The Anonymous Widower

Energy Vault Receives $110 Million From SoftBank For Gravity-Assisted Power Storage

The title of this post is the same as that of this article on Forbes.

Energy Vault is a company, that is developing gravity-assisted power storage.

You don’t invest £110million in a company, even if you are as rich as Softbank, unless you are certain, that you’ll get a return!

So I suspect Energy Vault may have a working system for storing energy

Read the article and see what your think! It also links to a video.

This is an interesting quote from the company.

We knew we needed to be around three to four cents levelized cost per kWh ($30 – $40 per MWh) to add to PV or wind in order to be competitive below fossil.  This took a lot of innovation.

I shall be following the company.

September 1, 2019 Posted by | World | , , | Leave a comment

From Green Gin To Sustainable Steel, Government Fires Up £140m Hydrogen Push

The title of this post, is the same as that of this article on Business Green.

The projects are wide ranging.

Green Gin

This is said about gin production by Orkney Distilling Ltd.

The successful projects feature a number of eye-catching initiatives, including the HySpirits project which has been awarded just under £200,000 to explore how the European Marine Energy Centre could work with local gin producer Orkney Distilling Ltd to convert its distillery from using liquid petroleum gas to hydrogen produced using renewable power.

I have been told that making whisky produces carbon dioxide. Does gin?

My source, also said carbon dioxide frpm Scotch whisky production has been used in the growing of soft fruit.

I found this article on The Courier, which is entitled Time To Cut Back On Whisky’s CO2 Emissions and this article on Scottish Capture and Storage, which is entitled Carbon Capture In The Heart Of The City.

Both are worth reading.

This is a paragraph from the second article.

The carbon capture process at this site is relatively simple, because the off gas from fermentation is already very pure in CO2. The process is not about enhancing CO2 concentration, but more about removing impurities. That involves a number of washing stages to remove water and impurities from the gas given off during fermentation, before it is compressed, stored, and eventually transported by road.

The article also says that the distillery produces four tonnes of carbon dioxide per day, which compared to the emissions of Chinese, Indian and United States coal-fired power stations is small beer, but it does show how in some industrial processes capturing the carbon dioxide can be relatively easy in some industrial processes and of a high quality for perhaps using in food and medical products.

But I can’t find a article connecting carbon dioxide from whisky to food production.

The Dolphyn Project

This is said about the Dolphyn Project.

A further £427,000 has been awarded to the Dolphyn project, which plans to mount electrolysers onto floating wind turbine platforms to produce hydrogen. One wind turbine alone has the potential to produce enough low carbon hydrogen to heat around 2,500 homes, fuel over 120-240 buses, or run eight to 12 trains,” the government said

I can’t find much on the Internet about this project, except this extract from this document on the Institution of Engineering and Technology web site, which is called Transitioning To Hydrogen.

The Deepwater Offshore Local Production of Hydrogen
(Dolphyn) project will consider large-scale retrofit
hydrogen production from offshore floating wind
turbines in deep water locations (Figure 19).

This is a partnership project led by ERM with Engie,
Tractebel Engie and ODE. The project looks to
utilise the vast UK offshore wind potential to power
electrolysers to produce hydrogen from the water the
turbines float on. Large 10MW turbines consisting of
desalinisation technology and PEM electrolysers will
feed hydrogen at pressure via a single flexible riser to
a sub-sea manifold with other turbines’ lines. The gas
is then exported back to shore via a single trunkline.
A 20-by-20 array array would have a 4GW capacity,
producing sufficient hydrogen to heat more then 1.5
million homes.

This project may include the offshore wind supply
of hydrogen supported with hydrogen from steam
methane reformation with carbon capture technology.
This project is well aligned to work the ACORN75
project at St Fergus.

Note that the project is talking about gigawatts of energy and providing enough hydrogen to heat millions of homes.

I think that the Dolphyn Project is badly named, as Google thinks you’re looking for projects about aquatic animals.

Gigastack

This is said about Gigastack.

