The Anonymous Widower

Approaching Kings Cross – 2nd April 2021

I took these pictures approaching Kings Cross.

Comparing these pictures to those in Approaching Kings Cross – 19th February 2021, show that work is progressing.

It should be finished by the Summer.

April 2, 2021 Posted by | Transport | , | Leave a comment

Belgrove House – A New Entrance For King’s Cross Tube Station

The title of this post, is the same as that as this article on Ian Visits, with the addition of Belgrove House,

This is the introductory paragraph.

An isolated box entrance to King’s Cross tube station is to be demolished and replaced with a new step-free entrance as part of a building development.

I went and took these pictures today, as I needed a few bits of shopping, which I bought in the area.

Note.

  1. The busy Euston Road which is a major route into and out of London in front of the two stations.
  2. The two station boxes on the South side of Euston Road, making the pavements difficult places to walk at times.
  3. The subway is step-free to all the Underground lines at Kings Cross and to both National Rail stations on the North side of Euston Road.

The block with the access self-store and the entrance to the station in front, will be replaced by a substantial new building, with step-free entrance to the existing subway.

This web page is entitled Welcome to the Consultation Website for Belgrove House and Acorn House.

It more of less does what it says and has this statement on the page.

This site presents our aspirations for an exciting new project for Camden; a life science Discovery Hub and UK HQ as a centre of excellence for MSD UK at Belgrove House along with affordable housing at Acorn House. It involves two interlinked sites within the King’s Cross ward of the London Borough of Camden – Belgrove House is located on Euston Road and fronts onto the King’s Cross Square and Acorn House is located a four minute walk away on Gray’s Inn Road.

We have now updated our website to include virtual exhibition boards where you can view the proposals for both sites in detail, see the consultation that has been undertaken to date and review the feedback that we have received so far. This is also an opportunity for you to give us your feedback on the plans ahead of a planning application being submitted to Camden Council at the end of August 2020.

The virtual exhibition boards can be viewed here.

The web page also features this visualisation of the building.

I have read most of the virtual exhibition boards and I wish that more consultation websites would be only half as good as this one.

These are a few points from the exhibition boards.

Cafe

There will be a publicly available cafe on the ground floor.

Many times in my life, I’ve arrived early and there is nowhere suitable to wait.

Carbon-Efficient Building

This is obvious from the proposal and raises its green head everywhere in the proposal.

Heating

It will be an all-electric building, with no combustion on site.

There will be air-source heat pumps and heat recovery.

Innovative Biophilic Façade

Wikipedia says this about biophilic design.

Biophilic design is a concept used within the building industry to increase occupant connectivity to the natural environment through the use of direct nature, indirect nature, and space and place conditions. Used at both the building and city-scale, it is argued that this idea has health, environmental, and economic benefits for building occupants and urban environments, with few drawbacks. Although its name was coined in recent history, indicators of biophilic design have been seen in architecture from as far back as the Hanging Gardens of Babylon.

This sounds to me, like the sort of post-Covid working environment we need to tempt people back into offices.

Parking

This is said about cycle and car parking.

We are proposing over 350 cycling parking spaces as part of our proposals for Belgrove House. These will be accessed via its own entrance located on Belgrove Street. We are also not proposing any car parking spaces as the area benefits from excellent transport connections.

I can’t see many disagreeing with that.

Recycled Building

I particularly liked this paragraph.

In line with the low-carbon strategy, the team intends to recycle and reuse existing building materials on the site where possible, such as bricks where these are salvageable. The re-use of these materials will reduce the embodied carbon of the new building.

Some of the buildings, I’ve commissioned have made extensive use of recycled bricks. And very fine, they’ve looked too!

Service Vehicles

This is said about servicing the offices and the retail units.

All servicing and deliveries for the Belgrove House offices/lab space will take place via the ground floor loading bay, with any vehicles entering the site from Crestfield Street and exiting onto Crestfield Street. The retail element of the development will be serviced from Crestfield Street in the same way as the existing McDonalds unit.

Sounds fair to me.

The more I read about this building the more I like it.

MSD

The main tennant will be MSD.

This is said about the company and its involvement in Belgrove House.

The proposals for Belgrove House have been designed to meet the needs of Knowledge Quarter occupiers such as MSD, a multinational life sciences company that discovers, develops and provides innovative medicines and vaccines to make a difference to people’s lives.

MSD has been looking for a suitable site for some time and identified King’s Cross as the ideal location for their Discovery Hub and UK HQ as a centre of excellence for the life science community.

They have form with this type of development and have a similar Discovery Hub in San Francisco.

Connection To Kings Cross Station

The current station boxes on the South side of Euston Road will be replaced by a step-free entrance inside Belgrove House, that will connect to the existing subway under Euston Road.

It is a difficult area to walk through and the pavements will be widened.

This Google Map shows the location of Belgrove House and the two stations of Kings Cross and St. Pancras.

Note.

  1. Kings Cross station is at the top of the map.
  2. St. Pancras station is in the North-West corner of the map.
  3. Argyle Square Gardens is the green space in the South East corner of the map.

Belgrove House will replace the Access self-storage with the squares on the roof, that lies between Argyle Square and Euston Road.

Conclusion

If the development is as good as the proposal and lives up to the aims of the developers and MSD, it will be a building of which London will be proud.

How long will it take for some wag in a tabloid to call it The Hanging Gardens Of Kings Cross?

 

 

March 14, 2021 Posted by | Food, Transport | , , | 2 Comments

Will Hitachi Announce A High Speed Metro Train?

As the UK high speed rail network increases, we are seeing more services and proposed services, where local services are sharing tracks, where trains will be running at 125 mph or even more.

London Kings Cross And Cambridge/Kings Lynn

This Great Northern service is run by Class 387 trains.

  • Services run between London Kings Cross and Kings Lynn or Cambridge
  • The Class 387 trains have a maximum operating speed of 110 mph.
  • The route is fully electrified.
  • The trains generally use the fast lines on the East Coast Main Line, South of Hitchin.
  • Most trains on the fast lines on the East Coast Main Line are travelling at 125 mph.
  • When in the future full digital in-cab ERTMS signalling is implemented on the East Coast Main Line, speeds of up to 140 mph should be possible in some sections between London Kings Cross and Hitchin.

I also believe that digital signalling may be able to provide a solution to the twin-track bottleneck over the Digswell Viaduct.

Consider.

  • Airliners have been flown automatically and safely from airport to airport for perhaps four decades.
  • The Victoria Line has been running automatically and safely at over twenty trains per hour (tph) for five decades. It is now running at over 30 tph.
  • I worked with engineers developing a high-frequency sequence control system for a complicated chemical plant in 1970.

We also can’t deny that computers are getting better and more capable.

For these reasons, I believe there could be an ERTMS-based solution to the problem of the Digswell Viaduct, which could be something like this.

  • All trains running on the two track section over the Digswell Viaduct and through Welwyn North station would be under computer control between Welwyn Garden City and Knebworth stations.
  • Fast trains would be slowed as appropriate to create spaces to allow the slow trains to pass through the section.
  • The driver would be monitoring the computer control, just as they do on the Victoria Line.

Much more complicated automated systems have been created in various applications.

The nearest rail application in the UK, is probably the application of digital signalling to London Underground’s Circle, District, Hammersmith & City and Metropolitan Lines.

This is known at the Four Lines Modernisation and it will be completed by 2023 and increase capacity by up to twenty-seven percent.

I don’t think it unreasonable to see the following maximum numbers of services running over the Digswell Viaduct by 2030 in both directions in every hour.

  • Sixteen fast trains
  • Four slow trains

That is one train every three minutes.

Currently, it appears to be about ten fast and two slow.

As someone, who doesn’t like to be on a platform, when a fast train goes through, I believe that some form of advanced safety measures should be installed at Welwyn North station.

It would appear that trains between London Kings Cross and King’s Lynn need to have this specification.

  • Ability to run at 125 mph on the East Coast Main Line
  • Ability to run at 140 mph on the East Coast Main Line, under control of full digital in-cab ERTMS signalling.

