The Anonymous Widower

Hydrogen-Powered Train To Be Tested In Scotland As Fuel Of Future

The title of this post, is the same as that of this article on the Scotsman.

Points from the article.

  • The train would be a converted recently-retired Class 314 train.
  • The train could be tested on a heritage railway, as the battery-electric Class 230 train, was tested on the Bo’ness and Kinneil Railway.
  • The technology involved will be developed by Arcola Energy of Dalston in London and the University of St. Andrews.

Dr. Ben Todd of Arcola Energy described the project as a small feasibility study.

February 21, 2020 Posted by | Transport | , , , | Leave a comment

Charging Battery Trains

In Sparking A Revolution, I talked about Hitachi’s plans to develop battery versions of their Class 800 trains.

The article also gives the specification of a Hitachi battery train.

  • Range – 55-65 miles
  • Performance – 90-100 mph
  • Recharge – 10 minutes when static
  • Routes – Suburban near electrified lines
  • Battery Life – 8-10 years

These figures are credited to Hitachi.

Methods Of Charging

I can envisage two main methods of changing battery trains.

  • Static charging in a station, depot or siding.
  • Dynamic charging, whilst the train is on the move.

I am not covering other possible methods like battery swapping in this post.

Static Charging

Hitachi only mention static charging in their specification and they give a charge time of ten minutes.

This is a very convenient time, when you consider quite a few trains take around 10-15 minutes to turn round at a terminus.

Two companies have stated that they have products that can charge battery trains in around this time.

  • Vivarail offers a system based on well-proven third-rail electrification technology.
  • Furrer and Frey offers a system based on overhead electrification technology.

I suspect that other companies are developing systems.

Dynamic Charging

With dynamic charging, the batteries are charged as the trains run along standard electrified routes.

In the UK, this means one of two systems.

  • 750 VDC third rail electrification
  • 25 KVAC overhead electrification

Both systems can be used to charge the batteries.

Note that in the BEMU Trial in 2015, the Class 379 train used for the trial charged the batteries from the 25 KVAC overhead electrification.

A Mixture Of Dynamic And Static Charging

Many routes will be handled by a mixture of both methods.

As an example London Paddington and Cheltenham is electrified except for the 42 miles between Swindon and Cheltenham.

A round trip between London Paddington and Cheltenham could be handled as follows.

  • London Paddington to Swindon using electrification – Dynamic charging battery at the same time!
  • Swindon to Cheltenham using battery power
  • Turnround at Cheltenham – Static charging battery at the same time!
  • Cheltenham to Swindon using battery power
  • Swindon to London Paddington using electrification

Note the following.

  1. Two legs of the round-trip are run using electrification power.
  2. Two legs of the round-trip are run using battery power.
  3. There is one dynamic charge and one static charge of the batteries.

No diesel power would be used on the journey and I suspect journey times would be identical to the current timetable.

I suspect that many routes run by battery electric trains will employ a mixture of both dynamic and static charging.

Here’s a few examples.

  • London Kings Cross and Lincoln
  • London Kings Cross and Harrogate
  • London St Pancras and Melton Mowbray
  • London Euston and Chester
  • London Paddington and Bedwyn

There are probably many more.

Intermediate Charging On A Long Route

South Western Railway has a fleet that is nearly all-electric.

But they do have forty diesel trains, which are mainly used for services between London Waterloo and Exeter.

These don’t fit with any decarbonising strategy.

There is also the problem that the route between London Waterloo and Exeter, is only electrified as far as Basingstoke, leaving a long 124 miles of route without electrification.

This means that a battery train needs to charge the batteries at least twice en route.

Charging At A Longer Stop

The obvious approach to providing en route charging would be to perform a ten minute stop, where the batteries are fast charged.

Looking at Real Time Trains, the stop at Salisbury is often five minutes or more, as trains can join and split and change crews at the station.

But two stops like this could slow the train by fifteen minutes or so.

Charging At A An Electrification Island

On the section of the route, West of Salisbury, there are a series of fairly close-together stations.

  • Tisbury – 7 miles
  • Gillingham – 16 miles
  • Templecombe – 18 miles
  • Sherborne – 23 miles
  • Yeovil Junction – 39 miles
  • Crewkerne – 48 miles
  • Axminster – 61 miles

Note,

The distances are from Salisbury.

  1. Much of this nearly ninety mile section of the West of England Line between Salisbury and Exeter is single track.
  2. The Heart of Wessex Line between Westbury and Weymouth crosses at Yeovil Junction.
  3. There are three sections of double track and four passing loops.
  4. There is a passing loop at Axminster.

It strikes me that the optimal way of charging battery trains on this secondary route might be to electrify both the West of England and Heart of Wessex Lines around Yeovil Junction station.

The power for the electrification island, could come from local renewable sources, as proposed by Riding Sunbeams.

Distances from Yeovil Junction station are.

  • Bath Spa – 50 miles
  • Castle Cary – 12 miles
  • Exeter St. Davids – 49 miles
  • Salisbury – 39 miles
  • Weymouth – 30 miles

With a battery-electric train with a 55-65 mile range, as proposed in Hitachi’s draft specification, SWR’s London Waterloo and Exeter service would certainly be possible. Charging would be at Salisbury and in the Yeovil area.

On Summer Saturdays, SWR also run a London Waterloo and Weymouth service via Salisbury and Yeovil Junction. This would appear to be within the range of a battery-electric train.

As Weymouth is electrified with third-rail, I suspect that arranging charging of a battery-electric train at the station, will not be an impossible task.

