The Anonymous Widower

The Old Order Changeth Yielding Place To New

Two dinosaurs; the Labour Party and the motor industry, got big shocks yesterday.

But both are trying to live in the past with CEOs, who still think that we’re in the 1960s.

This morning, my message read out on Wake Up To Money was this.

I don’t drive any more, but the future is electric and the UK is blessed with a position and a climate to become one of the first countries to power most vehicles with renewables. Vehicle manufacturers must change or die!

Our renewable electricity generation infrastructure is growing apace and in the last few days, the world’s largest offshore wind farm opened, as reported in this article on the BBC, which is entitled First Power From World’s Biggest Offshore Wind Farm.

The Hornsea Wind Farm will have a generating capacity of 6 GW. This is nearly twice as large a capacity as the troubled Hinckley Point C nuclear power station.

But whereas Hinckley Point C will produce continuous power, Hornsea will only produce power when the wind blows.

The National Grid are tasked with keeping the lights on and I agree with them, that energy storage is the solution.

  • There are 25,000,000 homes in the UK. If every house in the UK was fitted with a 10 kWh storage battery, that would be a capacity of 250 GWH.
  • There are 30,000,000 cars in the UK. If every car in the UK was electric and had a 30 kWh battery, that would be a capacity of 900 GWH.

These are very large numbers and just as the Internet passes data all around the UK and the world, the UK’s National Grid will access all these batteries to store energy, when perhaps the wind is blowing at night and retrieve it when there is a high demand.

On a domestic level, you may have an electric car and a battery in your house, with perhaps solar panels on the roof.

  • At night and on sunny days, your batteries will be charged.
  • At times of high demand, your stored energy may be sold back to the grid.
  • Controlling it all would be an intelligent computer system, which would make sure that your car always had enough charge and you had enough energy for the house.

The problem is that nearly all of our houses and cars don’t fit this model.

The proposed closure of the Honda plant is Swindon, is the first of the many casualties in car manufacturing, that will surely happen.

More by luck, than judgement, when I moved to London after my stroke, I bought a house with the following features.

  • Low energy consumption.
  • A flat roof, that is now covered in solar panels.
  • A garage, that would be suitable for an electric car. Although, I don’t drive, the next owner of this house, probably will.

Millions of houses in this country should be demolished and the land used for new houses that fit the modern age.

The Labour Party is living in the 1960s and Corbyn and McDonell still believe that the Robin Hood approach of stealing from the rich and giving it to the poor, is still the way to go.

But these days, most people want to be responsible for themselves. This is why there has been such a growth in people in the gig economy like Uber, Deliveroo and County Lines.

Everybody wants to take control of their lives and their own micro-economy. That is why I left a safe job at ICI in 1969, at the age of just twenty-two.

Like me, those who start their own successful business don’t want government to come along and use it on pet projects that always seem to fail.

Most politicians and especially Labour ones have never done a real job in their lives and Labour’s defections will hopefully be the first of many from all political parties.

I hope that February 18th 2019, will be remembered as the day when two dinosaurs realised they needed to change their spots.

But they won’t change willingly!

However!

  • Companies and individuals will soon be buying electric vehicles in large numbers and only buying diesel and petrol ones, where there is no alternative.
  • Voters will not vote for policies that stink of the past, that don’t fit their micro-economy.

There will also be a lot of unsaleable houses and second-hand cars!

 

February 19, 2019 Posted by | Transport | , , , , | 2 Comments

Nearly Half Of Institutional Investors To increase Interest In Renewables & Energy Storage

The title of this post is the same as that of this article on Windpower Engineering and Development.

To build a successful and ultimately profitable wind farm, you need the following.

  • A good location and excellent engineering.
  • A need for your electricity.
  • Access to affordable finance.

The first is down to your surveyors, analysts and engineers and the second can probably be taken as read.

If as the article suggests, institutional investors are seeing renewables as a safe investment, it would appear that finance will be more readily available.

So provided the wind blows, I can see lots more wind farms and other renewable power sources being created.

International Institutional Investors

I will add one note of caution.

Some of our infrastructure in the UK, is owned by institutional investors from countries like Australia, Canada, Norway and other countries often rich in natural resources. I am not sure, but I seem to remember that some trains, were financed by money provided by Pension Funds of Canadian teachers.

