trains will be delivered after East Midlands Railway’s Class 810 trains and East Coast Trains’ Class 803 trains, the following questions must be asked.

  • Will the trains have the redesigned nose of the Class 810 trains?
  • Will the bi-mode trains have four diesel engines (Class 810 trains) or three ( Class 800 trains)?
  • Will the electric trains ordered by First Group companies; Avanti West Coast and East Coast Trains be similar, except for the length?

I would expect Hitachi will want the trains to be as similar as possible for ease of manufacture.

Electrification Islands On The West Coast Main Line

As with the ECML and the MML, there are a couple of large and smaller stations along the WCML, that can act as electrification islands to support either local services or long-distance services from London.

I will deal with the electrification islands, starting in London.

Watford Junction

Watford Junction station is already an electrification island, as it is fully electrified.

Services around Watford Junction have possibilities to be expanded and improved using battery-electric trains.

Milton Keynes

Milton Keynes Central station is already an electrification island, as it is fully electrified.

  • East West Railway services will call at Bletchley and not Milton Keynes.
  • There may be a connection between East West Rail and High Speed Two at Calvert station, which is 15 miles away.
  • Milton Keynes will get a service from Aylesbury, which is 22 miles away.

There may be possibilities to link Watford Junction and Milton Keynes via Aylesbury using battery-electric trains to give both places a connection to High Speed Two at a new Calvert station.

 

 

 

 

 

 

April 8, 2020 Posted by | Transport | , , , , , , , , , , , | 2 Comments

Partners On Board For In-Cab Signalling Project On East Coast Main Line

The title of this post, is the same as that of this article on Rail Advent.

This is the introductory paragraph.

Network Rail has announced that it has brought Siemens and Atkins on as its partners in a project to introduce in-cab signalling on the southern section of the East Coast Main Line.

It is good, that a start is being made on this significant project, which should increase capacity between Kings Cross and Doncaster.

March 23, 2020 Posted by | Transport | , , , | 1 Comment

Looking At The East West Railway Between Bedford And Cambridge

The route that has been chosen by East West Railway is Route E.

Route E is described in Wikipedia as follows.

Route E involves running from the existing Bedford station heading north then running to Tempsford where a new station would be built then (bypassing Sandy) the route heads east to Cambourne where a new station would be built. The route then joins an existing line northbound to Cambridge.

These maps show the route between Bedford and Cambridge stations in sections.

Bedford And Tempsford

This map shows the Western section between Bedford and Tempsford.

Note.

  1. Kempston Hardwick and Bedford St. Johns are existing stations on the existing Marston Vale Line, which could substantially be the route of the East West Railway between Bedford and stations to the West like Bletchley, Milton Keynes, Oxford and Reading.
  2. Bedford station is on the Midland Main Line.
  3. Wixams station is a proposed station on the Midland Main Line, which also might be served by the East West Railway.
  4. Biggleswade, Sandy and St. Neots stations are on the East Coast Main Line (ECML).

I’ll now take a quick look at the route through Bedford and the proposed Wixams station.

Bedford station is also a served by the following train services.

  • It is a terminus for Marston Vale Line services to and from Bletchley station.
  • It is a terminus for Thameslink services to and from London St. Pancras International station and the South as far as Brighton.
  • East Midlands Railway services between London St. Pancras International station and the East Midlands and Sheffield call at the station.

There would certainly be massive advantages in developing Bedford as a major interchange between the East West Railway and the Midland Main Line.

This Google Map shows the Midland Main Line through Bedford.

Note.

  1. Bedford station is at the bottom of the map towards the East.
  2. The village of Clapham is towards the top of the map.

What I find interesting, is that, to the East of the Midland Main Line between Bedford and Clapham appears to be mainly open farmland.

Is there sufficient space to build a flying junction, so that trains could go between Bedford and Cambridge in a smooth manner? From a quick look at this map, it appears to me that this would be possible.

It might even be possible to build a full triangular junction, North of Bedford, so that trains could go between the East and the Northbound Midland Main Line.

It looks to me to be a very important junction, that gives lots of possibilities for new passenger and freight services.

  • Passenger trains between Cambridge and Sheffield via Leicester and Derby.
  • Freight trains between Felixstowe and Derby, Nottingham and Sheffield.
  • Could the route be used for stone trains between the Peak District and the massive building developments in the City of London?

This ideas would be for starters!

This Google Map shows the area South of Bedford towards the Wixams development.

Note.

  1. The large new village of Wixams is shown by the red arrow.
  2. Kempston Hardwick station can be picked out to the West of Wixams, close to the bottom of the map.
  3. The Midland Main Line can be picked out running South between Wixams and Kempston Hardwick.

The area looks like it is ripe for housing and commercial development between all the water.

I can envisage the East West Railway and the Midland Main Line doing the following.

  • Sharing tracks through Bedford and a new Wixams station, if that is desired.
  • A flying junction would then allow the two routes to split.
  • The East West Railway would go West to places like Bletchley, Milton Keynes, Oxford and Reading.
  • The Midland Main Line would go South to Luton, London and beyond.

