The Anonymous Widower

Dutch Province To Introduce Regular Hydrogen Services

The title of this post, is the same as that of this article on the International Railway Journal.

This is the introductory paragraph.

The regional transport authority in the Dutch province of Groningen has announced plans to introduce hydrogen trains for its regional concession following a successful test earlier this year.

In March 2019, I went to Groningen and explored the railways in the area, where Stadler GTW trains are used for the train services.

These trains are a smaller version of Greater Anglia’s Class 755 trains.

In The Train Station At The Northern End Of The Netherlands, I describe a visit to Eemshaven station to the North of Groningen.

I said this.

At the turnround at Eemshaven with the driver, he indicated that there had been speculation about battery and hydrogen trains in the North of The Netherlands.

It appears the driver was right.

The Bridge Over The Ems

The article also indicates that the bridge over the River Ems, that I wrote about in From Groningen To Leer By Train, could be opening soon.

This video shows what the new bridge will look like.

And this Google Map shows the current state of the bridge.

I’m not sure of the date of the picture, but there still appears a lot of work to do.

 

 

October 2, 2020 Posted by | Hydrogen, Transport | , , , , , , , | 11 Comments

Germany Builds The World’s First Hydrogen Train Filling Station

The title of this post, is the same as that of this article on electrek.

Hydrogen Trains In Germany

The hydrogen filling station for trains is described under this heading.

This is the introductory paragraph.

The town of Bremervörde in Lower Saxony, Germany, has broken ground on the world’s first hydrogen filling station for passenger trains. Chemical company Linde will construct and operate the hydrogen filling station for the Lower Saxony Regional Transport Company.

It will provide approximately 1600 Kg of hydrogen per day.

The Supergroup Of ‘Green Energy’

This is a second section, which I find an interest sting concept.

These are the introductory paragraphs.

Oil giant Shell and Dutch utility Eneco have won the tender to build a super-hybrid offshore wind farm in the Netherlands. It will consist of two sites located 11.5 miles (18.5 km) off the west coast, near the town of Egmond aan Zee.

The Shell/Eneco consortium, CrossWind, will build the Hollandse Kust (noord) project. They will pair the offshore wind farms with floating solar facilities and short-duration batteries. It will also generate green hydrogen via an electrolyzer, according to GreenTech Media.

It will be operational in 2023 and have an output of 759 MW.

July 30, 2020 Posted by | Energy, Energy Storage, Hydrogen, Transport | , , , , | Leave a comment

A Trading Update From ITM Power

ITM Power issued a Press Release entitled Trading Update, this morning.

It is a document, that is a must-read about the future of hydrogen.

There are some interesting statements on various topics.

The Future Of Hydrogen Production

The Press Release says this.

Alongside the predicted growth trajectory for electrolysis, the cost outlook for green hydrogen is also positive. The Hydrogen Council expects green hydrogen to become cost competitive with grey hydrogen by 2025 assuming a €50 per ton CO2 price.  An 80GW electrolyser target for Europe by 2030 has been proposed, where electrolysers feed into a hydrogen transmission network that interconnects the renewable energy resources of the North Sea, Morocco and Ukraine with the demand centres of Europe.  Further afield, Australia is actively pursuing opportunities to export green hydrogen and has estimated that 69 per cent of the 2025 global market for hydrogen will lie in its four target markets of China, Japan, Korea and Singapore.

Note.

  1. Green hydrogen is produced by a zero-carbon process like electrolysis using renewable electricity.
  2. Grey hydrogen is produced by a process that releases carbon-dioxide like steam reforming of methane.

It looks like green hydrogen will be the future.

Governments And Green Hydrogen

The Press Release says this.

Governments are increasingly recognising the role of green hydrogen as a decarbonisation tool.  The U.K. government has introduced an overarching net zero target and placed an early focus on decarbonising industrial clusters that will lead to progressively larger deployments of electrolysers. In the Netherlands, the Dutch government has recently presented its green hydrogen vision for achieving a sustainable energy system that is reliable, clean and affordable.  A total of three European governments have now stated explicit electrolyser targets for 2030: Germany 5GW, Holland 3-4GW and Portugal 2GW.

It looks like a lot of electrolysers will be built.