This speed increase could reduce the journey time between London Kings Cross and Cambridge to just over half-an-hour with London Kings Cross and King’s Lynn under ninety minutes.

The only new infrastructure needed would be improvements to the Fen Line to King’s Lynn to allow two tph, which I think is needed.

Speed improvements between Hitchin and Cambridge could also benefit timings.

London Kings Cross And Cambridge/Norwich

I believe there is a need for a high speed service between London Kings Cross and Norwich via Cambridge.

  • The Class 755 trains, that are capable of 100 mph take 82 minutes, between Cambridge and Norwich.
  • The electrification gap between Ely and Norwich is 54 miles.
  • Norwich station and South of Ely is fully electrified.
  • Greater Anglia’s Norwich and Cambridge service has been very successful.

With the growth of Cambridge and its incessant need for more space, housing and workers, a high speed train  between London Kings Cross and Norwich via Cambridge could tick a lot of boxes.

  • If hourly, it would double the frequency between Cambridge and Norwich until East-West Rail is completed.
  • All stations between Ely and Norwich get a direct London service.
  • Cambridge would have better links for commuting to the city.
  • London Kings Cross and Cambridge would be less than an hour apart.
  • If the current London Kings Cross and Ely service were to be extended to Norwich, no extra paths on the East Coast Main Line would be needed.
  • Trains could even split and join at Cambridge or Ely to give all stations a two tph service to London Kings Cross.
  • No new infrastructure would be required.

The Cambridge Cruiser would become the Cambridge High Speed Cruiser.

London Paddington And Bedwyn

This Great Western Railway service is run by Class 802 trains.

  • Services run between London Paddington and Bedwyn.
  • Services use the Great Western Main Line at speeds of up to 125 mph.
  • In the future if full digital in-cab ERTMS signalling is implemented, speeds of up to 140 mph could be possible on some sections between London Paddington and Reading.
  • The 13.3 miles between Newbury and Bedwyn is not electrified.

As the service would need to be able to run both ways between Newbury and Bedwyn, a capability to run upwards of perhaps thirty miles without electrification is needed. Currently, diesel power is used, but battery power would be better.

London Paddington And Oxford

This Great Western Railway service is run by Class 802 trains.

  • Services run between London Paddington and Oxford.
  • Services use the Great Western Main Line at speeds of up to 125 mph.
  • In the future if full digital in-cab ERTMS signalling is implemented, speeds of up to 140 mph could be possible on some sections between London Paddington and Didcot Parkway.
  • The 10.3 miles between Didcot Parkway and Oxford is not electrified.

As the service would need to be able to run both ways between Didcot Parkway and Oxford, a capability to run upwards of perhaps thirty miles without electrification is needed. Currently, diesel power is used, but battery power would be better.

Local And Regional Trains On Existing 125 mph Lines

In The UK, in addition to High Speed One and High Speed Two, we have the following lines, where speeds of 125 mph are possible.

  • East Coast Main Line
  • Great Western Main Line
  • Midland Main Line
  • West Coast Main Line

Note.

  1. Long stretches of these routes allow speeds of up to 125 mph.
  2. Full digital in-cab ERTMS signalling is being installed on the East Coast Main Line to allow running up to 140 mph.
  3. Some of these routes have four tracks, with pairs of slow and fast lines, but there are sections with only two tracks.

It is likely, that by the end of the decade large sections of these four 125 mph lines will have been upgraded, to allow faster running.

If you have Hitachi and other trains thundering along at 140 mph, you don’t want dawdlers, at 100 mph or less, on the same tracks.

These are a few examples of slow trains, that use two-track sections of 125 nph lines.

  • East Midlands Railway – 1 tph – Leicester and Lincoln – Uses Midland Main Line
  • East Midlands Railway – 1 tph – Liverpool and Norwich – Uses Midland Main Line
  • Great Western Railway – 1 tph – Cardiff and Portsmouth Harbour – Uses Great Western Main Line
  • Great Western Railway – 1 tph – Cardiff and Taunton – Uses Great Western Main Line
  • Northern – 1 tph – Manchester Airport and Cumbria – Uses West Coast Main Line
  • Northern – 1 tph – Newcastle and Morpeth – Uses East Coast Main Line
  • West Midlands Trains – Some services use West Coast Main Line.

Conflicts can probably be avoided by judicious train planning in some cases, but in some cases trains capable of 125 mph will be needed.

Southeastern Highspeed Services

Class 395 trains have been running Southeastern Highspeed local services since 2009.

  • Services run between London St. Pancras and Kent.
  • Services use Speed One at speeds of up to 140 mph.
  • These services are planned to be extended to Hastings and possibly Eastbourne.

The extension would need the ability to run on the Marshlink Line, which is an electrification gap of 25.4 miles, between Ashford and Ore.

Thameslink

Thameslink is a tricky problem.

These services run on the double-track section of the East Coast Main Line over the Digswell Viaduct.

  • 2 tph – Cambridge and Brighton – Fast train stopping at Hitchin, Stevenage and Finsbury Park.
  • 2 tph – Cambridge and Kings Cross – Slow train stopping at Hitchin, Stevenage, Knebworth, Welwyn North, Welwyn Garden City, Hatfield, Potters Bar and Finsbury Park
  • 2 tph – Peterborough and Horsham – Fast train stopping at Hitchin, Stevenage and Finsbury Park.

Note.

  1. These services are run by Class 700 trains, that are only capable of 100 mph.
  2. The fast services take the fast lines South of the Digswell Viaduct.
  3. South of Finsbury Park, both fast services cross over to access the Canal Tunnel for St, Pancras station.
  4. I am fairly certain, that I have been on InterCity 125 trains running in excess of 100 mph in places between Finsbury Park and Stevenage.

It would appear that the slow Thameslink trains are slowing express services South of Stevenage.

As I indicated earlier, I think it is likely that the Kings Cross and King’s Lynn services will use 125 mph trains for various reasons, like London and Cambridge in well under an hour.

But if 125 mph trains are better for King’s Lynn services, then they would surely improve Thameslink and increase capacity between London and Stevenage.

Looking at average speeds and timings on the 25 miles between Stevenage and Finsbury Park gives the following.

  • 100 mph – 15 minutes
  • 110 mph – 14 minutes
  • 125 mph – 12 minutes
  • 140 mph – 11 minutes

The figures don’t appear to indicate large savings, but when you take into account that the four tph running the Thameslink services to Peterborough and Cambridge stop at Finsbury Park and Stevenage and have to get up to speed, I feel that the 100 mph Class 700 trains are a hindrance to more and faster trains on the Southern section of the East Coast Main Line.

It should be noted, that faster trains on these Thameslink services would probably have better acceleration and and would be able to execute faster stops at stations.

There is a similar less serious problem on the Midland Main Line branch of Thameslink, in that some Thameslink services use the fast lines.

A couple of years ago, I had a very interesting chat with a group of East Midlands Railway drivers. They felt that the 100 mph Thameslink and the 125 mph Class 222 trains were not a good mix.

The Midland Main Line services are also becoming more complicated, with the new EMR Electric services between St. Pancras and Corby, which will be run by 110 mph Class 360 trains.

Hitachi’s Three Trains With Batteries

Hitachi have so far announced three battery-electric trains. Two are based on battery packs being developed and built by Hyperdrive Innovation.

Hyperdrive Innovation

Looking at the Hyperdrive Innovation web site, I like what I see.

Hyperdrive Innovation provided the battery packs for JCB’s first electric excavator.

Note that JCB give a five-year warranty on the Hyperdrive batteries.

Hyperdrive have also been involved in the design of battery packs for aircraft push-back tractors.

The battery capacity for one of these is given as 172 kWh and it is able to supply 34 kW.

I was very surprised that Hitachi didn’t go back to Japan for their batteries, but after reading Hyperdrive’s web site about the JCB and Textron applications, there would appear to be good reasons to use Hyperdrive.

