The Anonymous Widower

Dual-Fuel Class 37 And 66 Locomotive Concepts Unveiled

The title of this post, is the same as that of this article on Railway Gazette.

This is the first paragraph.

G-volution and SBL-Rail have produced design concepts for dual-fuel versions of Class 37 and 66 locomotives, which would be able to run on diesel with biomethane, biopropane or hydrogen.

Note.

  1. There are about sixty Class 37 locomotives in service or stored.
  2. 480 Class 66 locomotives were originally produced and over 300 must still be in service.
  3. Both locomotives have electric transmissions.
  4. G-volution are developing a dual-fuel Class 180 train, that I wrote about in Grand Central DMU To Be Used For Dual-Fuel Trial.
  5. Two of the design concepts involve replacing the current diesel engines with modern Cummins engines, that meet current emission regulations.
  6. Fuel savings of ten percent are mentioned for one engine conversion.

This is said about the dual-fuel conversions.

Biomethane and biopropane dual fuel engines would offer significant carbon and cost savings verses diesel. Hydrogen has the potential to do so if produced from renewable sources, but would need to be ‘much cheaper’ than it is today.

The article then gives a table, which shows the various savings.

The article comes to these conclusions.

  • Biomethane and biopropane prices are expected to fall, as production increases.
  • Green hydrogen is too expensive, but costs will come down.
  • More rises in the price of diesel, will tilt costs towards alternative fuels.

I feel that to get the emissions and costs down, there would need to be a bit of cheating.

Look at this picture of a Class 66 locomotive under 25 KVAC electrification.

I wonder, if a pantograph and all the electrical gubbins could be fitted to a Class 66 locomotive to create a genuine electro-diesel locomotive.

  • It would use electrification, where it exists.
  • It would use the existing electric transmission.
  • I do suspect though that the Class 37 locomotive may be more difficult to convert because of its age.

It should be noted that in GB Railfreight Plans Order For Future-Proofed Bi-Mode Locomotives, I talk about how GB Railfreight are proposing to purchase a fleet of new electro-diesel freight locomotives, that appears will have Class 66 locomotive performance on both electrification and diesel.

The Involvement Of Cummins

Cummins, who are one of the world’s largest manufacturers of diesel engines, could have a lot to lose from the move to zero-carbon.

  • But they have adopted an if-you-can’t-them-join-them philosophy to hydrogen.
  • They have bought up hydrogen companies like Hydrogenics.
  • They are developing internal combustion engines that can run on hydrogen.
  • Cummins have claimed to me, that they will try to fill any niche market with their engines, so it would be likely, they would apply that philosohy to hydrogen.

I believe that Cummins will not give up their market share without a fight.

I would expect, Cummins will actively support G-volution’s plans, if it would sell upwards of fifty large engines.

Conclusion

I have four main conclusions.

  • I believe that this study could lead to a very significant and worthwhile updating of a Class 66 locomotive.
  • The locomotive would need to be modified so it could use electrification.
  • But I am more dubious, that this could be done with the Class 37 locomotive.
  • I also believe that Cummins will be part of the solution.

In the wider world, I also believe that to retain their turnover and market share, Cummins and the other big diesel engine manufacturers will come up with increasingly innovative solutions.

Caterpillar, Cummins, Deutz, JCB, MTU and others will not give up multi-billion businesses without a fight.

March 30, 2022 Posted by | Hydrogen, Transport/Travel | , , , , , , , , , | 3 Comments

Wabtec’s 100% Electric Locomotive Trickle Suddenly Becomes International Flood

The title of this post, is the same as that of this article on Clean Technica.

This is the introductory paragraph.

Whelp, that was fast. The locomotive manufacturer Wabtec lit up the Intertubes last November when it debuted the new FLXdrive 100% electric locomotive in Pennsylvania, but that was just the beginning. The company has nailed down two clients in Australia for its carbon-free choo-choo while also locking in a spot on the new Europe’s Rail Joint Undertaking, which aims to green up railway systems throughout Europe.

It certainly has been quick.

Usually, only in times of war, do things go that fast.

But you could argue that climate change is as big a threat to the world than China, Iran, North Korea or Russia.