The other service through the area is Great Western Railway‘s service between Gloucester and Weymouth, that runs every two hours.

It would appear that in some point in the future, it will be possible to run this service using a Hitachi battery-electric train.

Third-Rail Or Overhead?

The previous example of an electrification island would probably use 750 VDC third-rail electrification, but there is no reason, why 25 KVAC overhead electrification couldn’t be used.

Note that these trains have been talked about as possibilities for running under battery power.

  • Greater Anglia’s Class 379 trains, built by Bombardier
  • Greater Anglia’s Class 755 trains, built by Stadler.
  • Merseyrail’s Class 777 trains, built by Stadler.
  • Scotrail’s Class 385 trains, built my Hitachi
  • Several companies’ Class 800 trains, built by Hitachi
  • Suthern’s Class 377 trains, built by Bombardier

All the manufacturers named have experience of both dual-voltage trains and battery operation.

I would suspect that any future battery-electric trains in the UK will be built to work on both of our electrification systems.

When talking about battery-electric trains, 750 VDC third-rail electrification may have advantages.

  • It can be easily powered by local renewable sources, as Riding Sunbeams are proposing.
  • It is compatible with Vivarail’s Fast-Charging system.
  • Connection and disconnection is totally automatic and has been since Southern Railway started using third-rail electrification.
  • Is is more affordable and less disruptive to install?
  • Third-rail electrification can be installed in visually-sensitive areas with less objections.

Developments in third-rail technology will improve safety, by only switching the power on, when a train is connected.

More Electrification Islands

These are a few examples of where an electrification island could enable a battery-electric train to decarbonise a service.

London Euston and Holyhead

In Are Hitachi Designing the Ultimate Battery Train?, I looked at running Hitachi’s proposed battery-electric trains between London Euston and Holyhead.

I proposed electrifying the fourteen miles between Rhyl and Llandudno Junction stations, which would leave two sections of the route between London Euston and Holyhead without electrification.

  • Rhyl and Crewe is fifty-one miles.
  • Llandudno Junction and Holyhead is forty-one miles.

Both sections should be within the battery range of Hitachi’s proposed battery-electric trains, with their 55-65 mile range.

The following should be noted.

  • The time between arriving at Rhyl station and leaving Llandudno Junction station is nineteen minutes. This should be time enough to charge the batteries.
  • Either 25 KVAC overhead or 750 VDC third-rail electrification could be used.
  • There could be arguments for third-rail, as the weather can be severe.
  • The railway is squeezed between the sea and the M55 Expressway and large numbers of caravans.

The performance of the new trains will be such, that they should be able to run between London Euston and Holyhead in a similar time. Using High Speed Two could reduce this to just under three hours.

Edinburgh And Aberdeen

I’m sure Scotland would like to electrify between Edinburgh and Aberdeen.

But it would be a difficult project due to the number of bridges on the route.

Distances from Edinburgh are as follows.

  • Leuchars – 50 miles
  • Dundee – 59 miles
  • Arbroath – 76 miles
  • Montrose – 90 miles
  • Stonehaven – 114 miles
  • Aberdeen – 130 miles

A quick look at these distances indicate that Hitachi’s proposed battery-electric trains with a 55-65 mile range could cover the following sections.

  • Edinburgh and Dundee – 59 miles
  • Arbroath and Aberdeen – 56 miles

Would it be possible to electrify  the seventeen miles between Dundee and Arbroath?

I have just flown my helicopter along the route and observed the following.

  • Dundee station is new and appears to be cleared for overhead wires.
  • Many of the bridges in Dundee are new and likely to be cleared for overhead wires.
  • There is a level crossing at Broughty Ferry station.
  • Much of the route between Broughty Ferry and Arbroath stations is on the landward side of golf links, with numerous level crossings.
  • Between Arbroath and Montrose stations, the route appears to be running through farmland using gentle curves.
  • There is a single track bridge across the River South Esk to the South of Montrose station.
  • According to Wikipedia, the operating speed is 100 mph.

Montrose might be a better Northern end to the electrification.

  • It has a North-facing bay platform, that could be used for service recovery and for charging trains turning back to Aberdeen.
  • Montrose and Aberdeen is only forty miles.
  • It might be possible to run the service between Montrose and Inverurie, which is just 57 miles on battery power.

The problem would be electrifying the bridge.

Operationally, I can see trains running like this between Edinburgh and Aberdeen.

  • Trains would leave the electrification, just to the North of Edinburgh with a full battery.
  • Battery power would be used over the Forth Bridge and through Fife and over the Tay Bridge to Dundee.
  • Electrification would take the train to Arbroath and possibly on to Montrose. The battery would also be charged on this section.
  • Battery power would take trains all the way to Aberdeen.

Trains would change between battery and electrification in Dundee and Arbroath or Montrose stations.

My one question, is would it be a good idea to electrify through Aberdeen, so that trains returning South could be charged?

I believe that four or five-car versions of Hitachi’s proposed battery-electric trains would be able to run the route.

Glasgow And Aberdeen

This builds on the work that would be done to enable battery-electric trains go between Edinburgh and Aberdeen.

The route between Glasgow and Dundee is partially-electrified with only a forty-nine mile section between Dundee and Dunblane without wires.

I believe that four or five-car versions of Hitachi’s proposed battery-electric trains would be able to run the route.

 

To Be Continued…

 

Conclusion

I don’t think it will be a problem to provide an affordable charging infrastructure for battery trains.