  • Hyperdrive have experience of large lithium ion batteries.
  • Hyperdrive have a design, develop and manufacture model.
  • They seem to able to develop solutions quickly and successfully.
  • Battery packs for the UK and Europe are made in Sunderland.
  • Hyperdrive are co-operating with Nissan, Warwick Manufacturing Group and Newcastle University.
  • They appear from the web site to be experts in the field of battery management, which is important in prolonging battery life.
  • Hyperdrive have a Taiwanese partner, who manufactures their battery packs for Taiwan and China.
  • I have done calculations based on the datasheet for their batteries and Hyperdrive’s energy density is up with the best

I suspect, that Hitachi also like the idea of a local supplier, as it could be helpful in the negotiation of innovative applications. Face-to-face discussions are easier, when you’re only thirty miles apart.

Hitachi Regional Battery Train

The first train to be announced was the Hitachi Regional Battery Train, which is described in this Hitachi infographic.

Note.

  1. It is only a 100 mph train.
  2. The batteries are to be designed and manufactured by Hyperdrive Innovation.
  3. It has a range of 56 miles on battery power.
  4. Any of Hitachi’s A Train family like Class 800, 802 or 385 train can be converted to a Regional Battery Train.

No orders have been announced yet.

But it would surely be very suitable for routes like.

  • London Paddington And Bedwyn
  • London Paddington And Oxford

It would also be very suitable for extensions to electrified suburban routes like.

  • London Bridge and Uckfield
  • London Waterloo and Salisbury
  • Manchester Airport and Windermere.
  • Newcastle and Carlisle

It would also be a very sound choice to extend electrified routes in Scotland, which are currently run by Class 385 trains.

Hitachi InterCity Tri-Mode Battery Train

The second train to be announced was the Hitachi InterCity Tri-Mode Battery Train, which is described in this Hitachi infographic.

Note.

  1. Only one engine is replaced by a battery.
  2. The batteries are to be designed and manufactured by Hyperdrive Innovation.
  3. Typically a five-car Class 800 or 802 train has three diesel engines and a nine-car train has five.
  4. These trains would obviously be capable of 125 mph on electrified main lines and 140 mph on lines fully equipped with digital in-cab ERTMS signalling.

Nothing is said about battery range away from electrification.

Routes currently run from London with a section without electrification at the other end include.

  • London Kings Cross And Harrogate – 18.3 miles
  • London Kings Cross And Hull – 36 miles
  • London Kings Cross And Lincoln – 16.5 miles
  • London Paddington And Bedwyn – 13.3 miles
  • London Paddington And Oxford – 10.3 miles

In the March 2021 Edition of Modern Railways, LNER are quoted as having aspirations to extend the Lincoln service to Cleethorpes.

  • With all energy developments in North Lincolnshire, this is probably a good idea.
  • Services could also call at Market Rasen and Grimsby.
  • Two trains per day, would probably be a minimum frequency.

But the trains would need to be able to run around 64 miles each way without electrification. Very large batteries and/or charging at Cleethorpes will be needed.

Class 803 Trains For East Coast Trains

East Coast Trains have ordered a fleet of five Class 803 trains.

  • These trains appear to be built for speed and fast acceleration.
  • They have no diesel engines, which must save weight and servicing costs.
  • But they will be fitted with batteries for emergency power to maintain onboard  train services in the event of overhead line failure.
  • They are planned to enter service in October 2021.

Given that Hyperdrive Innovation are developing traction batteries for the other two Hitachi battery trains, I would not be the least bit surprised if Hyperdrive were designing and building the batteries for the Class 803 trains.

  • Hyperdrive batteries are modular, so for a smaller battery you would use less modules.
  • If all coaches are wired for a diesel engine, then they can accept any power module like a battery or hydrogen pack, without expensive redesign.
  • I suspect too, that the battery packs for the Class 803 trains could be tested on an LNER Class 801 train.

LNER might also decide to replace the diesel engines on their Class 801 trains with an emergency battery pack, if it were more energy efficient and had a lighter weight.

Thoughts On The Design Of The Hyperdrive innovation Battery Packs

Consider.

  • Hitachi trains have a sophisticated computer system, which on start-up can determine the configuration of the train or whether it is more than one train running as a longer formation or even being hauled by a locomotive.
  • To convert a bi-mode Class 800 train to an all-electric Class 801 the diesel engines are removed. I suspect that the computer is also adjusted, but train formation may well be totally automatic and independent of the driver.
  • Hyperdrive Innovation’s battery seem to be based on a modular system, where typical modules have a capacity of 5 kWh, weighs 32 Kg and has a volume of 0.022 cu metres.
  • The wet mass of an MTU 16V 1600 R80L diesel engine commonly fitted to AT-300 trains of different types is 6750 Kg or nearly seven tonnes.
  • The diesel engine has a physical size of 1.5 x 1.25 x 0.845 metres, which is a volume of 1.6 cubic metres.
  • In How Much Power Is Needed To Run A Train At 125 mph?, I calculated that a five-car Class 801 electric train, needed 3.42 kWh per vehicle-mile to maintain 125 mph.
  • It is likely, than any design of battery pack, will handle the regenerative braking.

To my mind, the ideal solution would be a plug compatible battery pack, that the train’s computer thought was a diesel engine.

But then I have form in the area of plug-compatible electronics.

At the age of sixteen, for a vacation job, I worked in the Electronics Laboratory at Enfield Rolling Mills.

It was the early sixties and one of their tasks was at the time replacing electronic valve-based automation systems with new transistor-based systems.

The new equipment had to be compatible to that which it replaced, but as some were installed in dozens of places around the works, they had to be able to be plug-compatible, so that they could be quickly changed. Occasionally, the new ones suffered infant-mortality and the old equipment could just be plugged back in, if there wasn’t a spare of the new equipment.

So will Hyperdrive Innovation’s battery-packs have the same characteristics as the diesel engines that they replace?

  • Same instantaneous and continuous power output.
  • Both would fit the same mountings under the train.
  • Same control and electrical power connections.
  • Compatibility with the trains control computer.

I think they will as it will give several advantages.

  • The changeover between diesel engine and battery pack could be designed as a simple overnight operation.
  • Operators can mix-and-match the number of diesel engines and battery-packs to a given route.
  • As the lithium-ion cells making up the battery pack improve, battery capacity and performance can be increased.
  • If the computer, is well-programmed, it could reduce diesel usage and carbon-emissions.
  • Driver conversion from a standard train to one equipped with batteries, would surely be simplified.

As with the diesel engines, all battery packs could be substantially the same across all of Hitachi’s Class 80x trains.

What Size Of Battery Would Be Possible?

If Hyperdrive are producing a battery pack with the same volume as the diesel engine it replaced, I estimate that the battery would have a capacity defined by.

5 * 1.6 / 0.022 = 364 kWh

In an article in the October 2017 Edition of Modern Railways, which is entitled Celling England By The Pound, Ian Walmsley says this in relation to trains running on the Uckfield Branch, which is not very challenging.

A modern EMU needs between 3 and 5 kWh per vehicle mile for this sort of service.

As a figure of 3.42 kWh per vehicle-mile to maintain 125 mph, applies to a Class 801 train, I suspect that a figure of 3 kWh or less could apply to a five-car Class 800 train trundling at around 80-100 mph to Bedwyn, Cleethorpes or Oxford.

  • A one-battery five-car train would have a range of 24.3 miles
  • A two-battery five-car train would have a range of 48.6 miles
  • A three-battery five-car train would have a range of 72.9 miles

Note.

  1. Reducing the consumption to 2.5 kWh per vehicle-mile would give a range of 87.3 miles.
  2. Reducing the consumption to 2 kWh per vehicle-mile would give a range of 109.2 miles.
  3. Hitachi will be working to reduce the electricity consumption of the trains.
  4. There will also be losses at each station stop, as regenerative braking is not 100 % efficient.

But it does appear to me, that distances of the order of 60-70 miles would be possible on a lot of routes.