January 18, 2022 Posted by | Transport/Travel | , , , , , | 3 Comments

Could Universal Hydrogen’s Concept Create A Hydrogen-Powered Single-Aisle Airliner?

Universal Hydrogen are making some of what I would consider the right moves.

Hydrogen Supply

Universal Hydrogen have signed a supply contract with Fortescue Future Industries for the supply of green hydrogen.

The deal is described in this press release on the FFI web site, which is entitled FFI And Universal Hydrogen Join Forces To Decarbonise Aviation.

Collaboration With Airbus

There is an article on BusinessWire, which is entitled Universal Hydrogen Announces New Engineering Development Center Located In Toulouse, France, The Heart of European Aviation.

Toulouse is the home of Airbus.

The Capsule Concept

The capsule concept could be universal.

These are widths of various planes and trains.

  • De Havilland Canada Dash 8-400 – 2.52 metres – Internal
  • Airbus ATR 72 – 2.57 metres- Internal
  • Airbus A320neo – 3.7 metres – Internal
  • Boeing 737 – 3.53 metres – Internal
  • Class 800 train – 2.7 metres – External
  • Class 66 locomotive – 2.65 metres – External

I suspect that if the design is correct, then one size of capsule can be made to fit a variety of applications.

Application To Regional Aviation

I discussed this in Flybe Appears To Be On The Way Back.

I believe that De Havilland Canada Dash 8s and Airbus ATR 72s could be converted to hydrogen.

Road Transport

Surely, the capsules would be too big for road transport in the UK and many other countries.

But they would probably be ideal to deliver hydrogen to bus and truck depots and filling stations for hydrogen vehicles. They would just be plugged in and then could start dispensing the fuel.

Decarbonation Of Diesel Locomotives

Consider.

  • The cross-section of a diesel locomotive even in the UK, is larger than that of a regional airliner.
  • Most of the space in the body of a diesel locomotive is taken up by a large diesel engine.
  • Fuel ells or a small gas turbine could be small compared to the diesel engine.
  • Most existing diesel locomotives have electric transmissions.

I believe that many diesel-electric locomotives could be converted to hydrogen power and some could use Universal Hydrogen’s capsules.

Zero-Carbon Backup Generators

Many pieces of important infrastructure, like data centres, hospitals and large railway stations have backup generators.

Universal Hydrogen’s capsules could provide hydrogen for zero-carbon backup generators.

Universal Hydrogen’s Ideas For Single-Aisle Airliners

In the Product page on the Universal Hydrogen web site, there is a section, which is entitled Single Aisle / Narrowbody, where this is the first two sentences.

The majority of aviation emissions are produced by the single aisle (also known as narrowbody) fleet, dominated by the Boeing 737 and Airbus A320 families of aircraft. Both Boeing and Airbus are likely to develop a replacement for these venerable models for entry into service in the mid 2030s.

Alongside the text is this graphic, which compares various airliners.

Universal Hydrogen are proposing that Airbus stretch the A321, so that hydrogen capsules can be fitted in the rear of the fuselage, so that the aircraft has similar proportions to the Boeing 757.

Read the full text on the Product page of the Universal Hydrogen web site.

I can see that if they could prove the concept with the Regional Airliner, they could develop the two concepts shown in the graphic.

Conclusion

This is a simple, but very exciting project.

 

 

December 2, 2021 Posted by | Design, Transport/Travel | , , , , , , , , , , , , , | 1 Comment

Reinstating The Line Between Tavistock And Bere Alston And Providing New Services To And From Plymouth

On October 27th this Beeching Reversal Project was given £50,000 to build a case for reinstating.

This project finally seems to be getting going.

The complete reinstatement between Exeter and Plymouth seems to be developing into a three-phase project.

  • Phase 1 – Exeter and Okehampton – This is now complete and trains are test running, with services due to start on the 20th November.
  • Phase 2 – Tavistock And Bere Alston – This section is being planned and if approved could be the next section to be opened.
  • Phase 3 – Tavistock and Okehampton – This would complete the reinstatement of the route between Exeter and Plymouth.

These are my thoughts.

The Completion Of Phase 1

Trains are now test running to between Exeter and Okehampton.

The full service starts on the 20th November.