I also think, that innovation is the key, as Vivarail have already shown.

February 20, 2020 Posted by | Transport | , , , , , , , , , | Leave a comment

‘Mammoth Task’ Completed As Overground Line Reopens

The title of this post is the same as that of this article on Railnews.

The article tells the story of one of the worst rail cock-ups of recent years.

A rogue wagon on a freight train ripped up four kilometres of the Gospel Oak to Barking Line on the night of the 23rd of January.

And it was only yesterday, that the line fully reopened.

This is the last sentence of the article.

The cost of the repairs and resulting disruption has not been revealed.

Effectively, four kilometres of new railway don’t come cheap!

February 20, 2020 Posted by | Transport | , , , | 2 Comments

Castlefield Corridor Trade-Off Plan For Fewer Trains

The title of this post is the same as that of this article on Rail Magazine.

The article says that to solve the problems through the Castlefield Corridor, the number of trains will be reduced from 15 trains per hour (tph) to thirteen tph.

This arrangement applied until May 2018 and meant that two tph between Manchester Airport and East of the Pennines reversed in Manchester Piccadilly station to go East, rather than using the Castlefield Corridor through Deansgate and Manchester Victoria stations.

The arrangement worked well before May 2018 and I doubt there’s no reason, why it won’t work in the short-term.

The long-term solution is Northern Powerhouse Rail and/or High Speed Two, which looks like will be in tunnel between the Airport and Manchester City Centre and could carry as many as six tph between Manchester and Liverpool via the Airport.

Perhaps, this should be the first piece of High Speed Two to be built in the North.

  • It connects the three most important economic areas in the North West of England; Liverpool, Manchester and Manchester Airport.
  • It would greatly increase capacity.
  • It would probably have good connections to Crewe, Warrington, Wigan and the West Coast Main Line.
  • Liverpool has an extensive local rail network, which is being expanded.
  • Manchester is expanding the Metrolink network.

Some of the Castlefield Corridor services would have been replaced by better and faster services.

February 19, 2020 Posted by | Transport | , , , , , , , | 2 Comments

Akiem Acquires Macquarie European Rail Fleet

The title of this post is the same as that of this article on Railway Gazette.

This is the introductory paragraph.

Leasing company Akiem Group has signed a definitive agreement to acquire Macquarie European Rail’s rolling stock leasing business, subject to regulatory approval.

Included in the deal are thirty Class 379 trains, currently used on the Stansted Express and soon to be replaced by new Class 745 trains.

Because of the lack of any published plans about where the Class 379 trains will be cascaded, I have been wondering if there is something wrong with the trains or perhaps their owner.

As the latter looks now to be changing from Macquarie to Akiem, perhaps we’ll hear some news on what is happening to the Class 379 trains.

I still feel the Class 379 trains would make excellent battery-electric trains, possibly for an airport service.

But which train operating company would need a fleet of thirty four-car electric trains?

Most have now sorted their fleet requirements and when Bombardier get their production working smoothly, perhaps with Alstom’s backing, there will be more trains being delivered to train operating companies.

But there is one fleet replacement, where battery-electric Class 379 trains may be ideal; the replacement of South Western Railway (SWR)‘s fleet of Class 158 and Class 159 trains.

Consider.

  • 10 x two-car Class 158 trains and 30 x three-car Class 159 trains could be replaced by 30 x four-car Class 379 trains, which would be a near ten percent increase in carriages.
  • 90 mph diesel trains, that were built in the 1990s, will be replaced by 100 mph battery-electric trains, that are not yet ten years old.
  • The Class 379 trains are Electrostars and fitting third-rail shoes, will be straight out of Bombardier’s parts bins.
  • Waterloo station will become another diesel-free London terminus.
  • Fellow French company; Alstom could step in to the picture with their battery knowledge from other products like the iLint hydrogen train and convert the trains at Widnes or one of their other maintenance depots.
  • South Western Railway and Akiem would need to procure a charging system and could probably do worse than see what Vivarail or Furrer and Frei can supply!

How would the Class 379 battery-electric trains handle various services?

London Waterloo To Salisbury And Exeter St. Davids

The most difficult service to run, would be the London Waterloo and Exeter St. Davids service via Salisbury.

Note that when SWR bid for the franchise, they promised to knock ten minutes off the time to Exeter and they will need 100 mph trains for that!

With climate change in the news, only a hardline climate-change denier would buy 100 mph diesel trains.

In Are Hitachi Designing the Ultimate Battery Train?, I suggested how Waterloo and Exeter could be run with a battery-electric train, with a range of around sixty miles on battery power.

  • Use existing electrification, as far as Basingstoke – 48 miles
  • Use battery power to Salisbury – 83 miles
  • Trains can take several minutes at Salisbury as they often split and join and change train crew, so the train could be fast-charged, at the same time.
  • Use battery power to the Tisbury/Gillingham/Yeovil/Crewkerne area, where trains would be charged – 130 miles
  • Use battery power to Exeter- 172 miles

Note.

  1. The miles are the distance from London.
  2. The charging at Salisbury could be based on Vivarail’s Fast-Charging or traditional third-rail technology.
  3. The charging around Yeovil could be based on perhaps twenty miles of third-rail electrification, that would only be switched on, when a train is present.
  4. Charging would also be needed at Exeter for the return journey.

I estimate that there could be time savings of up to fifteen minutes on the route.

London Waterloo To Salisbury And Bristol Temple Meads

This service in run in conjunction with the Exeter St. Davids service, with the two trains joining and splitting at Salisbury.