Bedwyn, Harrogate, Lincoln and Oxford may be possible without charging before the return trip.

Cleethorpes and Hull would need a battery charge before return.

A Specification For A High Speed Metro Train

I have called the proposed train a High Speed Metro Train, as it would run at up to 140 mph on an existing high speed line and then run a full or limited stopping service to the final destination.

These are a few thoughts.

Electrification

In some cases like London Kings Cross and King’s Lynn, the route is already electrified and batteries would only be needed for the following.

  • Handling regenerative braking.
  • Emergency  power in case of overhead line failure.
  • Train movements in depots.

But if the overhead wires on a branch line. are in need of replacement, why not remove them and use battery power? It might be the most affordable and least disruptive option to update the power supply on a route.

The trains would have to be able to run on both types of electrification in the UK.

  • 25 KVAC overhead.
  • 750 VDC third rail.

This dual-voltage capability would enable the extension of Southeastern Highspeed services.

Operating Speed

The trains must obviously be capable of running at the maximum operating speed on the routes they travel.

  • 125 mph on high speed lines, where this speed is possible.
  • 140 mph on high speed lines equipped with full digital in-cab ERTMS signalling, where this speed is possible.

The performance on battery power must be matched with the routes.

Hitachi have said, that their Regional Battery trains can run at up to 100 mph, which would probably be sufficient for most secondary routes in the UK and in line with modern diesel and electric multiple units.

Full Digital In-cab ERTMS Signalling

This will be essential and is already fitted to some of Hitachi’s trains.

Regenerative Braking To Batteries

Hitachi’s battery electric  trains will probably use regenerative braking to the batteries, as it is much more energy efficient.

It also means that when stopping at a station perhaps as much as 70-80% of the train’s kinetic energy can be captured in the batteries and used to accelerate the train.

In Kinetic Energy Of A Five-Car Class 801 Train, I showed that at 125 mph the energy of a full five-car train is just over 100 kWh, so batteries would not need to be unduly large.

Acceleration

This graph from Eversholt Rail, shows the acceleration and deceleration of a five-car Class 802 electric train.

As batteries are just a different source of electric power, I would think, that with respect to acceleration and deceleration, that the performance of a battery-electric version will be similar.

Although, it will only achieve 160 kph instead of the 200 kph of the electric train.

I estimate from this graph, that a battery-electric train would take around 220 seconds from starting to decelerate for a station to being back at 160 kph. If the train was stopped for around eighty seconds, a station stop would add five minutes to the journey time.

London Kings Cross And Cleethorpes

As an example consider a service between London Kings Cross and Cleethorpes.

  • The section without electrification between Newark and Cleethorpes is 64 miles.
  • There appear to be ambitions to increase the operating speed to 90 mph.
  • Local trains seem to travel at around 45 mph including stops.
  • A fast service between London Kings Cross and Cleethorpes would probably stop at Lincoln Central, Market Rasen and Grimsby Town.
  • In addition, local services stop at Collingham, Hykeham, Barnetby and Habrough.
  • London Kings Cross and Newark takes one hour and twenty minutes.
  • London Kings Cross and Cleethorpes takes three hours and fifteen minutes with a change at Doncaster.

I can now calculate a time between Kings Cross and Cleethorpes.

  • If a battery-electric train can average 70 mph between Newark and Cleethorpes, it would take 55 minutes.
  • Add five minutes for each of the three stops at Lincoln Central, Market Rasen and Grimsby Town
  • Add in the eighty minutes between London Kings Cross and Newark and that would be  two-and-a-half hours.

That would be very marketing friendly and a very good start.

Note.

  1. An average speed of 80 mph would save seven minutes.
  2. An average speed of 90 mph would save twelve minutes.
  3. I suspect that the current bi-modes would be slower by a few minutes as their acceleration is not as potent of that of an electric train.

I have a feeling London Kings Cross and Cleethorpes via Lincoln Central, Market Rasen and Grimsby Town, could be a very important service for LNER.

Interiors

I can see a new lightweight and more energy efficient interior being developed for these trains.

In addition some of the routes, where they could be used are popular with cyclists and the current Hitachi trains are not the best for bicycles.

Battery Charging

Range On Batteries

I have left this to last, as it depends on so many factors, including the route and the quality of the driving or the Automatic Train Control

Earlier, I estimated that a five-car train with all three diesel engines replaced by batteries, when trundling around Lincolnshire, Oxfordshire or Wiltshire could have range of up to 100 miles.

That sort of distance would be very useful and would include.

  • Ely and Norwich
  • Newark and Cleethorpes
  • Salisbury and Exeter

It might even allow a round trip between the East Coast Main Line and Hull.

The Ultimate Battery Train

This press release from Hitachi is entitled Hitachi And Eversholt Rail To Develop GWR Intercity Battery Hybrid Train – Offering Fuel Savings Of More Than 20%.

This is a paragraph.

The projected improvements in battery technology – particularly in power output and charge – create opportunities to replace incrementally more diesel engines on long distance trains. With the ambition to create a fully electric-battery intercity train – that can travel the full journey between London and Penzance – by the late 2040s, in line with the UK’s 2050 net zero emissions target.

Consider.

  • Three batteries would on my calculations give a hundred mile range.
  • Would a train with no diesel engines mean that fuel tanks, radiators and other gubbins could be removed and more or large batteries could be added.
  • Could smaller batteries be added to the two driving cars?
  • By 2030, let alone 2040, battery energy density will have increased.

I suspect that one way or another these trains could have a range on battery power of between 130 and 140 miles.

This would certainly be handy in Scotland for the two routes to the North.

  • Haymarket and Aberdeen, which is 130 miles without electrification.
  • Stirling and Inverness, which is 111 miles without electrification, if the current wires are extended from Stirling to Perth, which is being considered by the Scottish Government.

The various sections of the London Paddington to Penzance route are as follows.

  • Paddington and Newbury – 53 miles – electrified
  • Newbury and Taunton – 90 miles – not electrified
  • Taunton and Exeter – 31 miles – not electrified
  • Exeter and Plymouth – 52 miles – not electrified
  • Plymouth and Penzance – 79 miles – not electrified

The total length of the section without electrification between Penzance and Newbury  is a distance of 252 miles.

This means that the train will need a battery charge en route.

I think there are three possibilities.

  • Trains can take up to seven minutes for a stop at Plymouth. As London and Plymouth trains will need to recharge at Plymouth before returning to London, Plymouth station could be fitted with comprehensive recharge facilities for all trains passing through. Perhaps the ideal solution would be to electrify all lines and platforms at Plymouth.
  • Between Taunton and Exeter, the rail line runs alongside the M5 motorway. This would surely be an ideal section to electrify, as it would enable battery electric trains to run between Exeter and both Newbury and Bristol.
  • As some trains terminate at Exeter, there would probably need to be charging facilities there.

I believe that the date of the late 2040s is being overly pessimistic.

I suspect that by 2040 we’ll be seeing trains between London and Aberdeen, Inverness and Penzance doing the trips without a drop of diesel.

But Hitachi are making a promise of London and Penzance by zero-carbon trains, by the late-2040s, because they know they can keep it.

And Passengers and the Government won’t mind the trains being early!

Conclusion

This could be a very useful train to add to Hitachi’s product line.

 

 

 

March 9, 2021 Posted by | Transport | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a comment

Approaching Kings Cross – 19th February 2021

I took these pictures approaching Kings Cross.

Comparing these pictures to those in Approaching Kings Cross – 6th January 2021, show that work is progressing.

February 19, 2021 Posted by | Transport | , | 1 Comment

Parallel Trains At Finsbury Park

I was travelling from Finsbury Park to Kings Cross, so I got on a Grand Northern service.

Like I’ve seen several times, there was a good cross-platform connection, between services going to Kings Cross and Moorgate, which leave from opposite sides of the same platform.

Note.