  • On that day, there will be eight trains per day (tpd) in both directions.
  • Trains will leave Exeter at 06:32, 08:41, 10:36, 12:37, 14:38, 16:36, 18:48 and 21:00.
  • Trains will leave Okehampton at 07:39, 09:45, 11:39, 13:39, 15:39, 17:46, 19:51 and 22:34.
  • Trains are times to take around forty minutes for each trip.
  • The service is pathed as a Class 150/153/155/156 DMU
  • The service is planned for a maximum speed of 75 mph.

Note.

  1. This is approximately one train per two hours (tp2h).
  2. It looks like the service could be worked by a single train shuttling all day.

The Wikipedia entry for Okehampton station says this.

The service will increase to hourly towards the end of 2022.

It has been a very smooth restoration of service.

Okehampton Parkway Station

Okehampton Parkway station is to be built to the East of Okehampton at Stockley Hamlet.

It looks like it could be a very useful Park-and-Ride station for Exeter and Okehampton.

Could The Okehampton Stations Be Used To By-Pass Dawlish?

In 2014, the sea breached the sea wall and the railway at Dawlish, on the Great Western Main Line between Exeter and Plymouth. Trains couldn’t run past Exeter.

I very much feel that with global warming and seemingly increasingly bad weather that we can’t say that a breach won’t happen again.

Could it be possible to use the one of the Okehampton stations, as a terminal for a Rail Replacement service that connected to Plymouth and Cornwall?

The Gap Between Okehampton And Bere Alston

This Google Map shows the gap between Okehampton and Bere Alston stations.

Note.

  1. Okehampton is at the top of the map between the three green rectangles which mark the main roads.
  2. Bere Alston is in the South-West corner of the map.
  3. Tavistock is North of Bere Alston.
  4. The three places are connected by the A 386 road.

Is there a bus between Okehampton and Bere Alston, that serves Tavistock and the major villages?

Phase 2 – Tavistock And Bere Alston

This Google Map shows between Tavistock and Beer Alston station.

Note.

  1. Tavistock is in the North-East corner of the map.
  2. Bere Alston  is in the South-West corner of the map.
  3. I estimate that about six miles of new track will have to be laid.

This Google Map shows Bere Alston station, which is to the North-West of the village.

Note.

  1. Bere Alston station is on the Tamar Valley Line.
  2. The Tamar Valley Line is all single-track.
  3. Trains to and from Gunnislake station use the Northbound track at the junction to the West of the station.
  4. Trains to and from Plymouth use the Southbound track at the junction to the West of the station.
  5. Trains between Gunnislake and Plymouth reverse at Bere Alston station.

It would appear that the route to Tavistock continued to the East.

This Google Map clearly shows the route of the disused railway as it runs North-East from Bere Alston station.

Note.

Bere Alston station is the South-West corner of the map.

The dark green line of the railway runs to the North-East corner of the map.

As all the railways in the area seem to have been single-track, I would suspect that any rebuilt railway on this route will be single track.

I have followed the dark green line through to Tavistock which is shown in this Google Map.

As the Department of Transport are prepared to finance a study for reinstatement of the route, I would suspect that there is a feasible route between Bere Alston and Tavistock.

  • There would appear to be no bridges or viaducts between Bere Alston and the outskirts of Tavistock.
  • Before closure, there no stations between Bere Alston and Tavistock North stations.
  • Bere Alston station would need to be rebuilt.

The Wikipedia entry for Tavistock North station, says this about the condition of the line.

The station building has been restored and converted into three self-catering cottages. The stationmaster’s house is being restored as a private dwelling, while the goods yard, now known as Kilworthy Park, houses the offices of West Devon Borough Council. The track bed for about one mile (1.6 km) south of Tavistock North station is open to the public as a footpath and nature reserve, and it is possible to walk across the viaducts that overlook the town.

The rest of the track bed south of Tavistock is almost intact to Bere Alston, where it joins the present-day Tamar Valley Line. There has been discussion regarding the re-opening of a rail link for a number of years. Engineering assessment has shown that the track bed, and structures such as bridges and tunnels, are in sound condition.

I can foresee some problems, in what might not be one of the most challenging of projects.

  • Claiming back the railway from the walkers and cyclists.
  • The ownership of the stationmaster’s house.