The East West Railway would open up a massive housing development at Wixams with connections to Cambridge, London, Milton Keynes, Oxford and beyond.

It strikes me, that one of the reasons for choosing Route E, is that this is the route, that opens up the Wixams development.

Through Tempsford

This map shows the Western section around Tempsford, where it crosses the ECML.

Note.

  1. Biggleswade, Sandy and St. Neots stations are on the ECML.
  2. There might be opportunities to improve the section of the ECML in this area.
  3. The light-coloured East-West band through the new station, is the proposed route of the East West Railway.

This Google Map shows the area North from Sandy.

Note.

  1. Sandy station can be seen at the bottom of the map.
  2. Tempsford can be seen about three-quarters of the way up the map.
  3. The ECML runs North-South up the middle of the map.
  4. The former RAF Tempsford can also be seen on the East side of the ECML.
  5. One interesting place on the map is the RSPB at Sandy.

Has the route been chosen to the North of Sandy to avoid the RSPB, who might not be in favour of a new railway?

  • I could envisage an impressive interchange station at Tempsford, if East West Railway decided to build it.
  • The East West Railway and the ECML could cross at right angles.
  • Platforms on both routes could be connected by lifts, escalators and stairs.
  • There looks like there could be space for lots of car parking.

Alternatively, a full junction could be built so that trains could swap between the two routes.

Tempsford And Cambourne

This map shows the central section between Tempsford and Cambourne.

Note.

  1. Sandy and St. Neots stations are on the ECML.
  2. The light-coloured East-West band through the new Tempsford and Cambourne stations, is the proposed route of the East West Railway.

This Google Map shows the area between Tempsford and Cambourne.

Note.

  1. Tempsford is in the South-West corner of the map.
  2. Cambourne is in the North-East corner of the map.
  3. St. Neots station is in the North-West corner of the map.

It certainly isn’t an area of the country with many important buildings around.

Through Cambourne

This Google Map shows the central section through Cambourne.

Note.

  1. The new village of Cambourne by the A428.
  2. The A1198 road going North-South between Huntingdon and Royston.
  3. The village of Great Eversden in the South-East corner of the map.

From looking at the various maps and knowing the area well, I suspect the East West Railway will take the following route.

  • Approach from the West and cross the A1198 to the North of Caxton.
  • Pass South of Cambourne, where a station could be built. The station could be fairly simple, but there is plenty of space, especially if cycling to the train is encouraged.
  • Pass North of Bourn and Bourn Golf and Country Club.
  • Pass North of Great Eversden and leave the map in the South-East corner.

It looks to be a fairly simple section.

Great Eversden And Cambridge

This Google Map shows the area from Great Eversden to the Trumpington Park-and-Ride, which is served by the Cambridgeshire Guided Busway.

Note.

  1. Great Eversden is in the South-West corner of the map.
  2. The M11 runs diagonally across the Eastern end of the map.
  3. Trumpington is at the Eastern end of the map.
  4. The track bed of the old Varsity Line is clearly visible.

The question has to be asked, if it would be worthwhile rebuilding this section.

Consider.

  • Part of the trackbed is used for the Ryle Telescope.
  • Part of the trackbed is used for the Cambridgeshire Guided Busway.
  • The route doesn’t serve Addenbrooke’s Hospital.
  • Cambridge also has ambitions to extend the Cambridgeshire Guided Busway to Hauxton and create the Cambridge Autonomous Metro, which I wrote about in Consultation On The Cambridge Autonomous Metro.

This map shows the proposed layout of the Cambridgeshire Autonomous Metro.

Note.

  1. The green section will be in tunnel.
  2. The Trumpington Branch is extended to Hauxton,

This Google Map shows the area to the South West of Cambridge between Hauxton and Addenbrooke’s Hospital.

Note.

  1. Addenbrooke’s Hospital is in the North-East corner of this map.
  2. The Trumpington Park-and-Ride is to the East of the M11.
  3. Shelford station is in the South-East corner of the map.
  4. The West Anglia Main Line running past the hospital, splits into two, with one branch going West to Royston and Hitchin and the other going South to Harlow and London.

The two maps taken together weave quite a complicated pattern.

The East West Railway and the Cambridge Autonomous Metro could probably be tweaked so that they could both be created.

  • The East West Railway could take a slightly more Southerly route and pass to the West of Hauxton to join the Royston and Cambridge Line to get to Cambridge South and Cambridge stations.
  • The Cambridge Autonomous Metro would pass over or under the M11 and terminate at a suitable place on the East of Hauxton.

There might even be a solution involving a joint station to the West of the M11

 

 

 

 

 

March 18, 2020 Posted by | Transport | , , , , , , | 1 Comment

Could Battery-Electric Hitachi Trains Work LNER’s Services?

Before I answer this question, I will lay out the battery-electric train’s specification.

Hitachi’s Proposed Battery Electric Train

Based on information in an article in Issue 898 of Rail Magazine, which is entitled Sparking A Revolution, the specification of Hitachi’s proposed battery-electric train is given as follows.