  1. The wide platform at Finsbury Park station between the two services.
  2. At the current time, the Kings Cross trains are every thirty minutes and the Moorgate trains every five minutes.
  3. Going say from Stevenage to the City would mean a wait of no more than five minutes.
  4. But going North, you might wait at Finsbury Park for up to half-an-hour.

Finsbury Park could be a very handy interchange as it has Thameslink, Victoria and Piccadilly Line services, in addition to the Kings Cross and Cambridge and Moorgate services.

January 13, 2021 Posted by | Transport | , , , , | Leave a comment

Approaching Kings Cross – 6th January 2021

I took these pictures approaching Kings Cross.

Note.

  1. There is still track to be laid.
  2. The electrification is still to be erected.

But everything seems to be getting there.

This Google Map shows the section between the two tunnels.

Both tunnels have three double-track bores, where in this massive project, the Eastern bores are being brought back into use to add capacity to Kings Cross station.

Note.

  1. The East Coast Main Line runs North-South across the map.
  2. The quadruple track crossing East-West at the top of the map is the North London Line.
  3. Below it, is the Channel Tunnel Rail Link into |St. Pancras.
  4. The link to the Canal Tunnels take Thameslink trains to the deep level platforms in St. Pancras.
  5. The two new tracks will be on the Eastern side of the East Coast Main Line.

This second Google Map shows the track and platform layout at Kings Cross station.

Note.

  1. There are twelve platforms, which are numbered from 0 to 11, with Platform 0 in the East.
  2. The various islands are numbered as follows from East to West; 0/1, 2/3, 4/5, 6/7, 8/9 and 10/11.
  3. The six tracks through the tunnels may be bi-directional, so will each track be linked to a pair of platforms?
  4. Platforms 0 to 4 are in the Eastern half of the station
  5. Platforms 5 to 0 are in the Western half of the station
  6. Platforms 9, 10 and 11 are short platforms  in the old suburban station, which is mainly used by suburban services to Cambridge and Kings Lynn.

When I arrived there was a five-car Azuma in Platform 9, as these pictures show.

I’ve seen Grand Central’s Class 180 trains in these short platforms before, so is this going to be a regular occurrence.

Services Into Kings Cross

When the remodelling at Kings Cross is complete, current plans say the following trains will be running into Kings Cross station.

  • LNER – Two tph – Edinburgh – Long train
  • LNER – Two tph – Leeds – Long train
  • LNER – One tph – Lincoln or York – Long or short train
  • Great Northern – Two tph – Cambridge (stopping) – Short train
  • Great Northern – Two tph – Cambridge (fast) – Short train
  • Hull trains – Seven tpd – Hull and Beverley – Short train
  • East Coast Trains – Five tpd – Edinburgh – Short train
  • Grand Central – Four tpd – Bradford Interchange – Long or short train
  • Grand Central – Five tpd – Sunderland – Long or short train

Note,

  1. tph is trains per hour and tpd is trains per day.
  2. There is a mixture of short and long trains.
  3. Short trains can fit all platforms, but long trains can only use platforms 0-8.
  4. There are nine tph and a total of 21 tpd in various less-frequent services.

My scheduling experience in other fields, says that ten platforms will be needed for a full service, with each of the ten platforms handling just one tph.

Conclusion

Wjen all the work is completed, Kings Cross station will have room for a few extra trains.

 

 

January 12, 2021 Posted by | Transport | , , , , , , , , | 1 Comment

Is The Eastern Leg Of High Speed Two Under Threat?

This page on the High Speed Two web site is entitled HS2 Phase 2b Eastern Leg.

These are the opening three paragraphs.

Earlier this year the government made clear in its response to the Oakervee Review its commitment to Phase 2b of HS2, ensuring we boost capacity, improve connectivity between our regions and share prosperity.

As part of this, the government plans to present an Integrated Rail Plan for the North and Midlands by the end of the year, informed by an assessment from the National Infrastructure Commission, which will look at how to deliver HS2 Phase 2b, Northern Powerhouse Rail, Midlands Rail Hub and other rail programmes better and more effectively.

In the meantime, the government has asked HS2 Ltd to pause work on the Eastern Leg. We recognise that this causes uncertainty and our Eastern Leg community engagement teams remain in place to support you.

The page then says that the work on the Western Leg should proceed, with the aim of a Western Leg Bill in early 2022.

In Northern Powerhouse Rail – Significant Upgrades Of The East Coast Main Line From Leeds To Newcastle (Via York And Darlington) And Restoration Of The Leamside Line, I showed that the current and future upgrades to the East Coast Main Line, required by the East Coast Main Line, Northern Powerhouse Rail and High Speed Two, will greatly reduce the times on services from London Kings Cross to Doncaster, Yorkshire, the North East and Scotland.

I said this on timings on the East Coast Main Line.

  • London Kings Cross and Doncaster could be around an hour.
  • London Kings Cross and Leeds could be around one hour and thirty minutes, using the current Doncaster and Leeds time, as against the one hour and twenty-one minutes for High Speed Two.
  • London Kings Cross and York could be around one hour and twenty-three minutes, using the current Doncaster and York time, as against the one hour and twenty-four minutes for High Speed Two.
  • Timings between York and Newcastle would be the same fifty-two minutes as High Speed Two, as the track will be the limitation for both services.
  • High Speed Two’s timing for York and Newcastle is given as fifty-two minutes, with York and Darlington as twenty-five minutes.
  • London Kings Cross and Darlington could be around one hour and forty-nine minutes
  • London Kings Cross and Newcastle could be around two hours and sixteen minutes.
  • London Kings Cross and Edinburgh would be under three-and-a-half hours, as against the proposed three hours and forty-eight minutes for High Speed Two.

LNER’s Azuma cavalry will hold the fort for as long as is needed.

I’ll now look at how various stations, will be affected if the Eastern Leg of High Speed Two is not built, until a couple of decades in the future.

Leeds

Current Long Distance Services At Leeds Station

Leeds station has the following long distance services in trains per hour (tph)

  • CrossCountry – 1
  • LNER – 2
  • TransPennine Express – 5

It is a bit thin compared to say Birmingham or Manchester.

Northern Powerhouse Rail And Leeds

Northern Powerhouse Rail has plans for Leeds with these services to other Northern cities.

  • Hull – two tph in 38 minutes
  • Manchester – six tph in 25 minutes
  • Newcastle – four tph in 58 minutes
  • Sheffield – four tph in 28 minutes.

From what they have written, the following could also be possible.

  • Bradford – six tph in a few minutes
  • Liverpool – four or more tph in 51 minutes
  • Manchester Airport – four or more tph in 35 minutes

It is an ambitious plan.

High Speed Two And Leeds

High Speed Two is planning to run the following trains to Leeds in every hour.

  • Birmingham Curzon Street and Leeds – 200 metre train
  • Birmingham Curzon Street and Leeds via East Midlands Hub – 200 metre train
  • London Euston and Leeds via Old Oak Common and East Midlands Hub – 200 metre train
  • London Euston and Leeds via Old Oak Common and East Midlands Hub – 400 metre train
  • London Euston and Leeds via Old Oak Common, Birmingham Interchange and East Midlands Hub – 400 metre train

Timings will be as follows.

  • Birmingham Curzon Street and Leeds – 49 minutes.
  • London Euston and Leeds – One hour and 21 minutes.

There will be about 1000 seats per hour between Birmingham Curzon Street and Leeds and 2500 seats per hour Between London Euston and Leeds.

High Speed Two And Leeds Via Manchester

This report on the Transport for the North web site, is entitled At A Glance – Northern Powerhouse Rail.

This map shows Transport for the North’s ideas for connections in the West linking Crewe, Liverpool, Manchester, Manchester Airport, Warrington and Wigan.

A black line goes East from Manchester to link it to Leeds via Huddersfield and Bradford.

  • This is proposed as a route shared between High Speed Two and Northern Powerhouse Rail.
  • High Speed Two are promising that London Euston and Manchester will be timed at one hour and eleven minutes.
  • London Euston and Manchester will have a frequency of three tph and will all be 400 metre High Speed Two Full Size trains, with about a thousand seats.
  • Northern Powerhouse Rail have an objective of a twenty-five minute journey time between Manchester and Leeds.