Unlike Scotland, England didn’t make sure that rail routes could be converted back to railways if needed.

My project management knowledge leads me to agree with what appears to be a decision to do this part of the route next.

Phase 3 – Okehampton And Tavistock

The title of this project as given in the Railway Gazette article is as follows.

Reinstating The Line Between Tavistock And Bere Alston And Providing New Services To And From Plymouth

If you read this literally, it doesn’t mention anything about connecting to Okehampton and Exeter.

  • Looking at maps and reading up on the line, it does appear that the route may be more challenging.
  • The route also contains the Meldon Viaduct, which is a scheduled monument.

Until a viable plan is developed, it might be better and more affordable to run zero-carbon buses between Tavistock and Okehampton.

 

October 30, 2021 Posted by | Transport/Travel | , , , , , , , | 6 Comments

Metrolink Tram Drivers To Strike After ‘Pitiful’ Pay Offer

The title of this post, is the same as that of this article on Railnews.

The strikes will be on the 25th and 26th September, which coincide with a Manchester United home match and the Great Manchester Run.

It would appear that Unite’s new boss; Sharon Graham means business. And in Manchester’s case, a drop in business activity for two days.

I wonder how many extra tonnes of carbon dioxide will be emitted in Manchester on each day of the strike, as people swap from the electric trams to their cars.

September 14, 2021 Posted by | Sport, Transport/Travel | , , , , , , | Leave a comment

Could High Speed Two Serve Holyhead?

Why?

It could be a way to create a zero- or low-carbon route between the islands of Great Britain and Ireland.

Battery-Electric Trains Could Be The Solution

In Will High Speed Two’s Classic-Compatible Trains Have Battery Operation?, I suggested that it might be feasible for High Speed Two’s Classic-Compatible trains to have batteries.

I said this at the start of that post.

I believe it is very likely, that High Speed Two’s new classic-compatible trains will have battery capabilities.

    • Batteries would handle energy generated by regenerative braking.
    • Batteries would give a train recovery capability in case of overhead catenary failure.
    • Batteries would be used for depot movements.
    • Batteries would probably improve the energy efficiency of the trains.

Effectively, the batteries would power the train and would be topped-up by the electrification and the regenerative braking.

Since I wrote that post in February 2020, Hitachi have launched two battery-electric trains, one of which is the Hitachi Intercity Tri-Mode Battery Train, which is described in this Hitachi infographic.

As diesel (or should I say Stuart) engines are so nineteenth-century. any high speed independently-powered train would probably use batteries, have no diesel engines and be a battery-electric train.

So could Hitachi or any other bidder for the High Speed Two Classic-Compatible trains produce a train, that would be capable of handling the long-distance routes from London, that would be difficult or expensive to electrify, by the use of batteries?

  • Batteries will improve dramatically in the next few years.
  • Batteries will also become more affordable.
  • Engineers will also learn how to package them in better and more innovative ways.

I think it is very likely, that a High Speed Two Classic-Compatible train could be produced with a reliable range of over eighty miles on batteries.

Holyhead And Crewe By Battery-Electric Classic-Compatible High Speed Train

These are the distances between stops on the route between Holyhead and Crewe

  • Holyhead and Bangor – 25 miles.
  • Bangor and Llandudno Junction – 16 miles
  • Llandudno Junction and Colwyn Bay – 4 miles
  • Colwyn Bay and Rhyl – 10 miles
  • Rhyl and Prestatyn – 4 miles
  • Prestatyn and Flint – 14 miles
  • Flint and Chester – 13 miles
  • Chester and Crewe – 21 miles

Note.

  1. It is a route of only 105 miles.
  2. There is no 25 KVAC electrification, except at Crewe.
  3. It is nearly all double-track.
  4. The operating speed is 90 mph
  5. The route is also generally flat and mainly along the coast.

Suppose the following were to be done.

  • Erect traditional electrification between Chester and Crewe.
  • Hitachi ABB Power Grids build a section of their discontinuous electrification around Llandudno Junction.
  • Install a battery charging system at Holyhead.

An alternative might be to put another section of discontinuous electrification through Bangor, if installing the charging station at Holyhead proved to be difficult.