  • Based on Class 800-802/804 trains or Class 385 trains.
  • Range of 55-65 miles.
  • Operating speed of 90-100 mph
  • Recharge in ten minutes when static.
  • A battery life of 8-10 years.
  • Battery-only power for stations and urban areas.
  • Trains are designed to be created by conversion of existing Class 80x trains

For this post, I will assume that the train is five  or nine-cars long. This is the length of LNER‘s Class 800 and 801 trains.

LNER’s Services

These are LNER services that run from London to the North of England and Scotland.

I shall go through all the services and see how they would be affected by Hitachi’s proposed battery-electric Class AT-300 train.

London Kings Cross And Edinburgh

  • The service runs at a frequency of two trains per hour (tph)
  • Some services extend to Aberdeen, Stirling and Inverness and are discussed in the following sections.

This service can be run totally using the existing electrification.

London Kings Cross And Aberdeen

  • The service runs at a frequency of four trains per day (tpd)
  • Intermediate stations are York, Darlington, Newcastle, Berwick-upon-Tweed, Edinburgh, Haymarket, Inverkeithing, Kirkaldy, Leuchars, Dundee, Arbroath, Montrose and Stonehaven.
  • Currently, the electrification goes 394 miles to Haymarket.

The service is 524 miles long and takes seven hours and four minutes.

To ascertain, if the Hitachi’s proposed battery-electric Class AT-300 train, could run this route, I’ll display the various sections of the route.

  • London Kings Cross and Haymarket – 394 miles – Electrified
  • Haymarket and Inverkeithing – 12 miles – Not Electrified
  • Inverkeithing and Kirkcaldy – 13 miles – Not Electrified
  • Kirkaldy and Leuchars – 25 miles – Not Electrified
  • Leuchars and Dundee – 8 miles – Not Electrified
  • Dundee and Arbroath – 17 miles – Not Electrified
  • Arbroath and Montrose – 14 miles – Not Electrified
  • Montrose and Stonehaven – 24 miles – Not Electrified
  • Stonehaven and Aberdeen – 16 miles – Not Electrified

Note.

  1. Haymarket and Dundee is a distance of 58 miles
  2. Dundee and Stonehaven is a distance of 55 miles

So could the service be run with Fast Charging systems at Dundee, Stonehaven and Aberdeen?

I think it could, but the problem would be charging time at Dundee and Stonehaven, as it could add twenty minutes to the journey time and make timetabling difficult on the route.

Perhaps, an alternative would be to electrify a section in the middle of the route to create an electrification island, that could be reached from both Haymarket and Aberdeen.

The obvious section to electrify would be between Dundee and Montrose.

  • It is a distance of 31 miles to electrify.
  • I have flown my virtual helicopter along the route and it could be already gauge-cleared for electrification,
  • Dundee station has been recently rebuilt.
  • Haymarket and Dundee is a distance of 58 miles.
  • Montrose and Aberdeen is a distance of 40 miles.
  • Pantographs could be raised and lowered at Dundee and Montrose stations.

With this electrification and a Fast Charging system at Aberdeen, I believe that Hitachi’s proposed battery-electric Class AT-300 train could run between London Kings Cross and Aberdeen.

As an alternative to the Fast Charging system at Aberdeen, the route of Aberdeen Crossrail between Aberdeen and Inverurie could be electrified.

  • This would enable battery-electric Class 385 trains to run between Inverurie and Montrose.
  • The route through Aberdeen is newly-built, so should be gauge-cleared and reasonably easy to electrify.

It should also be noted that if battery-electric trains can run between Edinburgh and Aberdeen, then these services are also possible, using the same trains.

  • Glasgow and Aberdeen
  • Stirling and Aberdeen

All passenger services  between Scotland’s Cenreal Belt and Aberdeen appear to be possible using battery-electric trains

London Kings Cross And Stirling

  • The service runs at a frequency of one tpd
  • Intermediate stations are York, Darlington, Newcastle, Berwick-upon-Tweed, Edinburgh, Haymarket, Falkirk Grahamstown

This service can be run totally using the existing electrification.

London Kings Cross And Inverness

  • The service runs at a frequency of one tpd
  • Intermediate stations are York, Darlington, Newcastle, Berwick-upon-Tweed, Edinburgh, Haymarket, Falkirk Grahamstown, Stirling, Gleneagles, Perth, Pitlochry, Kingussie and Aviemore.
  • Currently, the electrification goes 429 miles to Stirling, but I have read that the Scottish government would like to see it extended to Perth, which is 462 miles from London.

The service is 581 miles long and takes eight hours and six minutes.

To ascertain, if the Hitachi’s proposed battery-electric Class AT-300 train, could run this route, I’ll display the various sections of the route.

  • London Kings Cross and Haymarket – 394 miles – Electrified
  • Haymarket and Falkirk Grahamsrown – 23 miles – Electrified
  • Falkirk Grahamsrown and Stirling – 11 miles – Electrified.
  • Stirling and Gleneagles – 17 miles – Not Electrified
  • Gleneagles and Perth –  16 miles – Not Electrified
  • Perth and Pitlochry – 28 miles – – Not Electrified
  • Pitlochry and Kingussie – 44 miles – Not Rlectrified.
  • Kingussie and Aviemore – 12 miles – Not Rlectrified.
  • Aviemore and Inverness – 34 miles – Not Electrified

Note.