The Germans And Hydrogen

The Press Release says this.

The German government announced in its stimulus package of 3 June 2020 that it will present a national hydrogen strategy in the short term. Accordingly, a programme for the development of hydrogen production plants will be developed to demonstrate industrial-scale production of up to 5GW total output in Germany, operational by 2030. For the period up to 2035, but until 2040 at the latest, an additional 5 GW will be added if possible. To implement all these measures, the German government will invest €7bn.

Not only is hydrogen zero-carbon, it also means they will buy less of Putin’s gas.

Conclusion

Hydrogen has a very long term future.

June 8, 2020 Posted by | World | , , , , , | 1 Comment

H2-Share Launches First Hydrogen Truck

The title of this post, is the same as that of this article on H2-View.

These are the two introductory paragraphs.

H2-Share’s first hydrogen-powered rigid truck has hit the road in the Netherlands.

The European project aims to facilitate the development of a market for low-carbon heavy-duty vehicles that run on hydrogen for logistic application.

It looks a well-thought out project to develop a market for hydrogen trucks.

  • Looking at the picture, it appears that the project has taken an off-the-shelf DAF truck and modified it for hydrogen.
  • The truck is a two-axle 27 tonne truck.

I shall follow this project.

April 9, 2020 Posted by | Transport | , , | Leave a comment

Dutch Test Hydrogen Train As EU Alliance Set To Launch

The title of this post is the same as that of this article on Euractiv.

This is the introductory paragraph.

The Netherlands wrapped up testing on its first foray into hydrogen train technology at the weekend, as the European Commission readies a strategy for the clean fuel that will debut on Tuesday (10 March).

I shall be interested to see what the European Commission says tomorrow.

I indicated in Alstom Coradia iLint Passes Tests, that hydrogen-powered trains could run through The Netherlands all the way to Germany.

March 9, 2020 Posted by | Transport | , , , , | Leave a comment

Alstom Coradia iLint Passes Tests

The title of this post is the same as that of this article on Railway Age.

This is the first paragraph.

Alstom has performed 10 days of tests of the Coradia iLint hydrogen fuel cell train—the world’s first passenger train powered by hydrogen fuel cells—on the 65-kilometer line between Groningen and Leeuwarden to the north of the Netherlands.

These details of the tests were given.

  • No passengers were carried.
  • The tests were done at night.
  • A mobile filling station was used.
  • The train ran up to a speed of 140 kph.

As green hydrogen was used, the tests were zero carbon.

The Test Route

This map clipped from Wikipedia, shows the Groningen and Leeuwarden route, used for the tests.

Note.

  1. It appears to be only single-track.
  2. It is roughly 65 kilometres long.
  3. There are eight intermediate stops.

Checking the timetable, the service seems to be two or three trains per hour (tph)

Hydrogen Trains Could Go All The Way To Germany

In From Groningen To Leer By Train, I took a train and a bus from Groningen in The Netherlands to Leer in Germany and eventually on to Bremen Hbf. The route is not complete at the moment, as a freighter demolished the rail bridge.

Once the bridge is rebuilt, a hydrogen-powered train, which could also use the catenary in the area could travel from West of Leeuwarden to possibly as far as Bremen and Hamburg.

It is interesting to note, that Alstom’s hydrogen-powered trains for the UK, which are called Breeze and are currently being converted from British Rail-era Class 321 electric trains, will not lose their ability to use the overhead electrification.

A train with that dual capability would be ideal for the Dutch and German rail network in this area, which is partially electrified.l

March 8, 2020 Posted by | Transport | , , , , , , , | 1 Comment

Alstom’s Hydrogen-Powered Train Undergoes Tests On Dutch Tracks

The title of this post is the same as that on this article of Renewables Now.

Hydrogen trains are certainly coming to Europe.

March 7, 2020 Posted by | Transport | , , , | Leave a comment

Fuel Cell Train To Be Tested In The Netherlands

The title of this post, is the same as that of this article on Railway Gazette.

This is the introductory paragraph.

A Coradia iLint hydrogen fuel-cell multiple-unit is to be tested on the Groningen – Leeuwarden line after an agreement was signed at the Klimaattop Noord NL climate summit by manufacturer Alstom, the province of Groningen, local operator Arriva, infrastructure manager ProRail and energy company Engie.