I believe it would be possible to run a High Speed Two Classic-Compatible train equipped with batteries between London Euston and Holyhead.

What Time Would Be Possible?

Consider.

  • High Speed Two are predicting 56 minutes between London Euston and Crewe.
  • Avanti West Coast are showing journey times of one hour and 57 minutes between Crewe and Holyhead.
  • Avanti West Coast are using 125 mph Class 221 trains, but are restricted to a lot less than this speed.
  • The HSC Dublin Swift can sail between Dublin and Holyhead in several minutes under two hours.

I believe that a High Speed Two Classic-Compatible train equipped with batteries could go between London Euston and Holyhead in under three hours.

If this were to be linked to the latest hydrogen-powered fast ferry between Holyhead and Dublin, would  London Euston and Dublin be fast enough to attract passengers from the airlines?

  • The journey time could be under five hours.
  • It would be zero-carbon.
  • By cutting stops to the West of Chester and track improvements train times could be reduced.
  • It would be the sort of adventure, that some families like!

I think that Avanti West Coast and the ferry company could have a rail and ferry service, that would appeal to many travellers.

Would There Be A Path To Euston For Another High Speed Service?

In How Many Trains Are Needed To Run A Full Service On High Speed Two?, I listed the trains that would use the Western leg of High Speed Two.

  • Train 1 – London Euston and Birmingham Curzon Street – 400 metre Full-Size
  • Train 2 – London Euston and Birmingham Curzon Street – 400 metre Full-Size
  • Train 3 – London Euston and Birmingham Curzon Street – 400 metre Full-Size
  • Train 4 – London Euston and Lancaster – Classic Compatible
  • Train 4 – London Euston and Liverpool – Classic Compatible
  • Train 5 – London Euston and Liverpool – Classic Compatible
  • Train 6 – London Euston and Macclesfield – Classic Compatible
  • Train 7 – London Euston and Manchester – 400 metre Full-Size
  • Train 8 – London Euston and Manchester – 400 metre Full-Size
  • Train 9 – London Euston and Manchester – 400 metre Full-Size
  • Train 10 – London Euston and Edinburgh – Classic Compatible
  • Train 10 – London Euston and Glasgow – Classic Compatible
  • Train 11 – London Euston and Edinburgh – Classic Compatible
  • Train 11 – London Euston and Glasgow – Classic Compatible
  • Train 12 – Birmingham Curzon Street and Edinburgh or Glasgow – Classic Compatible
  • Train 13 – Birmingham Curzon Street and Manchester – 200 metre Full-Size
  • Train 14 – Birmingham Curzon Street and Manchester – 200 metre Full-Size

Note.

  1. A lot of the paths into London Euston would appear to be allocated.
  2. Train 4 is a pair of 200 metre long Classic-Compatible trains, that will split and join at Crewe, with one train going to Liverpool and the other going to Lancaster.
  3. Train 5 is only a single 200 metre long Classic-Compatible train.

I suspect it would be possible to make Train 5 a pair of 200 metre long Classic-Compatible trains, that will split and join at Crewe, with one train going to Liverpool and the other going to Chester and Holyhead.

It does appear that the proposed timetable for High Speed Two has been designed so extra trains can be added if the demand is there.

What Times Would Be Possible Between Holyhead And Crewe?

Consider.

  • I have looked at the route from my virtual helicopter and suspect that much of the route can be upgraded to 100 mph running.
  • The current average speed between Holyhead and Crewe is 54 mph.
  • London Liverpool Street and Norwich is 114.5 miles and is regularly achieved in ninety minutes on a 100 mph line, which is an average speed of 76 mph.
  • The number of stops could be reduced.

I can build a table of times for faster average speeds.

  • 60 mph – One hour and 45 minutes – Two hours and 41 minutes
  • 70 mph – One hour and 30 minutes – Two hours and 26 minutes
  • 80 mph – One hour and 19 minutes – Two hours and 15 minutes
  • 90 mph – One hour and 10 minutes – Two hours and 6 minutes
  • 100 mph – One hour and 3 minutes – One hour and 59 minutes

Note.

  1. The first time is Holyhead and Crewe.
  2. The second time is London and Holyhead.

I am fairly certain, that a substantial time improvement is possible.