As Salisbury and Bristol Temple Meads is 53 miles, it looks like this service is possible, providing the following conditions are met.

  • The Class 379 train has a sixty mile range on battery power.
  • The train can charge at Bristol Temple Meads, perhaps by using the 25 KVAC overhead electrification.
  • The Class 379 trains can join and split with the with amount of alacrity.

Note that there may be other places, where a tri-mode capability might be useful.

Exeter And Axminster

This shorter trip is thirty miles and if the battery range is sufficient, it could probably be run by a Class 379 train, charged at Exeter.

If necessary, a method of charging could be provided at Axminster.

Romsey And Salisbury Via Southampton Central

This route is partially electrified and it looks like a battery-electric train with a sixty mile range could run the service without any extra infrastructure.

If Salisbury, gets a charging system, then this service might be used to ensure a reliable or extended service.

Portsmouth Harbour And Basingstoke And Portsmouth Harbour and Southampton Central

These two services could be run by Class 379 trains running using the electrification.

London Or Wareham and Corfe Castle

This Summer Saturday-only service is an ideal one for a battery-electric train.

New Services

There are also other branches that could be reopened, like those to Ringwood and Hythe, that could be worked by battery-electric trains.

Conclusion

It will be very interesting to see where the Class 379 trains end up.

But my money’s on them replacing South Western Railways, diesel trains, after conversion to battery-electric trains.

  • Only limited infrastructure works will need to be done.
  • South Western Railway will have more capacity.
  • Passengers will get a faster service in a modern train.
  • Waterloo will become a diesel-free station.

But most importantly, South Western Railway will have an all-electric fleet.

 

 

 

February 19, 2020 Posted by | Transport | , , , , , , , | Leave a comment

Highview Power’s Advantages

I have said before that I like Highview Power’s system for storing energy by liquifying air.

This article on CleanTechnica is entitled Shell Signs PPA With Largest Storage Battery In Europe.

But it also has a section entitled Other Storage Plans For UK Are In The Works, which gives more details on Highview Power.

Replacement Of Decommissioned Power Plants

Highview are proposing that their systems can replace an existing fossil-fuel power plant, by using the existing site and grid connections. Connecting a power station to the grid, is often an expensive process, but if you can use an existing one, it must be more affordable.

Cost Versus Lithium-Ion

Highview are claiming that they can provide power at $143 per MWh, which compares with a cost of $187 per MWh, as quoted by Bloomberg.

That is nearly 24 % more affordable.

February 18, 2020 Posted by | World | , | Leave a comment

Are Hitachi Designing the Ultimate Battery Train?

In Sparking A Revolution, a post based on an article of the same name in Issue 898 of Rail Magazine, I repeated this about the specification of Hitachi UK Battery Train Specification.

  • Range – 55-65 miles
  • Performance – 90-100 mph
  • Recharge – 10 minutes when static
  • Routes – Suburban near electrified lines
  • Battery Life – 8-10 years

Does this mean that the train can do 55-65 miles cruising at 90-100 mph?

How Much Energy Is Needed To Accelerate A Five-Car Class 800 Train To Operating Speed?

I will do my standard calculation.

  • Empty train weight – 243 tonnes (Wikipedia for Class 800 train!)
  • Passenger weight – 302 x 90 Kg (Includes baggage, bikes and buggies!)
  • Train weight – 270.18 tonnes

Using Omni’s Kinetic Energy Calculator, the kinetic energy at various speeds are.

  • 60 mph – 27 kWh
  • 80 mph – 48 kWh
  • 90 mph – 61 kWh
  • 100 mph – 75 kWh
  • 125 mph – 117 kWh – Normal cruise on electrified lines.
  • 140 mph – 147 kWh – Maximum cruise on electrified lines.

Because the kinetic energy of a train is only proportional to the weight of the train, but proportional to the square of the speed, note how the energy of the train increases markedly after 100 mph.

Are these kinetic energy figures a reason, why Hitachi have stated their battery train will have an operating speed of between 90 and 100 mph?

A 100 mph cruise would also be very convenient for a lot of main lines, that don’t have electrification in the UK.

What Battery Size Would Be Needed?

In How Much Power Is Needed To Run A Train At 125 mph?, I calculated that a five-car Class 801 electric train, needed 3.42 kWh per vehicle-mile to maintain 125 mph.

For comparison, an InterCity 125 train, had a figure of 2.83 kWh per vehicle-mile.

Hitachi are redesigning the nose of the train for the new Class 804 train and I suspect that these trains can achieve somewhere between 1.5 and 3 kWh per vehicle-mile, if they are cruising at 100 mph.

Doing the calculation for various consumption levels gives the following battery capacity for a five-car train to cruise 65 miles at 100 mph

  • 1.5 kWh per vehicle-mile – 487 kWh
  • 2 kWh per vehicle-mile – 650 kWh
  • 2.5 kWh per vehicle-mile – 812.5 kWh
  • 3 kWh per vehicle-mile – 975 kWh

These figures don’t include any energy for acceleration to line speed from the previous stop or station, but they would cope with a deceleration and subsequent acceleration, after say a delay caused by a slow train or other operational delay, by using regenerative braking to the battery.

The energy needed to accelerate to operating speed, will be as I calculated earlier.

  • 90 mph – 61 kWh
  • 100 mph – 75 kWh

As the battery must have space to store the regenerative braking energy and it would probably be prudent to have a ten percent range reserve, I can see a battery size for a train with an energy consumption of 2 kWh per vehicle-mile, that needed to cruise at 100 mph being calculated as follows.

