The Anonymous Widower

Bosch Likely To Slash Platinum In New Fuel Cells

The title of this post, is the same as that of this article on Automotive News Europe.

This is the first paragraph.

Bosch expects platinum to play only a minor role in its new fuel cells, with the supplier only needing a tenth of the metal used in current fuel cell vehicles, Reuters estimates.

The amount will be similar to that in the average catalytic converter, which must surely be a good thing.

Bosch are in a joint venture with Swedish fuel cell maker, Powercell

 

May 13, 2019 Posted by | Transport | , , , , | Leave a comment

£100m Train Test Complex Plans For Neath Valley Backed

The title of this post is the same as that of this article on the BBC.

This much-needed project, which some wag has called Project Hornby, seems to be moving on..

This brief description is from the article.

The complex would allow trains to be tested on special tracks – laid out on 4.5 mile (7.3km) and two mile (3.1km) ovals – at speeds of up to 100mph (160kph).

It will certainly test their ability to go round corners.

Hopefully, the test track will shorten the time, it takes new and updated trains into service.

May 10, 2019 Posted by | Transport | , , , , | Leave a comment

Vivarail And Arcola Announce Partnership To Bring Emission-Free Trains To The UK

The title of this post is the same as this press release from Vivarail.

These are the first two paragraphs

Vivarail, designers and manufacturers of the Class 230 trains, and hydrogen fuel cell specialists Arcola Energy today announced a long-term collaboration.

The companies share a determination to help de-carbonise the UK’s transport system. Vivarail has already designed and run an emission-free battery train whilst Arcola lead the market in supplying power systems for efficient fuel cell electric vehicles, primarily buses, to the UK. Working together the companies will develop a hydrogen/battery hybrid train.

It strikes me that this could be a good fit.

Powering A Bus

In New Facility To Power Liverpool’s Buses With Hydrogen, I described Arcola Energy’s involvement in a project to create and fuel hydrogen-powered buses in conjunction with Alexander Dennis.

  • A typical hybrid double-decker bus like a New Routemaster has a battery capacity of 55 kWh.
  • If these Liverpool hydrogen-powered double-decker buses have serial hybrid transmission like the New Routemaster, I could envisage them having a battery of up to 100 kWh, as let’s face it, the New Routemaster design is now eight years old and battery technology has moved on.

So the Arcola Energy-sourced fuel cell must be able to continuously top-up, the battery, in the same manner as the diesel engine on a hybrid bus.

Sit in the back of a New Routemaster and you can hear the engine cutting in and out. It doesn’t seem to work very hard, even on routes like the 73, which operate at high loadings.

Powering A Class 230 Train

Vivarail’s battery-powered Class 230 train, has a battery capacity of  106 kWh.

This size of battery could certainly be changed by a hydrogen fuel cell.

But could a hydrogen fuel cell provide enough power to keep the train running?

  • Vivarail are clamming a range of fifty miles, which means that their two-car battery trains are consuming around 2 kWh for every mile.
  • I will assume the train is travelling at its operating speed of sixty mph, which is a mile every minute.
  • To keep the battery topped up would need 2 kWh to be produced every minute.

A hydrogen fuel cell with a rating of 120 kW would be needed to power the train continuously. But as the fuel cell would only be topping up the battery, I suspect that a smaller fuel cell would be sufficient.

The Ballard fuel cell is a HD variant of their  FCveloCity family.

This page on the Ballard web site is the data sheet of an HD fuel cell of their  FCveloCity family.

  • The fuel cells come in three sizes 60, 85 and 100 kW
  • The largest fuel cell would appear to be around 1.2 m x 1 m x 0.5 m and weigh around 400 Kg.
  • The fuel cell has an associated cooling subsystem, that can provide heat for the train.

This Ballard fuel cell would appear to be capable of mounting under the floor of a train.

There are probably several other fuel cells that will fit the Class 230 train.

Arcola should know the best hydrogen fuel cell for the application, in terms of size, power and cost.

The Concept Train

Vivarail’s press release describes a concept train.

The concept train will be used to demonstrate the system capability and test performance. Vivarail’s production hydrogen trains will consist of 4-cars, with 2 battery driving motor cars and 2 intermediate cars housing the fuel cell and tanks.

Vivarail seem very certain of the formation of production trains.

I am not surprised at this certaincy.