Why Not Electrify All The Way Between Holyhead And Crewe?

I am seventy-four and can remember several incidents of serious storms and flooding along the North Wales Coast Line.

There was a warning earlier this year according to this article on the BBC.

Perhaps it would be better to spend the money on improving the resilience and operating speed of the track?

Conclusion

London Euston and Holyhead could be a serious proposition.

With some development and a new fast ferry, it could also open up a practical zero-carbon route between Great Britain and Ireland.

Times of four and a half hours between London Euston and Dublin could be possible.

 

August 21, 2021 Posted by | Transport/Travel | , , , , , , , , , , , | 6 Comments

Plans To Introduce Battery Powered Trains In Scotland

The title of this post, is the same as that of this article in the Scotsman.

This is said about the routes.

Hitachi said the trains could run up to 60 miles on batteries.

It said recharging would take ten to 15 minutes.

That would mean the trains could run beyond Dunblane – the northern extent of ScotRail’s electrified network – as far as Perth and Dundee.

Hitachi has suggested other routes they could be used on including from Glasgow to East Kilbride and Kilmarnock, and on a Glasgow northern suburban line to Anniesland via Maryhill.

The train described in the article sounds very much like the Hitachi Regional Battery Train, which is described in this Hitachi infographic.

My only reservation is that the article is from 2019.

Since then, Scotland has decided to run battery-electric trains to Leven, as I wrote about in Trains On The Levenmouth Rail Link.

August 6, 2021 Posted by | Transport/Travel | , , , , , | 2 Comments

First Passenger Journey In The UK With mtu Hybrid PowerPack

The title of this post, is the same as that of this press release from Rolls-Royce.

This is the first paragraph.

The mtu Hybrid-PowerPack has passed another milestone successfully: In the UK, a train with mtu hybrid drive carried passengers for the first time as part of a special journey.

So how did mtu, a German manufacturer of large diesel engines for trains and ships, end up in bed with Rolls-Royce?

Wikipedia says this.

MTU Friedrichshafen remained a subsidiary of DaimlerChrysler until 2006 when it was sold off to the EQT IV private equity fund, becoming a part of the Tognum Corporation.

Rolls-Royce Holdings and Daimler AG acquired Tognum in 2011. In 2014, Tognum was renamed Rolls-Royce Power Systems, having become a 100 per cent subsidiary of Rolls-Royce Holdings.

A bit tortuous, to say the least!

This paragraph from the press release describes the journey.

The journey of the train – called HybridFLEX – was part of celebrations to mark the 25th anniversary of UK rail operator Chiltern Railways, which will use the train on its routes. It is a converted Turbostar DMU, which was previously equipped with a conventional mtu drive system.

It doesn’t sound very special, but it’s the equivalent of taking your BMW, Jaguar or Mercedes from twenty years ago and converting it to a full hybrid car with batteries, to assist the diesel engine.

Fuel and emission savings of 25 per cent are claimed, with the additional benefit that the train will not use the diesel engines in stations or sensitive areas.

In HybridFLEX Battery-Diesel Train Continues Programme Of Testing, I said this.

In the UK, the following diesel multiple units are fitted with modern MTU engines and could be candidates from a replacement power pack.

That is a total of 990 diesel engines.

As some of the Class 196 and Class 197 trains have yet to be delivered, I do wonder, if it would be sensible to deliver them as diesel-battery hybrid trains.

That is a lot of diesel engines, that could be replaced by MTU Hybrid Power Packs.

Conversions of other trains are also ongoing in Germany and Ireland.

This article from Rolls-Royce, is entitled  Hybrid Train Trials and gives a lot more details.

This is a quote from the article on fuel savings.

A fuel saving of 15 per cent is a
fantastic result and means that under
optimum conditions, 20 to 25
per cent should be possible. 

The savings certainly fit with Chiltern’s findings.

I have a few questions.

Can Locomotive Size PowerPacks Be Built?

As an engineer, I don’t see why not!

And there is certainly a need for them to cut diesel usage and carbon emissions with locomotives.

Conclusion

These conversions could be a very good interim solution.