  • Energy for the cruise – 650 kWh
  • 10% reserve for cruise – 65 kWh
  • Braking energy from 100 mph – 75 kWh

This gives a total battery size of 790 kWh, which could mean that 800 kWh would be convenient.

Note that each of the three MTU 12V 1600 diesel engines, fitted to a Class 800 train, each weigh around two tonnes.

In Innolith Claims It’s On Path To 1,000 Wh/kg Battery Energy Density, I came to these conclusions.

  • Tesla already has an energy density of 250 Wh/Kg.
  • Tesla will increase this figure.
  • By 2025, the energy density of lithium-ion batteries will be much closer to 1 KWh/Kg.
  • Innolith might achieve this figure. But they are only one of several companies aiming to meet this magic figure.

Suppose two of the MTU 12V 1600 diesel engines were each to be replaced by a two tonne battery, using Tesla’s current energy density, this would mean the following.

  • Each battery would have a capacity of 500 kWh.
  • The train would have one MWh of installed battery power.
  • This is more than my rough estimate of power required for a 65 mile trip.
  • The train would have little or no weight increase.
  • I also wouldn’t be surprised to find that the exchange of a diesel engine for a battery was Plug-and-Play.

Hitachi would have an electric/battery/diesel tri-mode train capable of the following.

  • Range – 55-65 miles
  • Out and Back Range – about 20-30 miles
  • Performance – 90-100 mph
  • Recharge – 10 minutes when static
  • Emergency diesel engine.

I feel it would be a very useful train.

Trains That Could Be Fitted With Batteries

The original article in Rail Magazine says this.

For the battery project, positive discussions are taking place with a number of interested parties for a trial, with both Class 385s and Class 800s being candidates for conversion.

So this means that the following operators will be able to use Hitachi’s battery technology o their trains.

  • Avanti West Coast – Class 80x trains
  • East Coast Trains – Class 80x trains
  • East Midlands Railway – Class 80x trains
  • GWR – Class 80x trains
  • Hull Trains – Class 80x trains
  • LNER – Class 80x trains
  • ScotRail – Class 385 trains
  • TransPennine Express – Class 80x trains

Although, I based my calculations on Class 80x trains, I suspect that the methods can be applied to the smaller Class 385 trains.

Possible Out-And-Back Journeys

These are possible Out-And-Back journeys, that I believe Hitachi’s proposed battery-electric trains could handle.

  • Edinburgh and Tweedbank – 30 miles from Newcraighall
  • London Paddington and Bedwyn – 30 miles from Reading
  • London Euston and Blackburn – 12 miles from Preston
  • London Kings Cross and Bradford – < 27 miles from Leeds
  • London Euston and Chester – 21 miles from Crewe
  • London Kings Cross and Harrogate – <18 miles from Leeds
  • London Kings Cross and Huddersfield – 17 miles from Leeds
  • London St. Pancras and Leicester – 16 miles from Market Harborough
  • London Kings Cross and Lincoln – 17 miles from Newark
  • London St. Pancras and Melton Mowbray – 26 miles from Corby
  • London Kings Cross and Middlesbrough – 20 miles from Northallerton
  • London Kings Cross and Nottingham – 20 miles from Newark
  • London Paddington and Oxford – 10 miles from Didcot
  • London Kings Cross and Redcar – 29 miles from Northallerton
  • London Kings Cross and Rotherham- 14 miles from Doncaster
  • London Kings Cross and Sheffield – 20 miles from Doncaster
  • London and Weston-super-Mare – 19 miles from Bristol

Note.

  1. Provided that the Out-And-Back journey is less than about sixty miles, I would hope that these stations are comfortably in range.
  2. Leicester is the interesting destination, which would be reachable in an Out-And-Back journey. But trains from the North stopping at Leicester would probably need to charge at Leicester.
  3. I have included Blackburn as it could be a destination for Avanti West Coast.
  4. I have included Melton Mowbray as it could be a destination for East Midlands Railway.
  5. I have included Nottingham, Rotherham and Sheffield as they could be destinations for LNER. These services could prove useful if the Midland Main Line needed to be closed for construction works.
  6. I’m also fairly certain, that no new electrification would be needed, although every extra mile would help.
  7. No charging stations would be needed.

I suspect, I’ve missed a few possible routes.

Possible Journeys Between Two Electrified Lines

These are possible journeys between two electrified lines, that  I believe Hitachi’s proposed battery-electric trains could handle.

  • London St. Pancras and Eastbourne via Hastings – 25 miles between Ashford and Ore.
  • Leeds and York via Garforth – 20 miles between Neville Hall and Colton Junction
  • London Kings Cross and Norwich via Cambridge – 54 miles between Ely and Norwich.
  • Manchester Victoria and Leeds via Huddersfield – 43 miles between Manchester Victoria and Leeds.
  • Preston and Leeds via Hebden Bridge – 62 miles between Preston and Leeds.
  • Newcastle and Edinburgh – Would battery-electric trains get round the well-publicised power supply problems on this route?

Note.

  1. I am assuming that a range of 65 miles is possible.
  2. If the trains have a diesel-generator set, then this could be used to partially-charge the battery in places on the journey.
  3. Leeds and York via Garforth has been scheduled for electrification for years.
  4. Preston and Leeds via Hebden Bridge would probably need some diesel assistance.
  5. London Kings Cross and Norwich via Cambridge is a cheeky one, that Greater Anglia wouldn’t like, unless they ran it.
  6. As before no new electrification or a charging station would be needed.