I would also build the Manchester and Leeds route with the following characteristics.

  • As a full-size tunnel capable of taking High Speed Two Full Size trains and the largest freight trains.
  • Intermediate and underground stations at Huddersfield and Bradford.
  • It could be built as a base tunnel, like the similarly-sized Gotthard base tunnel in Switzerland.
  • The Swiss tunnel has a maximum operating speed for passenger trains of 125 mph.

If it can be built for a reasonable cost and in a reasonable time-scale, it could be a way of doing the following.

  • Creating a straight 150 mph plus route across the Pennines, with a capacity of 18 tph.
  • Running high-capacity fast trains between London Euston and Leeds via Manchester Airport and Manchester.
  • Running freight trains between the two sides of the Pennines.
  • Creating a high frequency route between Liverpool and Hull via Manchester Airport, Manchester, Huddersfield and Bradford and Leeds.

The passenger service between Liverpool and Hull could be the world’s first high speed metro.

If the London Euston and Manchester trains, were to be extended to Leeds, London Euston and Leeds would take one hour and thirty-six minutes, which would only be fifteen minutes slower, than is promised for the route going via the Eastern Leg of High Speed Two.

London Kings Cross And Leeds

When the in-cab digital signalling is complete between London Kings Cross and Leeds, I am fairly confident that with a few other improvements and more zoom from the Azumas, that a London Kings Cross and Leeds time of one hour and fifty minutes will be possible.

But will two nine-car or pairs of five-car trains per hour (tph), be enough capacity? Especially, as pairs of five-car trains will split and join to serve a wider catchment area, which will harvest more passengers.

LNER will in a couple of years have an extra path every hour into Kings Cross.

I would feel that best use of this path would be to run between London Kings Cross and Edinburgh via Leeds and Newcastle.

  • Leeds and Newcastle could be the only intermediate stops.
  • Leeds would be the ideal place to change to Northern Powerhouse Rail for anywhere in the North of England.
  • My estimates, say it could run between London Kings Cross and Edinburgh in around three-and-a-half hours.
  • It would run non-stop between London Kings Cross and Leeds, Leeds and Newcastle and Newcastle and Edinburgh.

It would increase capacity, between the four major destinations on the route; London Kings Cross, Leeds, Newcastle and Edinburgh.

It could start running, once the digital signalling and current improvements to the East Coast Main Line are complete.

London St. Pancras And Leeds

I discussed, Northern Powerhouse Rail’s plan for Sheffield and Leeds in Northern Powerhouse Rail – Connecting Sheffield To HS2 And On To Leeds.

This could see the following new infrastructure.

  • Electrification between Clay Cross North Junction and Sheffield station of the route shared by the Midland Main Line and High Speed Two.
  • Electrification through Sheffield and on to Leeds, via the Wakefield Line
  • New stations for High Speed trains at Rotherham and Barnsley Dearne Valley.

I could see East Midlands Railway taking advantage of this route, with their new Class 810 trains and running a regular Leeds and St. Pancras service.

  • It would call at Wakefield Westgate, Barnsley Dearne Valley, Rotherham and Meadowhall. between Leeds and Sheffield stations.
  • It would take twenty-eight minutes between Leeds and Sheffield, if it met Northern Powerhouse Rail’s objective.
  • Perhaps one of the two tph between London St. Pancras and Sheffield could be extended to Leeds.

As the current time between London St. Pancras and Sheffield, is a few minutes under two hours, I can see a time of comfortably under two-and-a-half hours between London St. Pancras and Leeds.

A Summary Of Journey Times Between London And Leeds

I can summarise my estimates, between London and Leeds.

  • High Speed Two – Direct via Eastern Leg – One hour and twenty-one minutes.
  • High Speed Two – via Manchester – One hour and thirty-six minutes.
  • East Coast Main Line – via Doncaster – One hour and thirty minutes.
  • Midland Main Line – via Derby and Sheffield – Two hours and twenty minutes.

The direct High Speed Two route is the fastest., but others could be viable alternatives for some passengers.

Bradford

Consider.

  • Under current plans Bradford won’t be getting any high speed service from High Speed Two.
  • The best it can get under current plans is several direct services per day, between Bradford Forster Square and London Kings Cross in perhaps two hours.
  • The layout of the city and its two stations doesn’t give good connectivity.

Bradford, Harrogate, Huddersfield and Skipton could probably be served by trains to and from London Kings Cross that join and split at Leeds.

But if Northern Powerhouse Rail goes for a tunnel between Manchester and Leeds with Bradford as an underground station, it could be served by High Speed Two services going between London Euston and Leeds via Manchester.

I would estimate that if London Euston and Leeds via Manchester took around one hour and thirty-six minutes, London Euston and Bradford could take around an hour-and-a-half.

Darlington

I can summarise my estimates, between London and Darlington.

  • High Speed Two – Direct via Eastern Leg – One hour and forty-nine minutes.
  • High Speed Two – via Manchester and Leeds – Two hours and six minutes.
  • East Coast Main Line – via Doncaster – One hour and forty-nine minutes.

Improvements on the East Coast Main Line, needed to enable and speed-up High Speed Two services to York, Darlington and Newcastle; will speed up East Coast Main Line services to Darlington.

Edinburgh

I can summarise my estimates, between London and Edinburgh.

  • High Speed Two – Direct via Western Leg – Three hours and Forty minutes.
  • High Speed Two – via Manchester and Leeds – Three hours and forty-eight minutes.
  • East Coast Main Line – via Doncaster – Three hours and thirty minutes.

Improvements on the East Coast Main Line, needed to enable and speed-up High Speed Two services to York, Darlington and Newcastle; will speed up East Coast Main Line services to Newcastle.

Harrogate

Consider.

  • Under current plans Harrogate won’t be getting any high speed service from High Speed Two.
  • The best it can get under current plans is several direct services per day, between Harrogate and London Kings Cross in perhaps two hours.

Bradford, Harrogate, Huddersfield and Skipton could possibly  be served by trains to and from London Kings Cross that join and split at Leeds.

Huddersfield

  • If Huddersfield is served by underground platforms beneath the current Huddersfield station, a lot of what I said for Bradford would apply to Huddersfield.
  • The timings would probably be around an-hour-and-a-half from London Euston.

Bradford, Harrogate, Huddersfield and Skipton could possibly be served by trains to and from London Kings Cross that join and split at Leeds.

Hull

Hull is an interesting destination.

  • Reaching Hull from the current High Speed Two network will need a change at Leeds or another station.
  • Using Northern Powerhouse Rail’s objectives on timings, London Euston and Hull via Manchester on High Speed Two, would be a few minutes under two-and-a-half hours.
  • I strongly feel, that London Kings Cross and Hull via Selby could be reduced to below two hours.

Hull would also make a superb Eastern terminal station for both Northern Powerhouse Rail and a High Speed Two service from London via Manchester and Leeds.

You pays your money and takes your choice.

Middlesbrough

Reaching Middlesbrough from the proposed High Speed Two network will need a change at York or another station.

But a time of two hours and twenty minutes, should be possible using the East Coast Main Line via Doncaster.

Improvements on the East Coast Main Line, needed to enable and speed-up High Speed Two services to York, Darlington and Newcastle, will speed up East Coast Main Line services to Middlesbrough.

Newcastle

I can summarise my estimates, between London and Newcastle.

  • High Speed Two – Direct via Eastern Leg – Two hours and seventeen minutes.
  • High Speed Two – via Manchester and Leeds – Two hours and thirty-four minutes.
  • East Coast Main Line – via Doncaster – Two hours and sixteen minutes.

Improvements on the East Coast Main Line, needed to enable and speed-up High Speed Two services to York, Darlington and Newcastle; will speed up East Coast Main Line services to Newcastle.

Nottingham

I will compare average speeds on the Midland Main Line between London St. Pancras and Nottingham and on the East Coast Main Line, between London Kings Cross and Leeds.