Meanwhile, a consortium featuring Ørsted, ITM Power, and Element Energy is celebrating after securing just shy of £500,000 to help move forward with its Gigastack feasibility study, a six-month project to investigate the potential for delivering bulk, low-cost, and zero-carbon hydrogen.

There’s more here on this page on the ITM Power web site, where this is the first paragraph.

Project to demonstrate delivery of bulk, low-cost and zero-carbon hydrogen through gigawatt scale PEM electrolysis, manufactured in the UK.

As you’d expect from the name, they are looking at creating gigawatts of hydrogen.

Steel

This is said about steel.

The funding awards came as the government also launched a new call for evidence seeking views on how the government should structure and manage a planned £250m Clean Steel Fund. The government said the proposed fund would help the industry embrace clean technologies and move on to “a pathway that is consistent with the UK Climate Change Act” and its new net zero emission goal.

So what has hydrogen got to do with steel?

Search for hydrogen steelmaking on Google and you get lots of articles including this article from the Stockholm Environmental Institute, which is entitled Hydrogen Steelmaking For A Low-Carbon Economy.

This is a paragraph.

In the spring of 2016, three Swedish companies – LKAB (iron ore mining), SSAB (steel manufacturer) and Vattenfall (power utility) – announced their ambition to develop and implement a novel process for fossil-free steel production in Sweden. This process would use hydrogen (instead of coal) for the direct reduction of iron oxide/ore (H-DR), combined with an electric arc furnace (EAF). It would be almost completely fossil-free when the hydrogen is produced from electrolysis of water by use of renewable electricity. The concept is called Hydrogen Breakthrough Ironmaking Technology, or HYBRIT for short.

My knowledge of process engineering, tells me, that even if the Swedes don’t succeed, someone will and here in the UK, we’re ideally placed to take advantage, as we have the wind power to produce the hydrogen.

Conclusion

The future’s bright, the future’s green hydrogen!

, The North Sea can provide us with more than enough hydrogen, so long as the wind blows and there’s water to electrolyse..

August 30, 2019 Posted by | World | , , , , | Leave a comment

World’s First Solar-Powered Trains Are Coming To England

The title of this post, is the same as that on this article on Lonely Planet.

This is the first paragraph

The first ever solar unit to directly supply a railway line with electricity has been put in place in England, paving the way for the world’s first solar-powered trains

I am not sure yet about this technology., powering large sections of the UK’s railways.

But the technology does have applications, if it is combined with energy storage.

Boosting Power With Third-Rail Electrification

Third-rail electrification has a problem, in that it needs to be fed with power every few miles. Inevitably, as timetables get busier, there are areas, where there is not enough power to supply the trains.

These systems can provide that fill-in power.

Note that 25 KVAC overhead electrification doesn’t have the problem, as the wires themselves distribute the electricity.

This means that the Great Western Main Line electrification is only supplied with power from the electricity grid at three places; the two ends and one in the middle.

Electrification In Visually-Sensitive Places

Look at this picture of Brunel’s magnificent Wharncliffe Viaduct.

It has been recently electrified and some groups object to the electrification of Grade I Listed structures like this.

Most modern electric trains can be dual-voltage and can work on both electrification systems used in the UK; 25 KVAC  overhead and 750 VDC third rail. They can also change between electrification systems at maximum speed

So could we see selective use of solar-powered third-rail electrification in visually-sensitive areas?

Possibly! But battery/electric trains may be a better alternative!

Charging Battery-Electric Trains

There are some branch lines, that will be served by battery-electric trains in the future.

These solar-powered systems could be used to provide the energy to charge the batteries for the return journey.

Powering Remote Stations

Stations are increasingly needing better electricity supplies with more lighting and various ticket and parking machines, and charging for electric cars will become more important.

Solar power systems and batteries could be used.

Conclusion

Solar power will be increasingly used on the railways, with a large number of stations like Blackfriars and the recently-opened White Hart Lane.

But that will happen, irrespective of the result of the Aldershot trial, as many stations are easy places to install solar panels, either on the roof or redundant spaces.

This Google Map shows one of my local stations; Haggerston.

It was rebuilt and reopened in April 2010, so solar panels were probably not thought about for the station.