So, we must be careful how we manage the country, as if the UK is seen to be a risky investment, then the institutional investors will use their money in other countries.

February 14, 2019 Posted by | Finance, World | , | Leave a comment

Wind Farms Sale Is Breath Of Fresh Air After Merger Setback

The title of this post, is the same as that as an article in the Business pages of The Times.

This is the first paragraph.

Selling stakes in two wind farms for £635million will provide funds to reduce debt and to launch up to £200million of share buybacks, SSE said yesterday.

Amongst the purchasers of the stake in the wind farms is an unnamed British pension fund.

So yet again, we’re seeing pension funds investing our future in wind farms.

It is a trend that will continue, as pension funds look for safe places to put the massive funds they have under management.

  • We need the electricity the farms produce.
  • The engineering of wind farms will get better, and farms will be more reliable and produce electricity economically for years longer.
  • The farrms will probably get the best of maintenance, as pension funds will protect their investment.

In addition to wind, I suspect pension funds and insurance companies will invest in other large renewable energy schemes like solar and wave power and energy storage.

Schemes, such as those I mentioned in Exciting Renewable Energy Project for Spennymoor, will surely be ones that will appeal to the funds.

Conclusion

Pension funds and insurance companies with their massive funds are becoming a major force in vutting carbon emissions.

I suspect that this is not just a UK trend, but one with a world-wide dimension, that includes a lot of the EU, the Far East, North American and Australia.

February 3, 2019 Posted by | World | , , , , | Leave a comment

Funding Nemo: £600m Power Cable Connects UK And Belgium

The title of this post is the same as this article in The Guardian.

This is the first paragraph.

A £600m cable connecting the UK and Belgium’s energy systems is about to be switched on, becoming the first of a new generation of interconnectors that will deepen the UK’s ties to mainland Europe just as it prepares to leave the EU.

It runs between Richborough in Kent and Zeebrugge in Belgium and is the fifth interconnector to be connected to Great Britain.

Other interconnectors connect to Ireland, Northern Ireland, France and the Netherlands.

In Large Scale Electricity Interconnection, I discuss the rest of the interconnectors, that are being constructed or planned.

We could see up to fifteen in operation in a few years.

As to Nemo, it was originally thought that the UK would be importing energy from Belgium, but as Belgium needs to service its nuclear power stations and will be shutting them in the next few years, the power will sometimes be flowing the other way. Especially, as more large wind farms come on stream in the UK!

It is my view that Icelink could change everything and Belgium’s possible future power shortage, makes Icelink for likely.

Wikipedia describes the interconnector between Iceland and Scotland like this.

At 1000–1200 km, the 1000 MW HVDC link would be the longest sub-sea power interconnector in the world.

As more interconnectors are built between the UK and the Continent, including a possible link between Peterhead in North-East Scotland to Stavanger in Norway, which is called NorthConnect, the UK will begin to look like a giant electricity sub-station, that connects all the zero-carbon power sources together.

  • Denmark will supply wind power.
  • France will supply nuclear power.
  • Iceland will supply hydro-electric and geothermal power.
  • Norway will supply hydro-electric power.
  • The UK will supply nuclear and wind power.

Other sources like wind power from France and Ireland and tidal and wave power from the UK could be added to the mix in the next decade.

The Consequences For Gas

Our use of gas to generate electricity in Western Europe will surely decline.

If projects, like those I discussed in Can Abandoned Mines Heat Our Future?, come on stream to provide heat, the role of gas in providing heating in housing and other buildings will decline in the UK.

We also shouldn’t forget the role of hydrogen, which could also replace natural gas in many applications. It would be created by electrolysis of water or as a by-product of some industrial processes.

Hydrogen could also become a valuable way of storing excess electricity produced by tidal, wave and wind power.

It is unlikely, we will develop a totally gas-free economy, as methane is a valuable chemical feedstock to produce other chemical products we need.

Conclusion

Not many people will be sorry, except for President Putin and a few equally nasty despots in the Middle East.

 

 

 

 

December 7, 2018 Posted by | World | , , , , , , , | Leave a comment

World’s Largest Wind Farm Attracts Huge Backing From Insurance Giant

The title of this post, is the same as that of an article in the Business pages of yesterday’s copy of The Times.

It is not often that three words implying something big appear in the same sentence, let alone a headline! Such repetition would more likely appear in a tabloid to describe something sleazy.