I suspect, I’ve missed a few possible routes.

Possible Out-And-Back Journeys With A Charge At The Destination

These are possible Out-And-Back journeys, that I believe Hitachi’s proposed battery-electric trains could handle, if the batteries were fully charged at the destination.

  • Doncaster and Cleethorpes – 52 miles from Doncaster.
  • London Paddington and Cheltenham – 42 miles from Swindon
  • London Kings Cross and Cleethorpes via Lincoln – 64 miles from Newark
  • London Euston and Gobowen – 46 miles from Crewe
  • London Euston and Wrexham – 33 miles from Crewe
  • London Kings Cross and Hull – 45 miles from Selby
  • London Kings Cross and Shrewsbury – 30 miles from Wolverhampton
  • London Kings Cross and Sunderland 41 miles from Northallerton
  • London Paddington and Swansea – 46 miles from Cardiff
  • London Paddington and Worcester – 67 miles from Didcot Parkway
  • London St. Pancras and Derby – 46 miles from Market Harborough
  • London St. Pancras and Nottingham – 43 miles from Market Harborough

Note.

  1. I am assuming that a range of 65 miles is possible.
  2. If the trains have a diesel-generator set, then this could be used to partially-charge the battery in places on the journey.
  3. I am assuming some form of charging is provided at the destination station.
  4. As before no new electrification would be needed.

I suspect, I’ve missed a few possible routes.

Midland Main Line

The Midland Main Line could possibly be run between London St. Pancras and Derby, Nottingham and Sheffield without the use of diesel.

Consider.

  • The route will be electrified between London St. Pancras and Market Harborough.
  • In connection with High Speed Two, the Midland Main Line and High Seed Two will share an electrified route between Sheffield and Clay Cross North Junction.
  • London St. Pancras and Derby can be run with a charging station at Derby, as Market Harborough and Derby is only 46 miles.
  • London St. Pancras and Nottingham can be run with a charging station at Nottingham, as Market Harborough and Nottingham is only 43 miles.
  • The distance between Clay Cross North Junction and Market Harborough is 67 miles.
  • The distance between Sheffield and Leeds is 38 miles.

It looks to me that the range of East Midlands Railway’s new Class 804 trains, will be a few miles short to bridge the gap on batteries, between Clay Cross North Junction and Market Harborough station, but Leeds and Sheffield appears possible, once Sheffield has been electrified.

There are several possible solutions to the Clay Cross North and Market Harborough electrification gap.

  1. Fit higher capacity batteries to the trains.
  2. Extend the electrification for a few miles North of Market Harborough station.
  3. Extend the electrification for a few miles South of Clay Cross North Junction.
  4. Stop at Derby for a few minutes to charge the batteries.

The route between Market Harborough and Leicester appears to have been gauge-cleared for electrification, but will be difficult to electrify close to Leicester station. However, it looks like a few miles can be taken off the electrification gap.

Between Chesterfield and Alfriston, the route appears difficult to electrify with tunnels and passig through a World Heritage Site.

So perhaps options 1 and 2 together will give the trains sufficient range to bridge the electrification gap.

Conclusion On The Midland Main Line

I think that Hitachi, who know their trains well, must have a solution for diesel-free operation of all Midland Main Line services.

It also looks like little extra electrification is needed, other than that currently planned for the Midland Main Line and High Speed Two.

North Wales Coast Line

If you look at distance along the North Wales Coast Line, from the electrification at Crewe, you get these values.

  • Chester – 21 miles
  • Rhyl – 51 miles
  • Colwyn Bay – 61 miles
  • Llandudno Junction – 65 miles
  • Bangor – 80 miles
  • Holyhead – 106 miles

It would appear that Avanti West Coast’s new AT-300 trains, if fitted with batteries could reach Llandudno Junction station, without using diesel.

Electrification Between Crewe And Chester

It seems to me that the sensible thing to do for a start is to electrify the twenty-one miles between Crewe and Chester, which has been given a high priority for this work.

With this electrification, distances from Chester are as follows.

  • Rhyl – 30 miles
  • Colwyn Bay – 40 miles
  • Llandudno Junction – 44 miles
  • Bangor – 59 miles
  • Holyhead – 85 miles

Electrification between Crewe and Chester may also open up possibilities for more electric and battery-electric train services.

But some way will be needed to charge the trains to the West of Chester.

Chagring The Batteries At Llandudno Junction Station

This Google Map shows Llandudno Junction station.

Note.

  1. It is a large station site.
  2. The Conwy Valley Line, which will be run by battery Class 230 trains in the future connects at this station.
  3. The Class 230 train will probably use some of Vivarail’s Fast Charging systems, which use third-rail technology, either at the ends of the branch or in Llandudno Junction station.

The simplest way to charge the London Euston and Holyhead train, would be to build a charging station at Llandudno Junction, which could be based on Vivarail’s Fast Charging technology or a short length of 25 KVAC overhead wire.

But this would add ten minutes to the timetable.

Could 25 KVAC overhead electrification be erected for a certain distance through the station, so that the train has ten minutes in contact with the wires?

Looking at the timetable of a train between London Euston and Holyhead, it arrives at Colwyn Bay station at 1152 and leaves Llandudno Junction station at 1200.

So would it be possible to electrify between the two stations and perhaps a bit further?