  1. The distance between Dunblane, where the electrification actually finishes and Perth is only 28 miles, which shouldn’t be too challenging.
  2. All the sections North of Perth are well within range of a fully charged train.
  3. Some sections of the route are challenging. Look at the video I published in Edinburgh to Inverness in the Cab of an HST.
  4. Hitachi run diesel Class 800 trains to Inverness, so they must know the power required and the battery size to run between Perth and Inverness.

I also believe that the Scottish Government, ScotRail, the Highland tourist industry and Hitachi, would all put their endeavours behind a project to get battery-electric trains between Perth and Inverness.

It would send a powerful message, that if battery-electric trains can run on one of the most scenic rail lines in the world without electrification, then nowhere is out of reach of battery trains.

Looking at the figures, I am convinced that a series of Fast Charging systems at stations like Pitlochry, Kingussie and Aviemore could supply enough power to allow a nine-car version of Hitachi’s proposed battery-electric Class AT-300 train to work the route.

This battery-electrification, would also enable battery-electric Class 385 trains to work the route.

If all this sounds a bit fanciful and over ambitious, read the history of the North of Scotland Hydro-Electric Board, which brought electricity to the area in the 1940s and 1950s.

This battery-electrification is a small project compared to what the Hydro-Electric Board achieved.

I can see a time, when similar techniques allow battery-electric trains to run these lines from Inverness.

  • Far North Line – 174 miles
  • Inverness and Kyle of Lochalsh – 82 miles
  • Inverness and Aberdeen – 108 miles

The Far North Line would probably need two or three Fast Charging systems at intermediate stations, but the other lines would probably only need one system, somewhere in the middle.

I think that this analysis for London and Inverness shows that all parts of England, Scotland and Wales can be served by modern battery-electric trains.

It would also appear that the cost of the necessary Fast Charging systems, would be much more affordable than full electrification, North of Perth.

I estimate that less than a dozen Fast Charging systems would be needed, North of Perth.

  • Some electrification might be needed in Inverness station.
  • Electrification between Inverurie and Aberdeen could help.
  • There’s no shortage of zero-carbon electricity from wind and hydro-electric power.

A couple of years ago, I speculated in a post called London To Thurso Direct.

Could it happen on a regular basis in the summer months?

London Kings Cross And Leeds

  • The service runs at a frequency of two tph
  • Intermediate stations are Stevenage, Peterborough, Grantham, Doncaster and Wakefield Westgate

This service can be run totally using the existing electrification.

London Kings Cross And Harrogate

  • The service runs at a frequency of six tpd
  • Intermediate stations are Stevenage, Grantham, Doncaster and Wakefield Westgate
  • Leeds and Harrogate is a distance of nineteen miles and is not electrified.
  • Hitachi’s proposed battery-electric Class AT-300 train should be able to go from Leeds to Harrogate and back, using battery power alone.
  • Batteries will be charged using the electrification at and around Leeds.

This service can be run totally using the existing electrification.

London Kings Cross And Bradford Foster Square

  • The service runs at a frequency of one tpd
  • Intermediate stations are Stevenage, Peterborough, Grantham, Doncaster and Wakefield Westgate
  • Leeds and Bradford Forster Square is a distance of fourteen miles and electrified.

This service can be run totally using the existing electrification.

London Kings Cross And Skipton

  • The service runs at a frequency of one tpd
  • Intermediate stations are Stevenage, Peterborough, Grantham, Doncaster and Wakefield Westgate
  • Leeds and Skipton is a distance of twenty-six miles and electrified.

This service can be run totally using the existing electrification.

London Kings Cross And Lincoln

  • The service runs at a frequency of one train per two hours (1tp2h)
  • Intermediate stations are Stevenage, Peterborough, Grantham and Newark North Gate
  • Newark North Gate and Lincoln is a distance of sixteen miles and not electrified.
  • Hitachi’s proposed battery-electric Class AT-300 train should be able to go from Newark North Gate to Lincoln and back, using battery power alone.
  • Batteries will be charged using the electrification between Newark North Gate and London Kings Cross.

This service can be run totally using the existing electrification.

London Kings Cross And York

  • The service runs at a frequency of 1tp2h
  • Intermediate stations are Stevenage, Peterborough, Grantham and Newark North Gate, Retford and Doncaster

This service can be run totally using the existing electrification.

London Kings Cross And Hull

  • The service runs at a frequency of one tpd
  • Intermediate stations are Stevenage, Peterborough, Grantham and Newark North Gate, Retford and Doncaster
  • Temple Hirst Junction and Hull is a distance of thirty-six miles and not electrified.
  • Hitachi’s proposed battery-electric Class AT-300 train should be able to go from Temple Hirst Junction and Hull and back, using battery power and a Fast Charger system at Hull.
  • Batteries will also be charged using the electrification between Temple Hirst Junction and London Kings Cross.

This service can be run totally using the existing electrification.

Consider.