  • The mathematics of battery-powered and hydrogen-powered trains is well known.
  • Vivarail have experience  of running their battery-powered prototype.
  • Arcola have experience of the capabilities of hydrogen-power.

I also wouldn’t be surprised to see some  commonality between the Alexander Dennis and Vivarail installations.

Range Of A Hydrogen-Powered Class 230 Train

Nothing is said in Vivarail’s press release about the range on hydrogen.

In Hydrogen Trains Ready To Steam Ahead, I examined Alstom’s Class 321 Breeze hydrogen train, based on an article in The Times.

I said this about range.

The Times gives the range of the train as in excess of 625 miles

The Class 321 Breeze looks to be designed for longer routes than the Class 230 train.

I would suspect that a hydrogen-powered Class 230 train would have the range to do a typical day’s work without refuelling.

Refuelling A Hydrogen-Powered Class 230 Train

I don’t think this will be a problem as Arcola appear to have the expertise to provide a complete solution.

Conclusion

This is a co-operation, where both parties are bringing strengths to the venture.

 

May 8, 2019 Posted by | Transport | , , , , , | Leave a comment

Rugby Goal-Light Technology Trial At Principality Stadium

The title of this post is the same as that on this article on the BBC.

This is the first paragraph.

New technology to light up rugby posts in different colours to show whether a kick is successful was trialled at Cardiff’s Principality Stadium.

Although, I’m not registered blind, I do have problems with spotting movement in certain light conditions and at certain angles.

If I regularly went to rugby, these lights could improve my experience.

They are a good idea.

What puzzles me, is that the post says they could be used in American Football.

You’d have thought that the Americans would have already done it, but obviously they haven’t!

 

 

April 27, 2019 Posted by | Sport | , , , | Leave a comment

Is This Stadler’s Plan For A Multi-Mode Future?

We have not seen any of Stadler’s bi-mode Flirts in service yet although Greater Anglia’a Class 755 trains have been rumoured to be speeding between London and Norwich in ninety minutes from this May!

Today, I rode on one of Stadler’s diesel GTWs between Groningen and Eemshaven in the Netherlands, which I wrote about in The Train Station At The Northern End Of The Netherlands.

GTWs are a diesel electric train with a power-pack car in the middle of the three car train. The diesel electric Flirts are a later train with a similar layout to the GTW.

So are the diesel GTWs and Flirts just a bi-mode without a pantograph? Or more likely the bi-mode is a diesel electric train with the addition of a pantograph and extra electrical gubbins.

Looking at the visualisations on Wikipedia of the bi-mode Class 755 train and the all-electric Class 745 train, it appears that the next-to-end car has the pantograph.

Are these cars with the pantograph identical on both the bi-mode and the all-electric versions? It would certainly be sensible from a engine erring point of view.

 

So could it be that all that is needed to convert a diesel electric Flirt into a bi-mode Flirt is to add the pantograph car and swap the power pack car for a bi-mode one? The old power pack car could then be converted into another bi-mode power pack car to convert another train.

But the power pack cars are not as simple as they look. They have four slots for diesel engines. Three-car and four-car Class 755 trains have two and four engines respectively.

I believe that one or more of the slots can be filled with a battery to create Flirts like the tri-mode ones proposed for South Wales.

So could we see some of the Greater Anglia Flirts converted in this way? Surely, Colchester Town to Sudbury could be a service that could benefit from battery power West of Marks Tey?

Today, I had a chat with a GTW driver, who said that the train he’d been driving was diesel-electric and that he had heard that batteries or hydrogen power could be used on the eoute.

The lines around Groningen seem to employ quite a few GTWs and distances are not overly long. So could some be converted to 1500 VDC electric/diesel/battery tri-modes? There is electrification at Groningen station and some of the bay platforms used by GTWs already have wires.

If the conversion is successful, then Stadler could be on a Swiss roll, as there are a lot of GTWs and Flirts out there, many of which are diesel-electric, like the one I rode today.

Would a train operator prefer to upgrade a diesel electric train that works well or buy a new bi-mode from another train manufacturer?

Could also an electric Flirt be converted into a bi-mode, by splitting the train and sticking a power pack car in the middle. Engineering common sense says that the passenger cars must be very similar to those of diesel Flirts to simplify manufacture of the trains.

We already know, that four-car Flirts are only three-car trains with an extra passenger car. Stadler could mix-and-match passenger, pantograph and power pack cars to give operators what they need.