This Google Map shows Colwyn Bay Station,

Note how the double-track railway is squeezed between the dual-carriageway of the A55 North Wales Expressway and the sea.

The two routes follow each other close to the sea, as far as Abegele & Pensarn station, where the Expressway moves further from the sea.

Further on, after passing through more caravans than I’ve ever seen, there is Rhyl station.

  • The time between arriving at Rhyl station and leaving Llandudno Junction station is nineteen minutes.
  • The distance between the two stations is fourteen miles.
  • Rhyl and Crewe is fifty-one miles.
  • Llandudno Junction and Holyhead is forty-one miles.

It would appear that if the North Wales Coast Line between Rhyl and Llandudno Junction is electrified, that Hitachi’s proposed battery trains can reach Holyhead.

The trains could even changeover between electrification and battery power in Rhyl and Llandudno Junction stations.

I am sure that electrifying this section would not be the most difficult in the world, although the severe weather sometimes encountered, may need some very resilient or innovative engineering.

It may be heretical to say so, but would it be better if this section were to be electrified using proven third-rail technology.

West of Llandudno Junction station, the electrification would be very difficult, as this Google Map of the crossing of the River Conwy shows.

I don’t think anybody would want to see electrification around the famous castle.

Electrification Across Anglesey

Llanfairpwll station marks the divide between the single-track section of the North Wales Coast Line over the Britannia Bridge and the double-track section across Anglesey.

From my virtual helicopter, the route looks as if, it could be fairly easy to electrify, but would it be necessary?

  • Llandudno Junction and Holyhead is forty-one miles, which is well within battery range.
  • There is surely space at Holyhead station to install some form of fast-charging system.

One problem is that trains seem to turn round in only a few minutes, which may not be enough to charge the trains.

So perhaps some of the twenty-one miles between Llanfairpwll and Holyhead should be electrified.

London Euston And Holyhead Journey Times

Currently, trains take three hours and forty-three minutes to go between London Euston and Holyhead, with these sectional timings.

  • London Euston and Crewe – One hour and thirty-nine minutes.
  • Crewe and Holyhead – Two hours and four minutes.

The big change would come, if the London Euston and Crewe leg, were to be run on High Speed Two, which will take just fifty-five m,inutes.

This should reduce the London Euston and Holyhead time to just under three hours.

Freight On The North Wales Coast Line

Will more freight be seen on the North Wales Coast Line in the future?

The new tri-mode freight locomotives like the Class 93 locomotive, will be able to take advantage of any electrification to charge their batteries, but they would probably be on diesel for much of the route.

Conclusion On The North Wales Coast Line

Short lengths of electrification, will enable Avanti West Coast’s AT-300 trains, after retrofitting with batteries, to run between Crewe and Holyhead, without using any diesel.

I would electrify.

  • Crewe and Chester – 21 miles
  • Rhyl and Llandudno Junction – 14 miles
  • Llanfairpwll and Holyhead – 21 miles

But to run battery-electric trains between London Euston and Holyhead, only Rhyl and Llandudno Junction needs to be electrified.

All gaps in the electrification will be handled on battery power.

A Selection Of Possible Battery-Electric Services

In this section, I’ll look at routes, where battery-electric services would be very appropriate and could easily be run by Hitachi’s proposed battery-electric trains.

London Paddington And Swansea

Many were disappointed when Chris Grayling cancelled the electrification between Cardiff and Swansea.

I went along with what was done, as by the time of the cancellation, I’d already ridden in a battery train and believed in their potential.

The distance between Cardiff and Swansea is 46 miles without electrification.

Swansea has these services to the West.

  • Carmarthen – 32 miles
  • Fishguard – 73 miles
  • Milford Haven  71 miles
  • Pembroke Dock – 73 miles

It looks like, three services could be too long for perhaps a three car battery-electric version of a Hitachi Class 385 train, assuming it has a maximum range of 65 miles.

But these three services all reverse in Carmarthen station.

So perhaps, whilst the driver walks between the cabs, the train can connect automatically to a fast charging system and give the batteries perhaps a four minute top-up.

Vivarail’s Fast Charging system based on third-rail technology would be ideal, as it connects automatically and it can charge a train in only a few minutes.

I would also electrify the branch between Swansea and the South Wales Main Line.

This would form part of a fast-charging system for battery-trains at Swansea, where turnround times can be quite short.

I can see a network of battery-electric services developing around Swansea, that would boost tourism to the area.

Edinburgh And Tweedbank

The Borders Railway is electrified as far as Newcraighall station and the section between there and Tweedbank is thirty miles long.

I think that a four-car battery-electric Class 385 train could work this route.

It may or may not need a top up at Tweedbank.

The Fife Circle

The Fife Circle service from Edinburgh will always be difficult to electrify, as it goes over the Forth Rail Bridge.

  • The Fife Circle is about sixty miles long.
  • Plans exist for a short branch to Leven.
  • The line between Edinburgh and the Forth Rail Bridge is partly electrified.

I believe that battery-electric Class 385 train could work this route.

London Kings Cross and Grimsby/Cleethorpes via Lincoln

The Cleethorpes/Grimsby area is becoming something of a  renewable energy powerhouse and I feel that battery trains to the area, might be a significant and ultimately profitable statement.

LNER recently opened a six trains per day service to Lincoln.

Distances from Newark are as follows.

  • Lincoln – 17 miles
  • Grimsby – 61 miles
  • Cleethorpes – 64 miles

A round trip to Lincoln can probably be achieved on battery alone with a degree of ease, but Cleethorpes and Grimsby would need a recharge at the coast.