  • The train runs seventy-two miles to get to Hull and back on lines without electrification..
  • Hitachi state that the trains maximum range on battery power is sixty-five miles.
  • Hull Trains and TransPennine Express also run similar trains on this route, that will need charging at Hull.

So rather than installing a Fast Charging system at Hull, would it be better to do one of the following.

  • Create a battery-electric AT-300 train with a bigger battery and a longer range. A One-Size-Fits-All could be better.
  • However, the larger battery would be an ideal solution for Hull Trains, who also have to reverse and go on to Beverley.
  • Electrify the last few miles of track into Hull. I don’t like this as electrifying stations can be tricky and getting power might be difficult!
  • Electrify between Temple Hirst Junction and Selby station and whilst this is done, build a solution to the problem of the swing bridge. Power for the electrification can be taken from the East Coast Main Line.

I’m sure a compromise between train battery size and electrification can be found, that creates a solution, that is acceptable to the accountants.

Conclusion

I think it could be possible, that LNER could use a fleet of all-electric and battery-electric AT-300 trains.

 

 

 

February 27, 2020 Posted by | Transport | , , , , , , , , , , , , | Leave a comment

Fuelling The Change On Teesside Rails

The title of this post, is the same as that of an article in Edition 895 of RAIL Magazine.

The article is based on an interview with Ben Houchen, who is the Tees Valley Mayor.

Various topics are covered.

Hydrogen-Powered Local Trains

According to the article, the Tees Valley produces fifty percent of UK hydrogen and the area is already secured investment for fuelling road vehicles with hydrogen.

So the Tees Valley Combined Authority (TVCA) is planning to convert some routes to hydrogen.

The Trains

Ten hydrogen-powered trains will be purchased or more likely leased, as the trains will probably be converted from redundant electrical multiple units, owned by leasing companies like Eversholt Rail and Porterbrook.

The RAIL article says that the first train could be under test in 2021 and service could be started in 2022.

That would certainly fit the development timetables for the trains.

Lackenby Depot

A depot Will Be Created At Lackenby.

  • The site is between Middlesbrough and Redcar.
  • It already has rail and hydrogen connections.

This Google Map shows the area.

Note the disused Redcar British Steel station, which is still shown on the map.

I remember the area from the around 1970, when I used to catch the train at the now-closed Grangetown station, after visits to ICI’s Wilton site. It was all fire, smoke, smells and pollution.

Darlington Station

Darlington station will also be remodelled to allow more services to operate without conflicting with the East Coast Main Line.

Wikipedia says this under Future for Darlington station.

As part of the Tees Valley Metro, two new platforms were to be built on the eastern edge of the main station. There were to be a total of four trains per hour, to Middlesbrough and Saltburn via the Tees Valley Line, and trains would not have to cross the East Coast Main Line when the new platforms would have been built. The Tees Valley Metro project was, however, cancelled.

It does sound from reading the RAIL article, that this plan is being reinstated.

Would services between Bishop Auckland and Saltburn, use these new platforms?

Saltburn And Bishops Auckland Via Middlesbrough and Darlington

Currently, the service is two trains per hour (tph) between Saltburn and Darlington, with one tph extending to Bishop Auckland.

  • I estimate that the current service needs five trains.
  • If a two tph service were to be run on the whole route, an extra train would be needed.
  • I suspect, the limitations at Darlington station, stop more trains being run all the way to Bishops Auckland.

I could also see extra stations being added to this route.

The Mayor is talking of running a service as frequent as six or eight tph.

These numbers of trains, will be needed for services of different frequencies between Saltburn and Darlington.

  • 2 tph – 6 trains
  • 4 tph – 12 trains
  • 6 tph – 18 trains
  • 8 tph – 24 trains

As the London Overground, Merseyrail and Birmingham’s Cross-City Line, find four tph a more than adequate service, I suspect that should be provided.

After updating, Darlington station, should be able to handle the following.

  • Up to six tph terminating in one of the new Eastern platforms, without having to cross the East Coast Main Line.
  • Two tph between Saltburn and Bishops Auckland could use the other platform in both directions.

I would suspect that the design would see the two platforms sharing an island platform.

Alternatively, trains could continue as now.

  • Terminating trains could continue to use Platform 2!
  • Two tph between Saltburn and Bishops Auckland stopping in Platforms 1 (Eastbound) and 4 (Westbound)

This would avoid any infrastructure changes at Darlington station, but terminating trains at Darlington would still have to cross the Southbound East Coast Main Line.

If the frequencies were as follows.

  • 4 tph – Saltburn and Darlington
  • 2 tph – Saltburn and Bishop Auckland

This would require fourteen trains and give a six tph service between Saltburn and Darlington.

Ten trains would allow a two tph service on both routes.

There would be other services using parts of the same route, which would increase the frequency.

Hartlepool And The Esk Valley Line Via Middlesbrough

This is the other route through the area and was part of the cancelled Tees Valley Metro.