You can get a flavour of some of the Dutch railways in the area from The Train Station At The Northern End Of The Netherlands.

Hydrogen powered trains are also part of the future plans for the use of hydrogen, which I wrote about in The Dutch Plan For Hydrogen.

The Railway Gazette article gives more details on how they will be introducing low carbon trains in the network around Groningen and the wider Netherlands.

These general points are made.

  • The Netherlands has nearly a thousand kilometres of lines without electrification.
  • Alstom has forty-one orders for their hydrogen-powered Coradia iLints.

They will also be refurbishing the 51 Stadler GTW trains in the area.

The main improvement, is that they will be fitted with batteries to handle regenerative braking and cut their carbon footprint.

The Railway Gazette article also says this.

A further 18 new Stadler Wink trainsets have been ordered which will be able use overhead electrification or hydrotreated vegetable oil fuel, with batteries for regenerated braking energy. These will be designed so that their engines can be replaced with larger batteries when the planned 1·5 kV DC discontinuous electrification of the routes is completed.

The Stadler Wink appears to be the another train from the Flirt family, which is the successor to the GTW.

The Dutch seem to be moving very firmly towards a zero-carbon railway in the North.

Collateral Benefits For The UK

What areas of the UK would be ideal places to adopt a similar philosophy to that which the Dutch are using in the North of the Netherlands?

I think they will be areas, where there are lots of zero carbon electricity, railways without electrification and terrain that’s not to challenging.

These areas come to mind.

  • East Anglia
  • Lincolnshire
  • East Yorkshire
  • Far North and North East Scotland.

Note.

    1. The only electrification in these areas is the main lines to Norwich and Cambridge in East Anglia.
    2. All areas have Gigawatts of offshore wind farms either operating or under development.
    3. Vivarail are proposing to run battery-electric trains between Wick and Turso, as I wrote about in Is This The Most Unusual Idea For A New Railway Service in The UK?
    4. With the exception of East Yorkshire, the train operating company is Abellio, who are Dutch railways, by another name.
    5. East Anglia is already using Stadler Flirt Class 755 trains, that can be fitted with batteries.

I also believe that Hitachi will soon be providing battery-electric versions of their AT300 trains. I wrote about this in Thoughts On The Next Generation Of Hitachi High Speed Trains.

Battery electric AT300 trains could provide long distance services to the areas I listed.

Conclusion

What is happening in the North of the Netherlands, will be watched with interest in the UK.

 

November 2, 2019 Posted by | Transport | , , , , , , , , , | Leave a comment

North Sea Wind Power Hub

I have just found the web site for the North Sea Wind Power Hub.

The Aim

This introductory paragraph details the aim of the project.

A coordinated roll-out of North Sea Wind Power Hubs facilitates an accelerated deployment of large scale offshore wind in the North Sea required to support realizing the Paris Agreements target in time, with minimum environmental impact and at the lowest cost for society (urgency & cost savings), while maintaining security of supply.

There is a lot to read on the site, however this article on the Daily Mail gives a good summary with lots of drsawings.

This is the sub-headline.

The world’s biggest wind farm? ‘Crazy’ artificial power island in the North Sea that could supply renewable energy to 80 million people in Europe is set to open in 2027.

Crazy comes from this paragraph of the article.

In an interview at the time, Torben Glar Nielsen, Energinet’s technical director, told the Independent: ‘Maybe it sounds a bit crazy and science fiction-like but an island on Dogger Bank could make the wind power of the future a lot cheaper and more effective.’

Another quote sums up the engineering problems as the Dutch sea it.

Addressing the engineering challenge ahead, Mr Van der Hage said: ‘Is it difficult? In the Netherlands, when we see a piece of water we want to build islands or land. We’ve been doing that for centuries. That is not the biggest challenge.’

Having spoken to one of the engineers, who planned and developed the Dutch sea defences after the floods of the 1950s, I’ll agree with that statement.

September 21, 2019 Posted by | World | , , , | Leave a comment

The Dutch Plan For Hydrogen

The Dutch Plan For Hydrogen

I have cut this out of The Train Station At The Northern End Of The Netherlands, so don’t read if if you’ve read it before.