Intelligent computer software would choose which power option to be used and the driver would just monitor, that the train was behaving as needed.

Looking at my route yesterday between Groningen and Eemshaven, it is a route of just under forty kilometres or twenty-five miles. Adrian Shooter is talking of ranges of sixty miles with battery versions of Class 230 trains. So I don’t find it impossible to create a tri-mode GTW or Flirt for this lonely route at the very North of the Netherlands.

Conclusion

Stadler seem to have created a very imitative modular train concept.

As some Flirts can travel at 125 mph, could they be serious bidders to provide the new trains for the Midland Main Line?

March 27, 2019 Posted by | Transport | , , , , , , , | Leave a comment

Vivarail Unveils Fast Charging System For Class 230 Battery Trains

The title of this post is the same as that of this article on Railway Technology.

A few points from the article.

  • Class 230 trains running on battery power have a range of sixty miles.
  • Fully charging the train takes seven minutes.
  • Short lengths of third and fourth-rail are used.
  • Power is provided from a battery bank, which is trickle charged.

I feel this paragraph describes the key feature.

The automatic technique utilises a carbon ceramic shoe, which is capable of withstanding the significant amount of heat generated during the process.

The article finishes with a quote from Vivarail CEO Adrian Shooter.

I know how important it is to the public and the industry as a whole to phase out diesel units and our battery train is paving the way for that to take place today not tomorrow.

Consider.

  • Alstom, Bombardier, Siemens and Stadler have built or are building third-rail powered trains for the UK.
  • Bombardier, Porterbrook and Stadler are developing battery-powered trains for the UK.
  • Trickle-charging of the secondary batteries could be performed by mains power or a local renewable source like wind or solar.
  • Control electronics can make this a very safe system, with low risk of anybody being hurt from the electrical systems.

I’ve said it before, but I think that Vivarail may have some very important technology here.

If I have a worry, it is that unscrupulous companies and countries will probably find a way round any patent.

 

March 20, 2019 Posted by | Transport | , , , | Leave a comment

SWR And Porterbrook Trial New Emission-Slashing Rail Technology

The title of this post is the same as that as this article on Rail Technology Magazine.

This is the first three paragraphs of the article.

Groundbreaking emission-reducing technology is to be fitted to South Western Railway (SWR) train units as part of a new trial aiming to cut down harmful emissions from diesel trains by 80%.

Porterbrook is working in partnership with exhaust manufacturer Eminox to carry out the trial, with the DfT supporting the rolling stock company’s investment.

This will see South Western Railway’s Class 159 diesel units fitted with a first-of-its-kind emissions control device, with plans to roll out the technology to hundreds of diesel trains across the UK’s rail network.

I have looked up Eminox on their web site.

This is the mission statement on the front page.

Eminox designs and manufactures exhaust after-treatment systems, reducing emissions from heavy-duty vehicles and equipment.

Our products are supplied as original equipment to meet the latest emissions standards. We also produce complete emissions systems for retrofit to meet the ever-changing demands of local air quality programmes such as London’s Ultra Low Emission Zone and Clean Air Zones across the country.

Our Eminox Custom team specialises in exhaust conversions and bespoke systems.

While politicians dither and fiddle, engineers engineer, with a little bot of help from Porterbrook and the DfT.

If this technology proves to be successful, I can see its application to large numbers of diesel trains around the world.

March 9, 2019 Posted by | Transport | , , , , , , | 4 Comments

Ovo Partners With Glen Dimplex To Deliver Smart Heating

The title of this post is the same as that of this article on Utility Week.

If you read the article, you will find out how the humble electric storage heater could be joining the smart electricity grid.

This is a paragraph.

It says the facility to store excess energy can lower the cost of electrification by reducing the need for backup generation and investment in the power grid to increase its peak capacity. Analysis by Imperial College London has indicated that deploying smart flexible heating could cut decarbonisation costs by £3.9 billion per year.

This is going to be technology to watch.

Especially, if your heating needs are best met by some form of electric storage heaters.

March 1, 2019 Posted by | World | , , , | 2 Comments

Grants To Support Low-Carbon Technology Demonstrators

The title of this post is the same as that of this article on Railway Gazette.

This is the two introductory paragraphs.

The Department for Transport has awarded grants of around £350 000 to each of five projects which aim to develop technology to reduce the rail network’s carbon footprint.

The projects were selected under the second round of the DfT’s First of a Kind competition, run by Innovate UK as part of the DfT’s wider Accelerating Innovation in Rail programme.