  • Service is basically one tph, with six trains per day (tpd) extending to Whitby.
  • A second platform is needed at Hartlepool station.
  • There is a proposal to add a Park-and-Ride station between Nunthorpe and Great Ayton stations.
  • One proposal from Modern Railways commentator; Alan Williams, was to simplify the track at Battersby station to avoid the reverse.
  • Currently, trains between Whitby and Middlesbrough are timetabled for around 80-100 minutes.
  • Hartlepool and Middlesbrough takes around twenty minutes.

Substantial track improvements are probably needed to increase the number of trains and reduce the journey times between Middlesbrough and Whitby.

But I believe that an hourly service between Hartlepool and Whitby, that would take under two hours or four hours for a round trip, could be possible.

This would mean that the hourly Hartlepool and Whitby service would need four trains.

Providing the track between Nunthorpe and |Whitby could be improved to handle the traffic, this would appear to be a very feasible proposition.

Nunthorpe And Hexham Via Newcastle

There is also an hourly service between Nunthorpe and Hexham, via Middlesbrough, Stockton, Hartlepool, Sunderland and Newcastle, there would be two tph.

  • It takes around two hours and twenty minutes.
  • I estimate that five trains would be needed for the service.
  • I travelled once between Newcastle and James Cook Hospital in the Peak and the service was busy.
  • A new station is being built at Horden, which is eight minutes North of Hartlepool.
  • The service could easily access the proposed fuelling station at Lackenby.
  • It would reduce carbon emissions in Newcastle and Sunderland stations..

Surely, if hydrogen power is good enough for the other routes, then it is good enough for this route.

Hartlepool Station

Hartlepool Station could become a problem, as although it is on a double track railway, it only has one through platform, as these pictures from 2011 show.

Consider.

  • There is no footbridge, although Grand Central could pay for one
  • There is a rarely-used bay platform to turn trains from Middlesbrough, Nunthorpe and Whitby.

This Google Map shows the cramped site.

The final solution could mean a new station.

Nunthorpe Park-And-Ride

This Google Map shows Nunthorpe with thje bEsk Valley Line running through it.

Note.

  1. Gypsy Lane and Nunthorpe stations.
  2. The dual-carriageway A171 Guisborough by-pass running East-West, that connects in the East to Whitby and Scarborough.
  3. The A1043 Nunthorpe by-pass that connects to roads to the South.

Would where the A1043 crosses the Esk Valley Line be the place for the Park-and-Ride station?

The new station could have a passing loop, that could also be used to turn back trains.

Battersby Station

Alan Williams, who is Chairman of the Esk Valley Railway Development Company, is quoted in the RAIL article as saying.

If you’re going to spend that sort of money we’d much rather you spent it on building a curve at Battersby to cut out the reversal there.

Williams gives further reasons.

  • Battersby is the least used station on the line.
  • It’s in the middle of nowhere.
  • The curve would save five minutes on the overall journey.

This Google Map shows Battersby station and the current track layout.

Note.

  1. The line to Middlesbrough goes through the North-West corner of the map.
  2. The line to Whitby goes through the North-East corner of the map.

There would appear to be plenty of space for a curve that would cut out the station.

LNER To Teesside

LNER, the Government and the TVCA are aiming to meet a target date of the Second Quarter of 2021 for a direct London and Middlesbrough service.

Middlesbrough Station

Middlesbrough Station will need to be updated and according to the RAIL article, the following work will be done.

  • A new Northern entrance with a glass frontage.
  • A third platform.
  • Lengthening of existing platforms to take LNER’s Class 800 trains.

This Google Map shows the current layout of the station.

From this map it doesn’t look to be the most difficult of stations, on which to fit in the extra platform and the extensions.

It should also be noted that the station is Grade II Listed, was in good condition on my last visit and has a step-free subway between the two sides of the station.

Journey Times

I estimate that a Kings Cross and Middlesbrough time via Northallerton would take aroud two hours and fifty minutes.

This compares with other journey times in the area to London.

  • LNER – Kings Cross and Darlington – two hours and twenty-two minutes
  • Grand Central – Kings Cross and Eaglescliffe – two hours and thirty-seven minutes.

I also estimate that timings to Redcar and Saltburn would be another 14 and 28 minutes respectively.

Frequencies

Currently, LNER run between three and four tph between Kings Cross and Darlington, with the competing Grand Central service between Kings Cross and Eaglescliffe having a frequency of five trains per day (tpd).

LNER have also started serving secondary destinations in the last month or so.

  • Harrogate, which has a population of 75.000, is served with a frequency of six tpd.
  • Lincoln, which has a population of 130,000 is now served with a frequency of six tpd.

Note that the RAIL article, states that the Tees Valley has a population of 750,000.

I feel that Middlesbrough will be served by a frequency of at least five tpd and probably six to match LNER’s new Harrogate and Lincoln services.

Will LNER’s Kings Cross and York Service Be Extended To Middlesbrough?

Cirrently , trains that leave Kings Cross at six minutes past the hour end up in Lincoln or York

  • 0806 – Lincoln
  • 0906 – York
  • 1006 – Lincoln
  • 1106 – York
  • 1206 -Lincoln
  • 1306 – York
  • 1406 – Lincoln
  • 1506 – York
  • 1606 – Lincoln
  • 1906 -Lincoln

It looks to me that a pattern is being developed.