From my helicopter, it appears that the stations at  Dalston Junction, Hoxton and Shoreditch High Street, which were all built at the same time, don’t have solar rooves either.

Perhaps Transport for London and/or Network Rail should rent their roof areas to companies, who run solar farms?

I’m sure there’s a mutually beneficial deal in there somewhere!

As to powering trains, I’m sure they that Riding Sunbeams has a place on third-rail networks, where power needs boosting.

However, electric trains with batteries might be a better option in other applications.

August 29, 2019 Posted by | Transport | , , , , , , , | 2 Comments

Dialysis-At-Home Developer Quanta Raises £38m

The title of this post is the same as that of this article in today’s Sunday Times

Strangely, in my almost seventy-two years, I’ve never met anybody, who is undergoing dialysis, although one of my friends did give one of his kidneys to his brother.

But reading this article in The Sunday Times, I feel that for those undergoing dialysis, things may be improving.

  • The £38m will launch Quanta’s machine with the NHS.
  • More people will be able to have dialysis-at-home.
  • The company hopes the machine will be launched in the US this year.

It is very much a good news article.

To me though, it shows how technology is increasingly being developed to improve healthcare.

Surprisingly, the machine uses the same technology as that used to mix soft drinks in bars.

July 28, 2019 Posted by | Health | | Leave a comment

Solar Panel Pilot For Aldershot

The title of this post is the same as that of an article in the August 2019 Edition of Modern Railways.

This is the two paragraphs.

Solar panels are to be installed on derelict land near Aldershot station as part of an experiment into whether renewable energy can be used to power trains.

A total of 135 discrete solar panels are being installed and are expected to go live in August. The Riding Subnbeams ‘First Light’ demonstrator project is a collaboration between climate change charity 10:10, Community Energy South and Network Rail, alongside a consortium of specialist consultants and university departments.

I wrote about the company and its ideas in Solar Power Could Make Up “Significant Share” Of Railway’s Energy Demand, which I posted in December 2017.

I won’t repeat myself, but I will say that since I wrote the original article, a compatible development has happened.

In Vivarail Unveils Fast Charging System For Class 230 Battery Trains, I wrote about Vivarail’s charging system for battery trains, which uses battery-to-battery power transfer to charge batteries on trains, through standard third-rail technology.

I do feel that the 10:10 and Vivarail ought to be talking, as I feel that between them, they could come up with some good joint ideas.

July 27, 2019 Posted by | Transport | , , , , , | Leave a comment

Will We See A Phase Out Of Diesel-Mechanical And Diesel-Hydraulic Multiple Units?

After writing My First Ride In A Class 195 Train, I started to think about the future of diesel multiple units.

The Class 195 trains are powered by one MTU diesel engine, with a rating of 390 kW in each car, that drives the wheels through a ZF Ecolife transmission.

It is all very Twentieth Century!

  • Power comes from one diesel engine per car.
  • There is pollution and carbon-dioxide generated outside the train.
  • Noise is generated outside and inside the train.
  • Braking energy is not captured and used to power the train, or stored for reuse.

We can do so much better than this.

The MTU Hybrid PowerPack

MTU have now developed the MTU Hybrid PowerPack.

This page on the MTU web site, is a document, which describes the PowerPack.

It describes the PowerPack as the next generation of railcar drive.

It lists these benefits.

  • Saving fuel through braking energy recovery
  • Significantly reduced emissions through load point optimization
  • Optimizing travel times with the Boost Mode
  • Significant noise reduction
  • Flexible vehicle deployment and simple retrofitting

In some ways the last point is the most significant.

This is said in the document about deployment and retrofitting.

Naturally, rail vehicles with hybrid drive can also be powered
exclusively by the diesel engine. This also means great flexibility
for the operator: The trains can be deployed on both electrified
and non-electrified rail routes. In addition, upgrading to a trimodal*
power system – with an additional pantograph – is easy because
the system is already equipped with an electric motor. This gives
the operator considerable freedom with regard to deployment of
the vehicles – it‘s a big plus when they can respond flexibly in the
future to every route requirement or tender invitation.