These are the winners.

Riding Sunbeams

I wrote about this technology in Solar Power Could Make Up “Significant Share” Of Railway’s Energy Demand.

Diesel Freight Carbon Reduction Technology

We all hate Class 66 locomotives, with their noise, vibration and pollution.

But an Essex company called Vortex Exhaust Technology has been awarded a grant to see if their free-flowing exhausts can tame, these most unfriendly of beasts.

They make this claim on their web site.

Vortex is the ONLY exhaust technology available that effectively eliminates back pressure, improving engine efficiency, boosting power and cutting emissions.

A Class 66 locomotive will be a tough challenge.

To see what the company can do for road vehicles, there is a case study at the bottom of this page.

But then they are Essex Boys! Performance is in the genes!

CODD-P Hydraulic Pump

This is said in the Railway Gazette article.

Unipart Rail will undertake in-service testing of a commercial version of a digital displacement pump and electronic controller in place of a traditional hydraulic pump with swashplate design. This is expected to provide a significant reduction in fuel consumption.

It sounds like an idea from Artemis Intelligent Power in Edinburgh.

Green Rail Exhaust After Treatment

This is said in the Railway Gazette article.

Leasing company Porterbrook will collaborate with Eminox to transfer an on-road exhaust after-treatment system widely fitted to heavy-duty vehicles to the railway environment, equipping a South Western Railway Class 158 DMU for in-service trials. This will enable the technical and commercial viability to be established, so it can be offered for widespread fitment.

There are currently 170 Class 158 trains and 30 of the closely-related Class 159 trains in service, so if this is successful, there won’t be a shortage of installations.

The picture shows one of East Midlands Trains, Class 158 trains.

 

It should also be said, that most Class 158 trains are in excellent condition, despite being nearly thirty years old.

Note that Porterbrook are involved. Train leasing companies seem to be getting increasingly involved with innovation.

W2W Zero Emissions Power System

This is said in the Railway Gazette article.

Steamology’s Water 2 Water concept will use compressed hydrogen and oxygen gas in a ‘compact energy-dense steam generator’ to produce high pressure superheated steam to drive a turbine, which will generate electricity to charge the batteries as a ‘range extender’ for a Vivarail Class 230 multiple-unit produced from former London Underground vehicles.

It sounds to me, that the tabloids will say that this is the return of the steam train.

Conclusion

They are a broad spread of technology and I have this feeling, that the Department for Transport will get a sensible return for an outlay of around two million pounds.

But I suspect that the best and most profitable idea, will come, after a meeting between two or more of the award winners and their backers.

 

 

February 5, 2019 Posted by | Transport | , , , , , , | 1 Comment

Storage At Scale Competition

The title of this post is the same as that of this press release from the Department of Business, Energy & Industrial Strategy.

This is the details of the competition.

Innovative large-scale energy storage will play an important role in decarbonising industry, power, heat and transport.

This competition is looking for innovative, replicable solutions which could provide a market competitive alternative to conventional commercial large scale energy storage technologies, for example pumped-hydro or batteries (such as lithium ion, lead acid or sodium-sulphur).

A range of electrical energy storage technologies are within scope, with a target minimum output power of 30 MW or minimum capacity of 50 MWh. Power-to-X technologies (e.g. power-to-gas) with a target minimum input power of 5 MW are also in scope.

Up to £20 million will be available from 2019 to 2021. The competition will support up to 3 demonstration projects with build completion by March 2021 and operational testing to be completed December 2021.

Projects should be at a technology readiness level of 6 or above, which could result in lower capital or operating costs to the traditional storage technologies, or improved capacity, sustainability and response rates at a comparable cost.

A few thoughts.

The Minimum Output Power

A minimum output of 30 MW is specified.

To put this in context, the pumped-storage Dinorwig Power Station, has a maximum power output of 1,800 MW.

The Minimum Capacity

A minimum capacity of 50 MWh is specified.

Dinorwig has a capacity of 9.1 GWh

Power-to-X Technologies

As Power-to-gas is mentioned, I would feel that this refers to a process like electrolysis, where electricity is perhaps converted into hydrogen, which can be stored and then converted back to electricity using fuel cells or combustion and a steam turbine.

Conclusion

The competition looks to me to be a good idea.

Let’s hope it produces something worthwhile.

 

February 4, 2019 Posted by | World | , | Leave a comment