Until recently, wind power was just something used by those in remote places. I remember a lady in Suffolk, who had her own turbine in the 1980s. She certainly lived well, although her deep freeze was in the next door farmer’s barn.

Now, with the building of the world’s largest wind farm; Hornsea, which is sixty miles off the coast of East Yorkshire, wind farms are talked of as creating enough energy for millions of homes.

Hornsea Project 1 is the first phase and Wikipedia says this about the turbines.

In mid 2015 DONG selected Siemens Wind Power 7 MW turbines with 154 metres (505 ft) rotor turbines for the project – around 171 turbines would be used for the wind farm.

Note that the iconic Bankside power station, that is now the Tate Modern had a capacity of 300 MW, so when the wind is blowing Hornsea Project 1 is almost four times as large.

When fully developed around 2025, the nameplate capacity will be around 6,000 MW.

The Times article says this about the funding of wind farms.

Wind farms throw off “long-term boring, stable cashflows”, Mr. Murphy said, which was perfect to match Aviva policyholders and annuitants, the ultimate backers of the project. Aviva has bought fixed-rate and inflation-linked bonds, issued by the project. While the coupon paid on the 15-year bonds, has not been disclosed, similar risk projects typically pay an interest rate of about 3 per cent pm their bonds. Projects typically are structured at about 30 per cent equity and 70 per cent debt.

Darryl Murphy is Aviva’s head of infrastructure debt. The article also says, that Aviva will have a billion pounds invested in wind farms by the end of the year.

Call me naive, but I can’t see a loser in all this!

  • Certainly, the UK gets a lot of zero-carbon renewable energy.
  • Aviva’s pensioners get good pensions.
  • Turbines and foundations are built at places like Hull and Billingham, which sustains jobs.
  • The need for onshore wind turbines is reduced.
  • Coal power stations can be closed.

The North Sea just keeps on giving.

  • For centuries it has been fish.
  • Since the 1960s, it has been gas.
  • And then there was oil.
  • Now, we’re reaping the wind.

In the future, there could be even more wind farms like Hornsea.

Ease Of Funding

Large insurance companies and investment funds will continue to fund wind farms, to give their investors and pensioners a return.

Would Aviva be so happy to fund a large nuclear power station?

Large Scale Energy Storage

The one missing piece of the jigsaw is large scale energy storage.

I suspect that spare power could be used to do something useful, that could later be turned into energy.

  • Hydrogen could be created by electrolysis for use in transport or gas grids.
  • Aluminium could be smelted, for either used as a metal or burnt in a power station to produce zero-carbon electricity.
  • Twenty-four hour processes, that use a lot of electricity, could be built to use wind power and perhaps a small modular nuclear reactor.
  • Ice could be created, which can be used to increase the efficiency of large gas-turbine power plants.
  • Unfortunately, we’re not a country blessed with mountains, where more Electric Mountains can be built.
  • Electricity will be increasingly exchanged with countries like Belgium, France, Iceland, Norway and The Netherlands.

There will be other wacky ideas, that will be able to store MWHs of electricity.

These are not wacky.

Storage In Electric Vehicles

Consider that there are three million vehicles in the UK. Suppose half of these were electric or plug-in hybrid and had a average battery size of 50 kWh.

This would be a total energy storage of 75,000 MWh or 75 GWH. It would take the fully developed 6GW Hornsea wind far over twelve hours to charge them all working at full power.

Storage In Electric And Hybrid Buses

London has around 8,500 buses, many of which are hybrid and some of electric.

If each has a 50 kWh batttery, then that is 425 MWh or .0.425 GWH. If all buses in the UK were electric or plug-in hybrid, how much overnight electricity could they consume.

Scaling up from London to the whole country, would certainly be a number of gigawatt-hours.

Storage In Electric Trains

I also believe that the average electric train in a decade or so could have a sizeable battery in each coach.

If we take Bombardier they have an order book of over four hundred Aventra trains, which is a total of nearly 2,500 coaches.

If each coach has an average battery size of 50 kWh, then that is 125 MWh or 0.125 GWH.

When you consider than Vivarail’s two-car Class 230 train has a battery capacity of 400 kWh, if the UK train fleet contains a high-proportion of battery-electric trains, they will be a valuable energy storage resource.

Storage in Housing, Offices and Other Buildings

For a start there are twenty-five million housing units in the UK.