Note that to get to the Cleethorpes/Grimsby area, travellers usually need to change at Doncaster.

But LNER are ambitious and I wouldn’t be surprised to see them dip a toe in the Cleethorpes/Grimsby market.

The LNER service would also be complimented by a TransPennine Express service from Manchester Airport via Sheffield and Doncaster, which could in the future be another service run by a Hitachi battery train.

There is also a local service to Barton-on-Humber, which could be up for improvement.

London Waterloo And Exeter

This service needs to go electric, if South Western Railway is going to fully decarbonise.

But third-rail electrification is only installed between Waterloo and Basingstoke.

Could battery-electric trains be used on this nearly two hundred mile route to avoid the need for electrification.

A possible strategy could be.

  • Use existing electrification, as far as Basingstoke – 48 miles
  • Use battery power to Salisbury – 83 miles
  • Trains can take several minutes at Salisbury as they often split and join and change train crew, so the train could be fast-charged.
  • Use battery power to the Tisbury/Gillingham/Yeovil/Crewkerne area, where trains would be charged – 130 miles
  • Use battery power to Exeter- 172 miles

Note.

  1. The miles are the distance from London.
  2. The charging at Salisbury could be based on Vivarail’s Fast-Charging technology.
  3. The charging around Yrovil could be based on perhaps twenty miles of third-rail electrification, that would only be switched on, when a train is present.

I estimate that there could be time savings of up to fifteen minutes on the route.

 

To Be Continued…

 

 

 

 

 

 

 

 

 

 

 

February 18, 2020 Posted by | Transport | , , , , , , , , , , , , , , , , , , , , | 5 Comments

Innolith Claims It’s On Path To 1,000 Wh/kg Battery Energy Density

The title of this post is the same as that of this article on InsideEVS.

This is the introductory paragraph.

Innolith, the Switzerland-based company with labs in Germany, announced that it is developing the world’s first rechargeable battery with an energy density of 1,000 Wh/kg (or simply 1 kWh per kg of weight). Such high energy would easily enable the production of electric cars with a range of 1,000 km (620 miles).

If they achieve their aim, a one MWh battery will weigh a tonne.

I am sceptical but read this second article on CleanTechnica, which is entitled Swiss Startup Innolith Claims 1000 Wh/kg Battery.

Innolith has a working battery at Haggerstown, Virginia, but say full production is probably 3 to 5 years away.

The CleanTechnica article, also says this about Tesla’s batteries.

Let’s put that into perspective. It is widely believed that Tesla’s latest 2170 lithium ion battery cells produced at its factory in Nevada can store about 250 Wh/kg. The company plans to increase that to 330 Wh/kg as it pursues its goal of being a world leader in battery technology. 1000 Wh/kg batteries would theoretically allow an electric car to travel 600 miles or more on a single charge.

So it would appear that Tesla already has an power density of 250 Wh/Kg.

Conclusion

I am led to believe these statements are true.

  • Tesla already has an energy density of 250 Wh/Kg.
  • Tesla will increase this figure.
  • By 2025, the energy density of lithium-ion batteries will be much closer to 1 KWh/Kg.
  • Innolith might achieve this figure. But they are only one of several companies aiming to meet this magic figure.

These figures will revolutionise the use of lithium-ion batteries.

February 17, 2020 Posted by | Transport | , , , | 1 Comment

A Fixed Link To Northern Ireland

The title of this post is the same as an article in Issue 898 of Rail Magazine, that has been written by Jim Steer, who is a well-known rail engineer.

It is very much a must-read and he is in favour of the link.

  • It’s all about reducing carbon footprint of travel between the UK and Ireland.
  • The bridge would be rail-only.
  • Goods currently sent by truck, would go by rail.
  • There would be a 125 mph rail link across Galloway between the bridge and HS2/West Coast Main Line.
  • A London and Belfast time of three-and-a-half hours would be possible.
  • A frequent Edinburgh and Belfast via Glasgow service would be provided.
  • He believes the Northern Ireland rail network should be converted to standard gauge and expanded, so that large areas of Northern Ireland will benefit.

Increasingly, serious people are coming behind this project.

February 17, 2020 Posted by | Transport | , , , , | 8 Comments

Cambridge To Ipswich In A Class 755 Train

Because of the usual buses on the Great Eastern Main Line, to get to the football at Ipswich, I went via Cambridge and had a drink with a friend in the City.

The journey is timetabled to take seventy five minutes with seven or eight intermediate stops.

These were my observations.

  • We arrived in Ipswich a couple of minutes late.
  • At times the train was travelling at 75 mph.
  • The operating speed is given in Wikipedia as 40-75 mph.
  • Some stops were executed from brakes on to brakes off in around thirty seconds.
  • I wasn’t sure, but the pantograph may go up and down at Stowmarket, depending if the train is going East or West.
  • Cambridge to Stowmarket averaged 43 mph, whereas Stowmarket to Ipswich averaged 48 mph, which would seem to indicate use of the electrification.

I suspect that there isn’t much room to speed up the service, especially as the current 75 minutes gives a convenient turnround with a round trip of three hours.

Which means three trains are needed for the hourly service.

Surprise

What surprised me was the timing of the station stops.

As I said, some were around thirty seconds, with the longest at Stowmarket, where I assume the train picked up the electrification.

It certainly shows how modern trains can do station stops fast.

February 16, 2020 Posted by | Transport | , , , | Leave a comment