Currently.

  • London St. Pancras and Nottingham services, over the 126 mile route, take one hour and fifty minutes. which is an average speed of 69 mph.
  • London Kings Cross and Leeds services, over the 186 mile route, take two hours and thirteen minutes, which is an average speed of 94 mph.

Note.

  1. The two routes are of similar character and are fairly straight with large sections of 125 mph running and quadruple tracks.
  2. The East Coast Main Line to Leeds  is fully electrified, whereas the Midland Main Line is only partially electrified.
  3. Both routes have a small number of stops.
  4. In a few years time, services on both routes will be run by different members of the Hitachi AT-300 train family.

I don’t feel it would be unreasonable to assume that a London St. Pancras and Nottingham service could be run at an average speed of 94 mph, if the Midland Main Line were upgraded to the same standard as the East Coast Main Line.

This could mean a time of around one hour and twenty-one minutes between London St. Pancras and Nottingham, or a saving of twenty-nine minutes.

Is that possible?

  • The new Class 810 trains, will have four engines instead of the normal three for a five-car AT-300 train. Will they be able to be closer to the 125 mph line-speed on diesel power, where it is available on the Midland Main Line.
  • The trains will be able to use electrification between London St. Pancras and Market Harborough.
  • There have been hints, that more electrification may be installed on the Midland Main Line.
  • Hitachi have announced a battery electric version of the AT-300 train called a Regional Battery Train, where one or more of the diesel engines are replaced by battery packs.
  • The new trains will be ready to accept in-cab ERTMS digital signalling, so they could be able to run at up to 140 mph, if the track were to be upgraded.

I certainly feel, that substantial time savings could be possible between London St. Pancras and Nottingham.

Eighty-one minutes would be very convenient, as it would comfortably allow a three hour round trip, which would mean just six trains or more likely pairs of trains would be needed for the current two tph service.

Eighty-one minutes would not be the fifty-two minute service promised by High Speed Two!

But!

  • The new trains are planned to be introduced from 2023.
  • Who knows, when High Speed Two will arrive at the East Midlands Hub station?
  • They won’t need any new substantial infrastructure to replace the current trains.

I also suspect the new trains will have more seats, but, the capacity of the Class 810 train, has not been published.

Nottingham could also be served by a high speed service from London Kings Cross via Grantham, which I estimate would take about one hour and twenty minutes.

Sheffield

A lot of what I said for Nottingham can be applied to Sheffield.

  • Currently, London St. Pancras and Sheffield services, over the 165 mile route, take two hours, which is an average speed of 82.5 mph.
  • High Speed Two is promising a journey time of one hour and twenty-seven minutes.
  • An average speed of 90 mph, would mean a journey time of one hour and fifty minutes.
  • This would allow a four hour round trip, which would mean just eight trains or more likely pairs of trains would be needed for the current two tph service.

It would be very convenient for the operator.

It looks like if pairs of trains were to be run on both the Nottingham and Sheffield routes, that twenty-eight trains would be needed to run both services.

This fits well with a fleet size of thirty-three trains.

The only caveat, is that to get the required journey times, it might be necessary to rebuild and electrify the tracks, between Sheffield and Clay Cross North Junction.

  • These tracks will be shared with the future Sheffield Branch of High Speed Two.
  • It would only be 15.5 miles of double-track to rebuild and electrify.
  • It could be rebuilt to allow 140 mph running. Several minutes could be saved!

The electrification could allow Hitachi’s Regional Battery trains to be able to run the Sheffield service.

These trains would certainly be a way of avoiding the tricky electrification of the Derby and Clay Cross section of the route, which goes through the World Heritage Site of the Derwent Valley Mills.

Sheffield could also be served by a high speed service from London Kings Cross via Doncaster, which I estimate would take about one hour and thirty minutes.

Skipton

Consider.

  • Under current plans Skipton won’t be getting any high speed service from High Speed Two.
  • The best it can get under current plans is several direct services per day, between Skipton and London Kings Cross in perhaps two hours.

Bradford, Harrogate, Huddersfield and Skipton could possibly  be served by trains to and from London Kings Cross that join and split at Leeds.

Sunderland

Reaching Sunderland from the proposed High Speed Two network will need a change at York or another station.

But a time of two hours and thirty minutes, should be possible using the East Coast Main Line via Doncaster.

Improvements on the East Coast Main Line, needed to enable and speed-up High Speed Two services to York, Darlington and Newcastle, will speed up East Coast Main Line services to Sunderland.

York

I can summarise my estimates, between London and York.

  • High Speed Two – Direct via Eastern Leg – One hour and twenty-four minutes.
  • High Speed Two – via Manchester and Leeds – One hour and forty-two minutes.
  • East Coast Main Line – via Doncaster – One hour and twenty-four minutes.

Improvements on the East Coast Main Line, needed to enable and speed-up High Speed Two services to York, Darlington and Newcastle; will speed up East Coast Main Line services to York.

I believe strongly, that York would be about as fast from London, by either of the direct routes, but both would serve different intermediate destinations.

Conclusion

My first conclusion is a surprising one, but the promised timings from High Speed Two and the current timings in the timetable make it clear.

To achieve the required timings for High Speed Two, major improvements must be made to existing track and these improvements will mean that existing services will be competitive with High Speed Two on time.

These improvements fall into this category.

  • Improving the East Coast Main Line between York and Newcastle, will make East Coast Main Line services to York, Darlington, Durham and Newcastle competitive with High Speed Two services.
  • Improving the East Coast Main Line between York and Newcastle, may also mean that London Kings Cross and Edinburgh will be faster than the High Speed Two service between London Euston and Edinburgh.
  • Electrifying the route shared between Sheffield and Clay Cross North Junction, will speed up London St. Pancras and Sheffield services and make them more competitive with High Speed Two.

I suspect there may be similar mutual improvements on the Western leg of High Speed Two.

Other smaller conclusions from my analysis of the improvements include.

  • These improvements will create some extra capacity on the East Coast and Midland Main Lines, by removing bottlenecks and improving line speeds.
  • Electrification, even if it is only partial or discontinuous, will improve services on the Midland Main Line.
  • Some places like Harrogate, Middlesbrough and Skipton will never be served directly by High Speed Two, but are easily served by East Coast Main Line services from London Kings Cross.
  • Northern Powerhouse Rail is very much part of the North-South capacity for England.
  • In-cab ERTMS signalling will play a large part in increasing capacity and line speeds.

Perhaps in our planning of High Speed Two, we should plan all the routes in the North and Midlands in a much more holistic way.

If we look at the capacity between London and the North, I feel that with the addition of Phase 1 of High Speed Two to Birmingham in 2029-2033 and hopefully Phase 2a soon afterwards, that Phase 2b will not be needed for reasons of speed and capacity until years later.

So, I would pause most construction of the Eastern Leg of High Speed Two until Phase 1 and Phase 2a are complete.

I would make exceptions for the following.

  • Improvements to the shared section of the East Coast Main Line and High Speed Two, between York and Newcastle.
  • Building a high speed connection between Leeds and York for the use of Northern Powerhouse Rail and the East Coast Main Line.
  • Rebuilding and electrification of the shared section of the Midland Main Line and High Speed Two, between Clay Cross North Junction and Sheffield.
  • Improve and electrify the route between Sheffield and Leeds.

But I would continue with the design, as I feel that East of Leeds is very much sub-optimal at the present time.

The route of the Eastern leg of High Speed Two would be safeguarded.

 

 

 

 

December 7, 2020 Posted by | Transport | , , , , , , , , , , , , , , , , , | Leave a comment

Approaching Kings Cross – 4th November 2020

I came into Kings Cross station backwards on the train from Grantham station. I took these two series of pictures.

Approaching Kings Cross

There are signs of track appearing and being laid.

From The Tunnel To The Platforms

My train arrived in Platform 5.

Conclusion

It is now possible to see how the two extra tracks into the station will significantly increase capacity.