  • Could it be that the York services will be extended to Middlesbrough in 2021?
  • Could six Middlesbrough trains leave Kings Cross at 0706, 0906, 1106, 1306, 1506 and 1706 or 1806?
  • York would still have the same number of trains as it does now!

LNER certainly seem to be putting together a comprehensive timetable.

Could Middlesbrough Trains Split At Doncaster Or York?

I was in Kings Cross station, this afternoon and saw the 1506 service to York, go on its way.

The train was formed of two five-car trains, running as a ten-car train.

If LNER employ spitting and joining,, as some of their staff believe, there are surely, places, where this can be done to serve more destinations, without requiring more paths on the East Coast Main Line.

  • Splitting at Doncaster could serve Hull, Middlesborough and York.
  • Splitting at York could serve Scarborough, Middlesborough and Sunderland.

Scarborough might be a viable destination, as the town has a population of over 100,000.

Onward To Redcar And Saltburn

One of the changes in the December 2019 timetable change, was the extension of TransPennine Express’s Manchester Airport and Middlesbrough service to Redcar Central station.

The RAIL article quotes the Mayor as being pleased with this, although he would have preferred the service to have gone as far as Saltburn, which is a regional growth point for housing and employment.

But the extra six miles would have meant the purchase of another train.

Redcar Central Station

This Google Map shows Redcar Central station and its position in the town.

It is close to the sea front and the High Street and there appears to be space for the stabling of long-distance trains to Manchester Airport and perhaps, London.

TransPennine seem to be using their rakes of Mark 5A coaches on Redcar services, rather than their Class 802 trains, which are similar to LNER’s Azumas.

Surely, there will be operational advantages, if both train operating companies ran similar trains to Teesside.

Saltburn Station

Saltburn station is the end of the line.

This Google Map shows its position in the town.

Unlike Redcar Central station, there appears to be very little space along the railway and turning back trains might be difficult.

There may be good economic reasons to use Saltburn as a terminal, but operationally, it could be difficult.

Will Redcar And Saltburn See Services To and From London?

Given that both towns will likely see much improved services to Middlesbrough, with at least a service of four tph, I think it will be unlikely.

But we might see the following.

  • LNER using Redcar as a terminus, as TransPennine Express do, as it might ease operations.
  • An early morning train to London and an evening train back from the capital, which is stabled overnight at Redcar.
  • TransPennine Express using Class 802 trains on their Redcar service for operational efficiency, as these trains are similar to LNER’s Azumas.

It would all depend on the passenger numbers.

A High-Frequency Service Between York And Teesside

After all the changes the service between York and Teesside will be as follows.

  • LNER will be offering a train virtually every two hours between York and Middlesbrough.
  • Grand Central will be offering a train virtually every two hours between York and Eaglescliffe, which is six miles from Middlesbrough.
  • TransPennine Express will have an hourly service between York and Redcar via Middlesbrough.
  • There will be between three and four tph between York and Darlington.

All services would connect to the hydrogen-powdered local services to take you all over Teesside.

Could this open up tourism without cars in the area?

Expansion Of The Hydrogen-Powered Train Network

Could some form of Hydrogen Hub be developed at Lackenby.

Alstom are talking of the hydrogen-powered Breeze trains having a range of over six hundred miles and possibly an operating speed of 100 mph, when using overhead electrification, where it is available.

In Breeze Hydrogen Multiple-Unit Order Expected Soon, I put together information from various articles and said this.

I am fairly certain, that Alstom can create a five-car Class 321 Breeze with the following characteristics.

  • A capacity of about three hundred seats.
  • A smaller three-car train would have 140 seats.
  • A near-100 mph top speed on hydrogen-power.
  • A 100 mph top speed on electrification.
  • A 1000 km range on hydrogen.
  • Regenerative braking to an on-board battery.
  • The ability to use 25 KVAC overhead and/or 750 VDC third rail electrification.

The trains could have the ability to run as pairs to increase capacity.

The distance without electrification to a selection of main stations in the North East from Lackenby is as follows.

  • Newcastle via Middlesbrough and Darlington – 21 miles
  • Newcastle via Middlesbrough and Durham Coast Line – 53 miles.
  • York via Northallerton – 27 miles
  • Doncaster via Northallerton and York – 27 miles
  • Leeds via Northallerton and York – 52 miles
  • Sheffield via Northallerton, York and Doncaster – 45 miles

I am assuming that the trains can use the electrification on the East Coast Main Line.

From these figures it would appear that hydrogen-powered trains stabled and refuelled at Lackenby could travel to Doncaster, Newcastle, Leeds, Sheffield or York before putting in a days work and still have enough hydrogen in the tank to return to Lackenby.

Several things would help.

  • As hydrogen-powered trains have a battery, with a battery range of thirty miles all these main stations could be reached on battery power, charging on the East Coast Main Line and at Lackenby.
  • Electrification between Darlington and Lackenby.
  • Electrification between Northallerton and Eaglescliffe.

I am fairly certain that a large proportion of the intensive network of diesel services in the North East of |England from Doncaster and Sheffield in the South to Newcastle in the North, can be replaced with hydrogen-powered trains.