It sounds like MTU have really done their thinking.

If you want to read more, there is this document on the Rolls-Royce web-site, which is entitled Hybrid Train Trials.

Note that Rolls-Royce are MTU’s parent company.

A Simple Trimodal Example

I will give one simple example of where the trimodal technology pf the MTU Hybrid PowerPack, could be used, to great advantage.

Southern have two routes, where they have to use diesel Class 171 trains

  • Eastbourne and Ashford International (42% electrified)
  • London Bridge and Uckfield (45% electrified)

Porterbrook are planning to fit MTU Hybrid PowerPacks to Class 170 trains, as I wrote about in Rolls-Royce And Porterbrook Launch First Hybrid Rail Project In The UK With MTU Hybrid PowerPacks.

As the Class 171 train is very similar to the Class 170 train, I would suspect that Class 171 trains can be converted to diesel hybrids using MTU Hybrid PowerPacks.

It would be very useful, if they could be converted into tri-mode trains, by the addition of third-rail shoe gear.

This would mean, that the two routes run by the Class 171 trains, could be run on electricity for st least 40-45 percent of the route.

I would also think, that adding third-rail shoe gear to a diesel multiple unit, like a Class 171 train, could be easier than adding a pantograph.

When you consider that Southern have twenty Class 171 trains, with a total of fifty-six cars and conversion would therefore need fifty-six MTU Hybrid PowerPacks, this would not be a trivial order for MTU, that could bring substantial benefit to Southern.

I suspect new bi-mode or battery/electric trains would be less good value, than converting trains with MTU Hybrid PowerPacks, in many applications.

Other Technologies

Already other companies and research organisations are getting involved in developing affordable solutions to convert redundant diesel multiple units into more environmentally-friendly and energy efficient trains.

We have also seen train operating companies in a wider sense, buying trains that can easily be updated to zero-carbon trains.

Benefits Of Conversion To Diesel-Hybrid

I believe that conversion to diesel hybrid trains, using MTU Hybrid PowerPacks or similar technologies,  could be advantageous in other ways, in addition to the obvious ones of less noise and pollution.

  • Train operating companies would not need to greatly change their support infrastructure.
  • Driver retraining would probably be a short conversion course.
  • More partially-electrified routes would be possible with efficient modern trains.

I also feel, that if we can convert diesel-mechanical and diesel-hydraulic trains into trains with the ability to use either 25 KVAC overhead or 750 VDC third-rail electrification, this will open up possibilities to create new partially-electrified routes in places, where electrification is either too difficult, too expensive or is opposed by protests.

Trains That Could Be Converted

These trains are ones that can possibly be converted to diesel hybrid trains.

Turbostars

As I said earlier Porterbrook are already planning to convert some of their numerous Class 170 trains to diesel hybrid operation using MTU Hybrid PowerPacks.

Turbostars are a class of diesel trains.

The picture shows a Class 170 train in ScotRail livery, at Brough station, working a service for Northern.

  • They have a 100 mph top speed.
  • They come in two, three or four car sets.
  • They were built between 1996 and 2011.
  • They have a comfortable interior and passengers only complain, when say a Class 170 train is replaced by a Class 156 or even older train.
  • There are a total of 196 Turbostars in various classes.

This description from Wikip[edia, details their drive system.

Much of the design is derived from the Networker Turbo Class 165 and Class 166 trains built by British Rail Engineering Limited’s Holgate Road carriage works. Notable features shared are the aluminium alloy frame and two-speed Voith T211r hydrodynamic transmission system. The diesel engine has changed to an MTU 6R 183TD. A cardan shaft links the output of the gearbox to ZF final drives on the inner bogie of each vehicle. The engine and transmission are situated under the body; one bogie per car is powered, the other bogie unpowered.

It is simple system and well suited to replacement with the MTU Hybrid PowerPack.

As I said earlier, some Turbostars run over partially-electrified routes.

I also said that two of Southern’s routes are partially-electrified with the 750 VDC third-rail system, so could we see some examples making use of this to create a trimodal version.