Searching Google for hydrogen around Groningen, I found this document on the Internet, which is entitled Green Hydrogen Economy In The Northern Netherlands.

It is a fascinating read about what you can do with hydrogen generated from wind and biomass.

This is a sentence from the document.

Large scale green hydrogen product.ion together with harbor transport and storage facilities will be located at Eemshaven, with green chemicals production in Delfzijl

It is an ambitious statement.

Eemshaven

It also appears that Eemshaven will be the main connection point for electricity from offshore wind farms. This is said.

In the Eemshaven an offshore electricity cable from Norway, the NorNed cable with a capacity of 700 MW, comes on land. The Cobra cable, with a capacity of 700 MW, from Denmark is foreseen to connect at the Eemshaven to the onshore grid. The Gemini wind farm is connected to the grid in the Eemshaven with a capacity of 600 MW. Within 10 years it is foreseen that another 4.000 MW offshore wind will have their electricity cable to the Eemshaven.

Does all this explain, the building of a station at Eemshaven? Delfzijl station was built in 1883 and has its own connection to Groningen.

The following proposed actions are from the document

Build A 1,000 MW Electrolysis Plant

This is an extract from the  of the document.

A 1.000 MW electrolysis plant that runs 8.000 hours a year, uses 8 billion kWh and 1,5 million m3 pure water to produce 160 million kg Hydrogen. A reverse osmosis plant has to produce the 1.5 million m3 pure water, using sea water or surface water as input. If an electricity price of 2‐2,5 €ct/kWh and a total investment between 500 million and 1 billion Euro with a 10 year life time is assumed, a green hydrogen cost price around 2‐3 €/kg will be the result. This is about competitive with present hydrogen prices, produced from natural gas by steam reforming.

How much energy is contained in a Kg of hydrogen?

This page on IdealHY says the following.

Hydrogen is an excellent energy carrier with respect to weight. 1 kg of hydrogen contains 33.33 kWh of usable energy, whereas petrol and diesel only hold about 12 kWh/kg.

At three euros for a kilogram of hydrogen, that works out at nine euro cents for a kWh.

Build A 1000 MW Biomass Gasification Plant

The title is a section in the document and this is an extract from the section.

Green hydrogen can be produced by electrolysis using green electricity, but can be produced also from biomass via gasification. Biomass gasifiers use solid biomass as an input and deliver a green syngas, a mixture of hydrogen, carbon‐monoxide (CO) and carbon‐dioxide (CO2), and char as an output. The CO could be used, together with water (H2O), to produce extra hydrogen. The resulting products from biomass gasification are green hydrogen and CO2. However, from CO2 and green hydrogen every chemical product could be produced. Therefore, the combination of green hydrogen and CO2 or green syngas creates the opportunity for a fully green chemical industry in the Northern Netherlands.

The process is still being developed. My first question, is can you use animal manure as a feedstock? It should be noted that The Netherlands used to have a very large and smelly manure problem.

Offshore Hydrogen Production From Far Offshore Wind Farms

The title is a section in the document and this is an extract from the section.

Offshore wind farms produce electricity which can be brought onshore via an electricity cable. Such an offshore electricity cable is expensive. The farther offshore the wind farm is located the more expensive the electricity cable cost. At the North Sea, an alternative solution for these wind farms is to convert the electricity into hydrogen at an existing oil/gas platform and to transport this hydrogen eventually mixed with gas via an existing gas pipeline. Onshore the hydrogen is separated from the natural gas and cleaned to be transported via pipeline, ship or truck to the markets.

I think that the technology and existing infrastructure could be made to work successfully.

  • Europe has over fifty years experience of handling offshore gas networks.
  • Recent developments have seen the emergence of floating wind turbines.
  • Would it be easier to refurbish redundant gas platforms and use them to collect electricity and create hydrogen, rather than demolish them?
  • Hydrogen is only produced when the wind blows.
  • There is no need to store electricity and we’ve been storing gas since the Victorians.

There will be problems, like the integrity of an ageing pipeline, but I suspect that the expertise to solve them exists.

Will there be a North Sea, where every part has a large wind farm?