 

 

November 5, 2020 Posted by | Transport | , | Leave a comment

Cleethorpes Station – 16th September 2020

On Wednesday, I took a trip on the South Humberside Main Line from Doncaster to Cleethorpes and back.

Cleethorpes station is a terminal station on the beach, with cafes not far away.

This Google Map shows the station and its position on the sea-front and the beach.

The station organisation was a bit shambolic at present, probably more to do with COVID-19 than anything else, but the station and the train services could be developed into something much better, when the good times return, as they surely will.

Improving The Station Facilities

The original station building is Grade II Listed and although it is only only a three-platform station, there used to be more platforms.

Five platforms or even six would be possible, if there were to be a need.

But as the station has wide platforms, is fully step-free and has most facilities passengers need, most of the improvements would involve restoring the original station building for a productive use.

The Current Train Service

The main train service is an hourly TransPennine Express service between Cleethorpes and Manchester Airport stations via Grimsby Town, Scunthorpe, Doncaster, Sheffield and Manchester Piccadilly.

The trains are Class 185 trains, which are modern diesel multiple units, which entered service in 2006.

There is also a two-hourly service along the Barton Line to Barton-upon-Humber station.

It should be noted that all services to and from Cleethorpes, call at Grimsby Town station.

Could The TransPennine Service Be Run By Battery Electric Trains?

The route between Cleethorpes and Manchester Airport can be split into the following legs.

  • Cleethorpes and Grimsby Town – Not Electrified – 3,25 miles – 8 minutes
  • Grimsby Town and Habrough – Not Electrified – 8 miles – 12 minutes
  • Habrough and Doncaster – Not Electrified – 41 miles – 56 minutes
  • Doncaster and Sheffield – Not Electrified – 19 miles – 29 minutes
  • Sheffield and Stockport – Not Electrified – 37 miles – 41 minutes
  • Stockport and Manchester Piccadilly – Electrified – 6 miles – 10 minutes
  • Manchester Piccadilly and Manchester Airport – Electrified – 11 miles – 12 minutes

Note.

  1. At the Manchester end of the route, trains are connected to the electrification for at least 44 minutes.
  2. The longest non-electrified leg is the 52 miles between Cleethorpes and Doncaster stations.
  3. Doncaster is a fully-electrified station.

This infographic shows the specification of a Hitachi Regional Battery Train.

TransPennine Express has a fleet of nineteen Class 802 trains, which can have their diesel engines replaced with battery packs to have a train with the following performance.

  • 125 mph operating speed, where electrification exists.
  • 56 mile range at up to 100 mph on battery power.
  • 15 minute battery charge time.
  • Regenerative braking to battery.
  • They are a true zero-carbon train.

What infrastructure would be needed, so they could travel between Cleethorpes and Manchester Airport stations?

  • If between Cleethorpes and Habrough stations were to be electrified, this would give at least 20 minutes of charging time, plus the time taken to turn the train at Cleethorpes. This would surely mean that a train would leave for Manchester, with a full load of electricity on board and sufficient range to get to Doncaster and full electrification.
  • If between Doncaster and Sheffield were to be electrified, this would give at least 25 minutes of charging time, which would be enough time to fully-charge the batteries, so that Grimsby Town in the East or Stockport in the West could be reached.

I suspect that Doncaster and Sheffield could be an early candidate for electrification for other reasons, like the extension of the Sheffield tram-train from Rotherham to Doncaster.

Could The Cleethorpes And Barton-on-Humber Service Be Run By Battery Electric Trains?

Cleethorpes And Barton-on-Humber stations are just 23 miles apart.

This is probably a short enough route to be handled on and out and back basis, with charging at one end by a battery electric train. Vivarail are claiming a sixty mile range for their battery electric Class 230 trains on this page of their web site.

If between Cleethorpes and Grimsby Town stations were to be electrified, this would mean that a range of only forty miles would be needed and the batteries would be charged by the electrification.

A full hourly service, which is surely needed, would need just two trains for the service and probably a spare.

Cleethorpes And London King’s Cross Via Grimsby Town, Market Rasen, Lincoln Central And Newark North Gate

The Wikipedia entry for Cleethorpes station has references to this service.

This is the historical perspective.

In the 1970s Cleethorpes had a twice daily return service to London King’s Cross, typically hauled by a Class 55 Deltic.

That must have been an impressive sight.

And this was National Express East Coast’s plan.

In August 2007, after National Express East Coast was awarded the InterCity East Coast franchise, it proposed to start services between Lincoln and London King’s Cross from December 2010 with one morning service and one evening service extending from Lincoln to Cleethorpes giving Cleethorpes a link to London and calling at Grimsby Town and Market Rasen. These services were to be operated using the Class 180s but was never introduced. These services were scrapped when East Coast took over the franchise.

It came to nothing, but LNER have been running up to five trains per day (tpd) between London King’s Cross and Lincoln.

I will split the route into legs.

  • London King’s Cross and Newark North Gate- Electrified – 120 miles
  • Newark North Gate and Lincoln Central – Not Electrified – 16,5 miles
  • Lincoln Central and Market Rasen – Not Electrified – 15 miles
  • Market Rasen and Habrough – Not Electrified – 21 miles
  • Habrough and Grimsby Town – Not Electrified – 8 miles
  • Grimsby Town and Cleethorpes – Not Electrified – 3.25 miles

Note that a  round trip between Newark North Gate and Lincoln Central is thirty-three miles.

This means it would be possible for one of LNER’s Class 800 trains, that had been fitted with a battery pack and converted into one of Hitachi’s Regional Battery trains, would be able to run a London King’s Cross and Lincoln Central service without using a drop of diesel or needing a charge at Lincoln Central station.

Would it be possible to extend this service to Grimsby Town on battery power?

I suggested earlier that between Cleethorpes and Habrough should be electrified.

As Newark North Gate and Habrough stations are 52.5 miles apart, it would be rather tight for a battery electric train to cover the whole route without an extra charge somewhere.

Possible solutions could be.

  • Fit a bigger battery in the trains.
  • Extend the electrification at Newark North Gate station.
  • Extend the electrification at Habrough station.

I;m sure that there is a solution, that is easy to install.

Conclusion

If between Habrough and Cleethorpes station were to be electrified, these services could be run by battery electric trains.

  • Cleethorpes and Manchester Piccadilly
  • Cleethorpes and Barton-on-Humber
  • Cleethorpes and London King’s Cross

Note.

  1. The Manchester and London services would be run by Hitachi Regional Battery Trains converted from Class 800 and Class 802 trains.
  2. The Barton service could be run by a Vivarail Class 230 train or similar.

The first two services would be hourly, with the London service perhaps 1 or 2 tpd.

Cleethorpes would be well and truly on the rail network.

September 18, 2020 Posted by | Health, Transport | , , , , , , , , , , , | 1 Comment

Approaching Kings Cross – 16th September 2020

I took these pictures yesterday, as my train approached Kings Cross station from Doncaster.

They seem to be making progress on adding two extra tracks into the station, which will be squeezed in on the Eastern side, and through an unused tunnel.

This is a Network Rail video, which explains the project.

Trackside Tim Overview of KX. Aug 19

The Capacity Increase At Kings Cross Station

Theoretically, increasing the number of tracks from four to six could increase the number of trains serving Kings Cross by fifty percent.

This Google Map shows Kings Cross station.

Note.

  1. Kings Cross station has twelve platforms, which are numbered 0-11, with 0 on the Eastern side.
  2. Platform 10 is due to be removed in the works.

This second Google Map shows the station throat to a large scale.

Note.

  1. The pairs of tracks leading to the current two tunnels can be clearly seen.
  2. Note how the track from Platform 0 comes right across to go through, what will be the middle tunnel.
  3. I would assume that six tracks going into eleven platforms would produce a less constricted layout.

 

Hopefully, when the new layout is complete, everything will be much easier.

I shall repeat this map, when the works are finished.

 

September 17, 2020 Posted by | Transport | , , | Leave a comment