If just half of these had a 10 kWh battery storage system like a Tesla Powerwall, this would be a storage capacity of 125 GWH.

I suspect, just as we are seeing vehicles and trains getting more efficient in their use of electricity, we will see buildings constructed to use less grid electricity and gas.

  • Roofs will have solar panels.
  • Insulation levels will be high.
  • Heating may use devices like ground source heat pumps.
  • Battery and capacitors will be used to store electricity and provide emergency back up.
  • Electric vehicles will be connected into the network.
  • The system will sell electricity back to the grid, as required.

Will anybody want to live in a traditional house, that can’t be updated to take part in the energy revolution?

Will The Electricity Grid Be Able To Cope?

National Grid have been reported as looking into the problems that will happen in the future.

  • Intermittent power from increasing numbers of wind and solar farms.
  • Charging all those electric vehicles.
  • Controlling all of that distributed storage in buildings and vehicles.
  • Maintaining uninterrupted power to high energy users.
  • Managing power flows into and out of the UK on the various interconnectors.

It will be just like an Internet of electricity.

And it will be Europe-wide! and possibly further afield.

Conclusion

The UK will have an interesting future as far as electricity is concerned.

Those that join it like Aviva and people who live in modern, energy efficient houses will do well.

 

November 27, 2018 Posted by | Finance, World | , , , , , , , | 6 Comments

19MW Storage Capacity To Participate In Three UK Flexible Markets

The title of this post is the same as that of this article on Smart Energy.

in Batteries On The Boil As Fund Attracts Investors, I talked about energy storage funds, which are a way of investing in energy storage to add capabilities to electricity grids.

This article talks about how the Gore Street Energy Fund is investing in two energy storage facilities at the Port of Tilbury and Lower Road in Essex

I have also found this article on Solar Power Portal, which is entitled Gore Street Fund Makes New Battery Acquisitions With New 19MW Pair From Origami Energy.

The second article has a picture of a 4 MW/4.8 MWh Tesla battery at Cenin Renewables.

The link to Tesla gives a well-presented page of applications of these batteries.

One example given is Renewable Integration, where this is said.

Smooth and firm the output of a renewable power generation source such as wind or solar.

This will be a large application for these types of large batteries, as although we don’t have masses of sun, we do have a lot of wind.

Big financial institutions like Pension Funds and Insurance Companies need secure long term investment to place their money and these energy storage devices, would appear to offer a sensible return, that enables them to pay their investors, like anybody who has a pension. Traditionally,these financial institutions have invested in property and government bonds for example.

Lately, they have been investing in railway rolling stock, which have a life of up to forty years. These energy storage systems should offer a reasonable life, if well-maintained and updated.

As there will large numbers of energy  storage systems installed in the UK in the next decades, I think they could be a big area for investment.

At an individual level, we will also see houses built or refurbished with solar panels and batteries.

We are at the start of an exciting revolution!

 

November 24, 2018 Posted by | World | , , , , , | Leave a comment

Batteries On The Boil As Fund Attracts Investors

The title of this post is the same as that of an article in the Business section of today’s Times.

This is the first two paragraph.

Investors have sunk £100million into a new listed company that aims to use shipping containers packed with lithium-ion batteries to buy, store and sell electricity.

Gresham House Energy Storage Fund claims that it will make a return of 15 per ceent a year by providing electricity when surges in demand coincide with periods when the wind is not blowing  or the sun is not shining.

Gresham House Energy Storage Fund is the second listed energy storage fund in London, after Gore Street Energy Storage Fund , launched in May.

I think we’ll see more of these funds and use of the technology.

Suppose you were a farmer with a windy hill top farm, that had a heavy electricity bill.

Realistically, sized, priced and financed a  wind-turbine and a container full of batteries, might be just what your finances wanted.

All you’d need now would be an electric Range-Rover and a fleet of electric tractors!

November 10, 2018 Posted by | World | , , , , | 2 Comments

Think Again, If You Think We Have Too Many Level Crossings!

These are some pictures of the level crossing on the route between Buxtehude and Cuxhaven stations.

Some seemed to be very busy, but others were just on a concrete farm track.

I think with the exception of in the electrified Bremerhaven section, I didn’t see any bridges over the route.

The other feature visible from the line, was the large number of wind turbines.