On the other hand fitting a pantograph for 25 KVAC overhead electrification could be difficult. Although, all  British Rail designs and their derivatives were usually designed, so they could work with every type of K electrification.

Class 165 And Class 166 Trains

The Class 165 and Class 166 trains are the predecessors of the Turbostars, and the later trains share a lot of their features.

As with all British Rail train designs, they have Japanese Knotweed in their DNA and engineers continuously find profitable ways of not sending them to the scrapyard. So they’ll be around for a few years yet!

The owner of these trains; Angel Trains has started a development project to create the Class 165 Hydrive train, which I wrote about in Class 165 Trains To Go Hybrid.

Will we see another hundred or so diesel hydraulic trains in good condition converted to more environmentally-friendly diesel hybrid trains?

Class 195 And Class 196 Trains

The Class 195 and Class 196 trains are still in the process of being built and judging by my first experience of Northern’s Class 195 train, that I wrote about in My First Ride In A Class 195 Train, they would benefit from the fitting of a quieter hybrid drive, like an MTU Hybrid PowerPack.

I suspect that any follow on orders for CAF’s diesel trains could well be built as diesel hybrids.

  • The MTU Hybrid PowerPack could be used to replace the MTU engine and ZF Ecolife transmission.
  • A battery-electric transmission, perhaps even using bogies and traction motors from the Class 331 train, could be developed.

Consider.

  • Building the train around a hybrid transmission, will be probably no more difficult, than building one with a mechanical transmission.
  • The train would create less noise and pollution.
  • Hybrid trains would probably be more marketable to prospective purchasers. See Hybrid Selling.

As CAF are the only manufacturer of new diesel trains in the UK, I don’t think, they will be bothered.

Class 175 Trains

Transport for Wales have a fleet of eleven two-car and sixteen three-car Class 175 trains and they are scheduled to be replaced by a series of new trains starting in 2021.

I suspect the conversion to diesel hybrid will be possible, but even with a full interior refurbishment, will anybody have need for them, as there are already a lot of new 100 mph diesel trains on order, many of which could be delivered as diesel hybrids.

Class 180 Trains

There are fourteen five-car Class 180 trains.

They are 125 mph trains.

The fact that Hull Trains are replacing their Class 180 trains with new Class 802 trains, probably says a lot about the limitations of Class 180 trains.

Conclusion

We will be seeing a lot of hybrid trains, made by updating diesel-mechanichal and diesel-hydraulic trains.

July 17, 2019 Posted by | Transport | , , , | 5 Comments

Tender Set To Be Issued For East West Rail Rolling Stock

The title of the this post is the same as that of this article on Rail Magazine.

Brief details of the fleet include.

  • Eleven trains.
  • Self-propelled.
  • Three cars.

Services are due to commence in 2024, serving Oxford, Aylesbury, Milton Keynes and Bedford.

Here are a few of my thoughts.

Are Three Car Trains Long Enough?

New train services in the UK, especially those on new or reopened routes, seem to suffer from London Overground Syndrome.

I define it as follows.

This benign disease, which is probably a modern version of the Victorian railway mania, was first identified in East London in 2011, when it was found that the newly-refurbished East London Line and North London Line were inadequate due to high passenger satisfaction and much increased usage. It has now spread across other parts of the capital, despite various eradication programs.

The Borders Railway certainly suffered and the London Overground is still adding extra services on the original routes.

Three-car trains may be enough for the initial service, but provision must be made  for running longer trains.

  • The trains that are purchased must be capable of lengthening.
  • Platforms must be built for longer trains.

So often we don’t future-proof new rail routes.

What Performance Is Needed?

I’ll ask this question first, as it may affect the choice of train.

The trains will certainly be at least capable of 100 mph operation.

But I wouldn’t be surprised if they were capable of 110 mph or even 125 mph, as this would surely make it easier for trains to go walkabout on the Great Western, Midland and West Coast Main Lines.

Faster East West trains might also get more services out of the fleet.

Appropriate acceleration and braking would be needed.

Conservative Or Innovative?

Will we get more of the same or will some of the responders to the tender offer trains based on innovative designs?