Note that the Hornsea Wind Farm has an area of 1830 square miles and could generate around 6 GW, when fully developed.You could fit 120 wind farms of this size into the North Sea. Even if only a small proportion could be developed, a sizeable amount of hydrogen could be produced.

A Market For 300,000‐tonnes Green Methanol + 300,000‐tonnes Green Ammonia

The title is a section in the document and this is an extract from the section.

Hydrogen (H2) and Carbon‐dioxide (CO2) can be used in chemical processes to produce a wide variety of chemical products. Two of the main building blocks in chemistry are methanol and ammonia. Methanol can be produced from H2 and CO2. Ammonia is produced from H2 and nitrogen (N2), captured from the air.

Wind power and biomass have been used tp create the basic chemicals for the petro-chemical industry.

The Construction Of Green Hydrogen Fuel Cell Balanced Data Centres

The title is a section in the document and this is an extract from the section.

Google builds a very large data center in the Eemshaven, see picture below. The reasons for Google to choose for the Eemshaven are the existence of an offshore data cable, enough space and green electricity. Google as well as other companies that install and operate data centers wants to run on green electricity. Therefore, Google has signed a power purchase agreement with Eneco to buy green electricity for 10 years. For this reason, Eneco builds an onshore wind farm nearby. On a yearly average this wind farm produces enough electricity to meet the data center demand.
However, supply and demand are not at every time in balance. At moments that there is no wind, other power plants must take over the electricity supply. Now, these are fossil fired power plants.

In future, these power plants will be closed and supply and demand needs to be balanced in another way. And of course, that needs to be done with renewable electricity. This can be done by fuel cells fueled with green hydrogen. Fuel cells can follow demand and supply variations very fast with high efficiencies. Fuel cells are quiet and have no emissions, except very clean, demineralized, water.

I like this concept.

Surely, we could build a few data centres in places like Lincolnshire.

Build A Pipeline To Rotterdam And Germany

The Dutch have ambitious plans to export the hydrogen.

Other Ideas

The report is full of clever ideas and I suggest you take the time to read it fully!

Hydrogen Trains In The Northern Netherlands

The document says this about trains powered by hydrogen fuel cells.

In the Northern Netherlands, 50 diesel trains are daily operated on non‐electric lines. These trains, operated by ARRIVA have two or three carriages and a power of 450‐600KW supplied by Diesel‐Electric engines. Fuel cell‐electric hydrogen trains could replace these diesel trains. Alstom is a company that builds these fuel cell hydrogen trains and will perform a test next year on the line Groningen‐Bremen. Because the depreciation time for trains is 25 years, not all trains will be bought new. Some trains may need to be retrofitted with fuel cell‐electric power supply, which is technically feasible. When all these 50 diesel trains are replaced an investment in new and retrofitted trains of about …? Million Euros is needed. The total hydrogen consumption of these trains is about 5,000 ton.

These points are shown in a table.

  • Total (diesel) trains in the Northern Netherlands is 50 units
  • Hydrogen consumption approximately 25 kg H2/100km
  • Train operations average 6 days per week. Train is operated approximately 1.200 km per day, based on two times per hour per trajectory of 50km.
  • Train operations average 6 days per week. 330 days per year.
  • Capital expenditure per train approximately …. ? 50 Units  …? Million Euro
  • 50,000 tonnes of hydrogen will be needed.
  • The fuel bill at three euros a Kg will be 150 million euro.

Would this be economic?

From various comments, I suspect that Stadler are working on a hydrogen-powered GTW.

But failing that, as Stadler are developing a diesel/electric/battery Flirt for the South Wales Metro and some of the routes from Groningen are only about 30 km, I wouldn’t be surprised to see diesel/electric/battery GTWs running across the flat lands of the North.

Battery trains could be fitted with pantographs and recharge in Groningen, where most of the platforms are electrified.

There are a lot of possibilities and engineers will come up with the best solution with regards to operation and economics.

Conclusion

Thr Dutch have big plans for a hydrogen-based economy in the North of the Netherlands.

Where is the UK Government’s master plan for hydrogen?

April 4, 2019 Posted by | Transport, World | , , , , , , , | 6 Comments