September 24, 2018 Posted by | Transport | , , | Leave a comment

The Liverpool Manchester Hydrogen Clusters Project

The project is described briefly on this page on the Cadent web site.

This is the introduction.

The use of hydrogen in place of natural gas could offer a route to widespread decarbonisation of gas distribution networks.

The Liverpool-Manchester Hydrogen Cluster project is a conceptual study to develop a practical and economic framework to introduce hydrogen into the gas network in the Liverpool-Manchester area.

It proposes converting natural gas into clean-burning hydrogen gas, using a process called steam methane reforming. The process also removes CO2 from the gas, which can then be captured using existing carbon and capture storage technology and stored in depleted offshore gas reservoirs.

The hydrogen gas would then be supplied to a core set of major industrial gas users in Liverpool-Manchester and fed into the local gas distribution network as a blend with natural gas.

Note.

  1. At Runcorn, Ineos make hydrogen and chlorine by the electrolysis of brine.
  2. When I worked in Castner-Kellner works at Runcorn, it was generally taken away be truck.
  3. The Burbo Bank wind farm in Liverpool Bay, can produce 348 MW of electricity using some of the biggest wind turbines in the World, according to this article in The Guardian.
  4. Using excess  electricity generated by win turbines at night, is used by the Germans to create hydrogen.

It doesn’t look like the project will suffer from a shortage of hydrogen.

Alsthom And Hydrogen Powered Trains

Alsthom have a site at Widnes, where they modify and paint trains. They have also indicated, that they might build new trains in the UK.

They have also developed a hydrogen-powered train called the Alsthom Coradia iLint, which starts test running with passengers in a couple of months.

This promotionalvideo shows how Alsthom’s hydrogen-powered Coradia iLint works.

The North Wales Coast Line would be an ideal test track.

  • It’s around eighty miles long.
  • It is nearly all double-track.
  • It has a 90 mph operating speed.
  • It’s probably pretty flat, as it runs along the coast.

I don’t think too many people would bother about a few extra quieter trains, just emitting steam and water vapour.

North Wales could be getting a new environmentally-friendly tourist attraction.

 

April 9, 2018 Posted by | Transport | , , , , , , | 3 Comments

Rail Engineer On Hydrogen Trains

This article on Rail Engineer is entitled Hydrail Comes Of Age.

It is a serious look at hydrogen-powered trains.

This is typical information-packed paragraph.

Instead of diesel engines, the iLint has underframe-mounted traction motors driven by a traction inverter. Also mounted on the underframe is a lithium-ion battery pack supplied by Akasol and an auxiliary converter to power the train’s systems. On the roof is a Hydrogenics HD200-AT power pack which packages six HyPMTM HD30 fuel cells, with common manifolds and controls, and X-STORE hydrogen tanks supplied by Hexagon xperion which store 89kg of hydrogen on each car at 350 bar. These lightweight tanks have a polymer inner liner, covered with carbon fibres soaked in resin and wrapped in fibreglass.

They have interesting things to say about the trains and the production and delivery of the hydrogen, which can be what they call green hydrogen produced by electricity generated by wind power.

This is said about supplying the hydrogen.

It takes 15 minutes to refuel the iLint, which holds 178kg of hydrogen supplied at a pressure 350 bar. It consumes this at the rate of 0.3kg per kilometre. Thus, Lower Saxony’s fleet of 14 trains, covering, say, 600 kilometres a day, will require 2.5 tonnes of hydrogen per day. If this was produced by electrolysis, a wind farm of 10MW generating capacity would be required to power the required electrolysis plant with suitable back up. This, and sufficient hydrogen storage, will be required to ensure resilience of supply.

These are the concluding paragraphs.

With all these benefits, a long-term future in which all DMUs have been replaced by HMUs is a realistic goal. However, the replacement, or retrofitting, of 3,000 DMUs and the provision of the required hydrogen infrastructure would be a costly investment taking many years.

Germany has already taken its first steps towards this goal.

For myself, I am not sceptical about the technology that creates electricity from pure hydrogen, but I think there are design issues with hydrogen-powered trains in the UK.

The German trains, which are built by Alsthom and should start test runs in 2018, take advantage of the space above the train in the loading gauge to place the tanks for the hydrogen.

Our smaller loading gauge would probably preclude this and the tanks might need to take up some of the passenger space.

But in my view, we have another much more serious problem.