  • Trains could go as far West as Blackpool North, Carlisle, Manchester Victoria, Preston and Southport.
  • Refueling could be all at Lackenby, although other refuelling points could increase the coverage and efficieny of the trains.
  • Green hydrogen could be produced by electrolysis from the massive offshore wind farms off the Lincolnshire Coast.
  • Hydrogen-powered trains would be ideal for re-opened routes like the proposed services from Newcastle to Blyth and Ashington.

The hydrogen-powered trains on Teesside could be the start of a large zero-carbon railway network.

The Alstom Breeze And The HydroFlex Would Only Be The Start

As I said earlier, the initial trains would be conversions of redundant British Rail-era electrical multiple units.

Thirty-year-old British Rail designs like the Class 319 and Class 321 trains based on the legendary Mark 3 carriages with its structural integrity and superb ride, may have been state-of-the-art in their day, but engineers can do better now.

  • Traction and regenerative braking systems are much more energy efficient.
  • Train aerodynamics and rolling resistance have improved, which means less energy is needed to maintain a speed.
  • Interior design and walk-through trains have increased capacity.
  • Crashworthiness has been improved.

Current Bombardier Aventras, Stadler Flirts or Siemens Desiros and CAF Civities are far removed from 1980s designs.

I can see a design for a hydrogen-powered train based on a modern design, tailored to the needs of operators being developed.

A place to start could be an electric CAF Class 331 train. or any one of a number of Aventras.

  • From the visualisation that Alstom have released of their Breeze conversion of a Class 321 train, I feel that to store enough hydrogen, a large tank will be needed and perhaps the easiest thing to do at the present time would be to add an extra car containing the hydrogen tank, the fuel cells and the batteries.
  • Alstom have stated they’re putting the fuel cells on the roof and the batteries underneath the train.

Although, it is not a hydrogen train, Stadler have developed the Class 755 train, with a power car in the middle of the train.

Stadler’s approach of a power car, must be working as they have received an order for a hydrogen-powered version of their popular Flirts, which I wrote about in MSU Research Leads To North America’s First Commercial Hydrogen-Powered Train.

I think we can be certain, that because of the UK loading gauge, that a hydrogen-powered train will be longer by about a car, than the equivalent electric train.

I can see a certain amount of platform lengthening being required. But this is probably easier and less costly than electrification to achieve zero-carbon on a route.

Batteries can be distributed under all cars of the train, anywhere there is space., But I would suspect that fuel cells must be in the same car as the hydrogen tank, as I doubt having hydrogen pipes between cars would be a good idea.

Alstom have resorted to putting hydrogen tanks and fuel cells in both driving cars and they must have sound reasons for this.

Perhaps, it is the only way, they can get the required power and range.

As I understand it, the Alstom Breeze draws power from three sources.

  • The electrification if the route is electrified.
  • The electricity generated by regenerative braking.
  • The hydrogen system produces electricity on demand, at the required level.

Energy is stored in the batteries, which power the train’s traction motors and internal systems.

The electrical components needed for the train are getting smaller and lighter and I feel that it should be possible to put all the power generation and collection into a power car, that is somewhere near the middle of the train. Stadler’s power car is short at under seven metres, but there is probably no reason, why it couldn’t be the twenty metres, that are typical of UK trains.

Suppose you took a four-car version of CAF’s Class 331 train, which has two driver cars either side of a pantograph car and a trailer car.

This has 284 seats and by comparison with the three-car version the trailer car has eighty. As the pantograph car is also a trailer, I’ll assume that has eighty seats too! Until I know better!

Replacing the pantograph car with a hydrogen car, which would be unlikely to have seats, would cut the seats to 204 seats, but a second trailer would bring it back up to 284 seats.

I actually, think the concept of a hydrogen car in the middle of a four-car electric train could work.

  • The five-car hydrogen train would have the same capacity as the four-car electric version.
  • The train would need an updated software system and some rewiring. Bombardier achieved this quickly and easily with the train for the Class 379 BEMU trial.
  • There are several types of four-car electrical multiple units, that could possibly be converted to five-car hydrogen-powered multiple units.
  • Some five-car electrical multiple units might also be possible to be converted.

Obviously, if an existing train can be adapted for hydrogen, this will be a more cost effective approach.

Conclusion

Overall, the plans for rail improvements on Teesside seem to be good ones.

I’m looking forward to riding LNER to Teesside and then using the network of hydrogen-powered trains to explore the area in 2022.

My only worry, is that, if the network is successful, the many tourists visiting York will surely increase the numbers of day visitors to Whitby.

This is a paragraph from the RAIL article.

Alan Williams says that the EVRDC’s long-term objective is to see the Esk Valley served at intervals of roughly every two hours, equating to eight return trains per day, but with Northern and NYMR services sharing the single line between Grosmont and Whitby, introducing further Middlesbrough trains during the middle of the day, brings the conversation back to infrastructure.

He goes on to detail what is needed.

January 8, 2020 Posted by | Transport | , , , , , , , , , , , , , , , , , | 7 Comments