I would hope that as the line will eventually connect Oxford and Cambridge via Milton Keynes, the trains will take over the flavour of the route and be more innovative.

The Route

The eventual full route of the East West Rail Link will serve these sections.

  • Reading and Ocford – 25 miles – Partially-electrified
  • Oxford and Milton Keynes – 43 miles – Not electrified
  • Milton Keynes and Bedford – 20 miles – Partially-electrified
  • Bedford and Sandy – 10 miles – Not electrified
  • Sandy and Cambridge – 25 miles – Partially-electrified.

Note.

  1. The distances are approximate.
  2. With the exception of Oxford, all the major stations will be served by electric trains on other routes.

It is rather a mixture created out of existing and abandoned routes.

Could Battery Trains Run On The East West Rail Link?

Consider.

  • All the major stations except Oxford have electrification.
  • Sections of the route are electrified.
  • The route is not very challenging.
  • The longest section without electrification is around forty miles.

All this leads me to believe that a battery-electric train with a range of forty miles could handle the route, if there was the means to charge the train at Oxford.

Possibly the easiest way to achieve the charging station at Oxford station, would be to electrify between Didcot Junction and Oxford stations.

In How Much Power Is Needed To Run A Train At 125 mph?, I showed that to run at 125 mph, a train needs around three kWh per vehicle mile.

This would mean that to run between Oxford and Milron Keynes stations, would need a maximum power of around 40*3*3 kWh or 360 kWh.

This is only a 120 kWh battery in each car.

I am fairly certain, that a well-designed battery train could run on the East West Rail Link.

The Usual Suspects

There are several train companies, who could be offering existing trains or their developments.

Alstom

Alstom don’t have a current design of train for the UK, but they are heavily into the development of trains powered by hydrogen.

By 2024, I suspect they will be offering a purpose-built hydrogen-powered train for the UK.

Also, by that time, I think it will be likely, that many buses in cities will be powered by zero-carbon hydrogen and the availability of this fuel would be much better than it is today.

An East West Rail Link running hydrogen-powered trains would go a long way to answer the electrification lobby.

Bombardier

Bombardier are developing a 125 mph bi-mode Aventra with batteries, that they are proposing for various franchises in the UK, including the Midland Main Line.

I believe that by rearranging the components of this train, they could develop a train that would be very suitable for the East West Rail Link.

  • Three cars
  • At least 100 mph operating speed
  • In service by 2024 or earlier.

It could be a bi-mode train with batteries, or if battery and the associated charging technology has improved, it could be a battery-electric train.

The latter would certainly fulfil the flavour of the route.

Bombardier’s Aventra would also have the advantages of an electrical version and the ability to add more cars.

CAF

CAF have recently introduced the Class 195 traincaf in the UK.

But would a diesel train be acceptable on a flagship route?

On the other hand CAF have been delivering battery-powered trams for several years and I wouldn’t be surprised to see the company, offer an innovative battery-electric train for the East West Rail Link.

Hitachi

Hitachi don’t make self-powered trains in the UK.

But in Hitachi Plans To Run ScotRail Class 385 EMUs Beyond The Wires, I wrote about the company’s plans to use batteries as range extenders on their Class 385 trains.

I suspect that by 2024, these trains will be running in Scotland and they will probably be high-quality reliable trains.

So could these trains be able to run between Reading and Cambridge using battery power, topped up at the various sections of electrification along the route.

Hitachi’s development regime is cautious, professional and well-funded, so I suspect they could offer a version of the Class 385 train, for delivery in 2024.

Hitachi would also have the advantages of an electrical version and the ability to add more cars.

Siemens

Siemens have a large number of modern electrical multiple units in the UK, but none are self-powered, except the diesel Class 185 train.

Siemens will have a factory in the UK to built London Underground trains by 2024.

But eleven trains could be an expensive order to fulfil, if it required a new self-powered train design.

Stadler

Stadler are an innovative company and their Class 755 train will shortly be starting passenger service in East Anglia.