Over the last twenty years, a large number of high quality trains like electric Desiros, Electrostars and Junipers, and diesel Turbostars have been delivered and are still running on the UK network.

It could be that these trains couldn’t be converted to hydrogen, without perhaps devoting a carriage to the hydrogen tank, the electricity generator and the battery needed to support the hydrogen power.

It is for this reason, that I believe that if we use hydrogen power, it should be used with traditional electrification and virtually unmodified trains.

A Typical Modern Electric Train

Well! Perhaps not yet, but my view of what a typical electric multiple unit, will look like in ten years is as follows.

  • Ability to work with 25 KVAC  overhead or 750 VDC third-rail electrification or onboard battery power.
  • Ability to switch power source automatically.
  • Batteries would handle regenerative braking.
  • Energy-efficient train design.
  • Good aerodynamics.
  • Most axles would be powered for fast acceleration and smooth braking.
  • Efficient interior design to maximise passenger numbers that can be carried in comfort.
  • A sophisticated computer with route and weather profiles, passenger numbers would optimise the train.

The battery would be sized, such that it gave a range, that was appropriate to the route.

In an article in the October 2017 Edition of Modern Railways, which is entitled Celling England By The Pound, Ian Walmsley says this in relation to trains running on the Uckfield Branch.

A modern EMU needs between 3 and 5 kWh per vehicle mile for this sort of service.

As I’m talking about a train that has taken energy efficiency to the ultimate, I think it would be reasonable to assume that 3 kWh per vehicle mile is attainable.

As I believe that most axles would be powered, I feel that it would be electrically efficient for a battery to be fitted into each car.

Suppose we had a five-car train with a 30 kWh battery in each car.

This would give a total installed battery capacity of 150 kWh. Divide by five and three and this gives a useful emergency range of ten miles.

These facts put the battery size into perspective.

  • , 30 kWh is the size of the larger battery available for a Nissan Leaf.
  • A New Routemaster bus has a battery of 75 kWh.

Where will improved battery technology take us in the next decade?

Use Of Hydrogen Power With 750 VDC Third-Rail Electrification

This extract from the Wikipedia entry for third-rail, explains the working of third-rail electrification.

The trains have metal contact blocks called shoes (or contact shoes or pickup shoes) which make contact with the conductor rail. The traction current is returned to the generating station through the running rails. The conductor rail is usually made of high conductivity steel, and the running rails are electrically connected using wire bonds or other devices, to minimize resistance in the electric circuit. Contact shoes can be positioned below, above, or beside the third rail, depending on the type of third rail used; these third rails are referred to as bottom-contact, top-contact, or side-contact, respectively.

If a line is powered by third-rail electrification, it needs to be fed with power every two miles or so, due to the losses incurred in electricity passing along the steel conductor rail.

I suspect that Network Rail and our world-leading rail manufacturers have done as much as they can to reduce electrical losses.

Or have they? Wikipedia says this.

One method for reducing current losses (and thus increase the spacing of feeder/sub stations, a major cost in third rail electrification) is to use a composite conductor rail of a hybrid aluminium/steel design. The aluminium is a better conductor of electricity, and a running face of stainless steel gives better wear.

Suppose instead of having continuous third-rail electrification, lengths of electrification with the following characteristic were to be installed.

  • Hybrid aluminium/steel rails.
  • Power is supplied at the middle.
  • Power is only supplied when a train is in contact with the rail.

All trains would need to have batteries to run between electrified sections.

The length and frequency of the electrified sections would vary.

  • If a section was centred on a station, then the length must be such, that a train accelerating away can use third-rail power to get to operating speed.
  • Sections could be installed on uphill parts of the line.
  • On long level sections of line without junctions, the electrified sections could be more widely spaced.
  • Battery power could be used to take trains through complicated junctions and crossovers, to cut costs and the difficulties of electrification.
  • Electrified section woulds generally be placed , where power was easy to provide.

So where does hydrogen-power come in?

Obtaining the power for the track will not always be easy, so some form of distributed power will be needed.

  • A small solar farm could be used.
  • A couple of wind turbines might be appropriate.
  • In some places, small-scale hydro-electric power could even be used.

Hydrogen power and especially green hydrogen power could be a viable alternative.

  • It would comprise a hydrogen tank, an electricity generator and a battery to store energy.
  • The tank could be buried for safety reasons.
  • The installation would be placed at trackside to allow easy replenishment by tanker-train.
  • It could also be used in conjunction with intermittent solar and wind power.

The tanker-train would have these characteristics.

  • It could be a converted electrical multiple unit like a four-car Class 319 train.
  • Both 750 VDC and 25 KVAC operating capability would be retained.
  • One car would have a large hydrogen tank.
  • A hydrogen-powered electricity generator would be fitted to allow running on non-electrified lines and give a go-anywhere capability.
  • A battery would probably be needed, to handle discontinuous electrification efficiently.
  • It might even have facilities for a workshop, so checks could be performed on the trackside power system

Modern digital signalling, which is being installed across the UK, may will certainly have a part to play in the operation of the trackside power systems.

The position of all trains will be accurately known, so the trackside power system would switch itself on, as the train approached, if it was a train that could use the power.

Use Of Hydrogen Power With 25 KVAC Overhead |Electrification

The big difference between installation of 25 KVAC overhead electrification and 750 VDC third-rail electrification, is that the the overhead installation is more complicated.

  • Installing the piling for the gantries seems to have a tremendous propensity to go wrong.
  • Documentation of what lies around tracks installed in the Victorian Age can be scant.
  • The Victorians used to like digging tunnels.
  • Bridges and other structures need to be raised to give clearance for the overhead wires.
  • There are also those, who don’t like the visual impact of overhead electrification.

On the plus side though, getting power to 25 KVAC overhead electrification often needs just a connection at one or both ends.

The electrification in the Crossrail tunnel for instance, is only fed with electricity from the ends.

So how could hydrogen help with overhead electrification?

Electrifying some routes like those through the Pennines are challenging to say the least.

  • Long tunnels are common.
  • There are stations like Hebden Bridge in remote locations, that are Listed Victorian gems.
  • There are also those, who object to the wires and gantries.
  • Some areas have severe weather in the winter that is capable of bringing down the wires.

In some ways, the Government’s decision not to electrify, but use bi-mode trains is not only a cost-saving one, but a prudent one too.

Bi-mode trains across the Pennines would have the advantage, that they could use short lengths of electrification to avoid the use of environmentally-unfriendly diesel.

I have read and lost an article, where Greater Anglia have said, that they would take advantage of short lengths of electrification with their new Class 755 trains.

Electrifying Tunnels

If there is one place, where Network Rail have not had any electrification problems, it is in tunnels, where Crossrail and the Severn Tunnel have been electrified without any major problems being reported.

Tunnels could be developed as islands of electrification, that allow the next generation of trains to run on electricity and charge their batteries.

But they would need to have a reliable power source.

As with third-rail electrification, wind and solar power, backed by hydrogen could be a reliable source of power.

Electrifying Stations With Third Rail

It should be noted, that the current generation of new trains like Aventra, Desiro Cities and Hitachi’s A-trains can all work on both 25 KVAC overhead or 750 VDC third-rail systems, when the appropriate methods of current collection are fitted.

Network Rail have shown recently over Christmas, where they installed several short lengths of new third-rail electrification South of London, that installing third-rail electrification, is not a challenging process, provided you can find the power.

If the power supply to the third-rail is intelligent and is only switched on, when a train is on top, the railway will be no more a safety risk, than a route run by diesel.

The picture shows the Grade II Listed Hebden Bridge station.

Third-rail electrification with an independent reliable power supply could be a way of speeding hybrid trains on their way.

Power Supply In Remote Places

Communications are essential to the modern railway.

Trains and train operators need to be able to have good radio connections to signalling and control systems.

Passengers want to access wi-fi and 4G mobile phone networks.

More base stations for communication networks will be needed in remote locations.

Wind, solar and hydrogen will all play their part.

I believe in the future, that remote routes in places like Wales, Scotland and parts of England, will see increasing numbers of trains and consequently passengers., many of whom will be walking in the countryside.

Could this lead to upgrading of remote stations and the need for reliable independent power supplies?

Conclusion

I am very much coming to the conclusion, that because of the small UK loading gauge, hydrogen-powered trains would only have limited applications in the UK. Unless the train manufacturers come up with a really special design.

But using hydrogen as an environmentally-friendly power source for UK railways to power electrification, perhaps in combination with wind and solar is a definite possibility!

.

 

 

 

 

 

 

January 7, 2018 Posted by | Transport | , , , , , | 4 Comments