  • It is three-cars, which is extendable if required.
  • It has a 100 mph operating speed.
  • It is a bi-mode; diesel and electric train.
  • Trains for Wales have ordered a diesel/electric/battery version.
  • There are rumours of hydrogen-powered versions.

Stadler could certainly deliver some of these trains by 2024.

Summing Up

I would suspect that the front runners are Bombardier, Hitachi and Stadler, with CAF in fourth place.

  • All could probably develop a zero-emission train for the route using battery technology.
  • Stadler will have trains in service this year, and I suspect Bombardier and Hitachi will be running trains by 2022.

I think we could be seeing some very good trains on the route.

 

 

 

 

July 13, 2019 Posted by | Transport | , , , , , , , , , , | 5 Comments

The Mathematics Of Fast-Charging Battery Trains Using Third-Rail Electrification

In Vivarail Unveils Fast Charging System For Class 230 Battery Trains, I talked about how Vivarail are proposing to fast-charge their Class 230 trains.

  • The trains are fitted with special high-capacity third rail shoes.
  • Third-rail electrification is laid in stations.
  • The third rail is powered by a bank of bstteries, that are trickle-charged from the mains or perhaps even solar power.
  • When the train connects to the rail, the rail is made live and a fast transfer takes place between third-rail and train.

So how much electricity could be passed to a train during a stop?

The most powerful locomotive in the UK, that can use 750 VDC third-rail electrification is a Class 92 locomotive.

According to Wikipedia, it can produce a power output of 4 MW or 4,000 kW, when working on third-rail electrification.

This means, that in an hour, four thousand kWh will be transferred to the train using conventional third-rail electrification.

Or in a minute 66.7 kWh can be transferred.

In Vivarail’s system, because they are transferring energy between batteries, enormous currents can be passed.

To illustrate how batteries can can deliver enormous currents here’s a video of  a guy using two car batteries to weld things together.

These currents are possible because batteries have a low impedance and when the battery on the train is connected to the battery bank on the station, the two batteries will equalise their power.

If we take the example of the Class 92 locomotive and conventional electrification, this would be able to transfer 200 kWh in three minutes or 400 kWh in six minutes.

But I believe that battery-to-battery transfers could be at a much higher current

Thus in a typical one or two minute stop in a station, upwards of 200 kWh could be transferrred to the train..

July 12, 2019 Posted by | Transport | , , , , | 6 Comments

Class 710 Train Rooves At Blackhorse Road Station

I took these pictures at Blackhorse Road station.

I couldn’t spot any resistor banks on the rooves, that could be used to burn off excess energy, that is generated by regenerative braking.

Consider.

  • The rooves do have a rather clean aerodynamic look.
  • I’ve never seen resistor banks placed anywhere other than on the roof of a train.
  • Regenerative braking must either return the energy through the electrification or store in in some form of onboard energy storage.

It looks to me, that Bombardier have designed a very efficient train.

July 9, 2019 Posted by | Transport | , , , | 1 Comment

Carbon Capture From Cement Manufacturing Nears Market Readiness

The title of this post, is the same as that of this article on The Fifth Estate.

In Climate Change: The Massive CO2 Emitter You May Not Know About, I talked about the carbon dioxide that is released, by the manufacture of cement, mainly referring to this article on the BBC.

This is the first three paragraphs of the BBC article.

Concrete is the most widely used man-made material in existence. It is second only to water as the most-consumed resource on the planet.

But, while cement – the key ingredient in concrete – has shaped much of our built environment, it also has a massive carbon footprint.

Cement is the source of about 8% of the world’s carbon dioxide (CO2) emissions, according to think tank Chatham House.

However, the article on The Fifth Estate, raises hopes that new processes for making cement may reduce the carbon footprint of this important material.

This is the first paragraph of tThe Fifth Estate article.

A consortium led by Australian firm Calix is now well on the way to completing a pilot plant for its breakthrough technology that will capture carbon emissions from the manufacture of lime cement. Other projects with similar aims to reduce the global warming impact of construction with concrete are also racing to the marketplace.

It certainly looks like the Australians are doing something concrete about climate change!

 

 

July 9, 2019 Posted by | World | , , , | 3 Comments