 

July 25, 2021 Posted by | Transport/Travel | , , , , , | 26 Comments

Zhengzhou Henan: Chest-High Flooding Hits China Trains And Roads

The title of this post, is the same as that of this article on the the BBC.

This is the first two paragraphs.

Roads and subway stations have been submerged across China’s Henan province as heavy rain has brought severe floods.

One region in Henan has recorded 40cm (15 inches) of rainfall. In Zhengzhou, the city’s entire subway system was forced to close.

I feel sorry for those that died and their friends and families, not only for their loses, but also because they will have probably no say in the stopping of building of hundreds of coal-fired power station, which are certainly one of the factors in all the extreme weather around the world.

Let’s hope at COP26, if the Chinese turn up, other nations make the point that their pro-global warming policies are killing their own people.

 

July 21, 2021 Posted by | Energy, Transport/Travel | , , | 3 Comments

Solving The Electrification Conundrum

The title of this post, is the same as an article in the July 2021 Edition of Modern Railways.

This is the introductory sub-heading.

Regional and rural railways poses a huge problem for the railway to decarbonise.

Lorna McDonald of Hitachi Rail and Jay Mehta of Hitachi ABB Power Grids tell Andy Roden why they believe they have the answer.

These are my thoughts on what is said.

Battery-Electric Trains

The article starts by giving a review of battery-electric trains and their use on routes of moderate but important length.

  • Some short routes can be handled with just a charge on an electrified main line.
  • Some will need a recharge at the termini.
  • Other routes might need a recharge at some intermediate stations, with a possible increase in dwell times.

It was in February 2015, that I wrote Is The Battery Electric Multiple Unit (BEMU) A Big Innovation In Train Design?, after a ride in public service on Bombardier’s test battery-electric train based on a Class 379 train.

I also wrote this in the related post.

Returning from Harwich, I travelled with the train’s on-board test engineer, who was monitoring the train performance in battery mode on a laptop. He told me that acceleration in this mode was the same as a standard train, that the range was up to sixty miles and that only minimal instruction was needed to convert a driver familiar to the Class 379 to this battery variant.

It was an impressive demonstration, of how a full-size train could be run in normal service without connection to a power supply. I also suspect that the partners in the project must be very confident about the train and its technology to allow paying passengers to travel on their only test train.

A couple of years later, I met a lady on another train, who’d used the test train virtually every day during the trial and she and her fellow travellers felt that it was as good if not better than the normal service from a Class 360 train or a Class 321 train.

So why if the engineering, customer acceptance and reliability were proven six years ago, do we not have several battery electric trains in service?

  • There is a proven need for battery-electric trains on the Marshlink Line and the Uckfield Branch in Sussex.
  • The current Class 171 trains are needed elsewhere, so why are no plans in place for replacement trains?
  • The government is pushing electric cars and buses, but why is there such little political support for battery-electric trains?

It’s almost as if, an important civil servant in the decision process has the naive belief that battery-electric trains won’t work and if they do, they will be phenomenally expensive. So the answer is an inevitable no!

Only in the South Wales Metro, are battery-electric trains considered to be part of the solution to create a more efficient and affordable electric railway.

But as I have constantly pointed out since February 2015 in this blog, battery-electric trains should be one of the innovations we use to build a better railway.

Hydrogen Powered Trains

The article says this about hydrogen powered trains.

Hybrid hydrogen fuel cells can potentially solve the range problem, but at the cost of the fuel eating up internal capacity that would ideally be used for passengers. (and as Industry and Technology Editor Roger Ford points out, at present hydrogen is a rather dirty fuel). By contrast, there is no loss of seating or capacity in a Hitachi battery train.

I suspect the article is referring to the Alstom train, which is based on the technology of the Alstom Coradia iLint.

I have ridden this train.

  • It works reliably.
  • It runs on a 100 km route.
  • The route is partially electrified, but the train doesn’t have a pantograph.
  • It has a very noisy mechanical transmission.

Having spoken to passengers at length, no-one seemed bothered by the Hindenburg possibilities.

It is certainly doing some things right, as nearly fifty trains have been ordered for train operating companies in Germany.

Alstom’s train for the UK is the Class 600 train, which will be converted from a four-car Class 321 train.

Note.

  1. Half of both driver cars is taken up by a hydrogen tank.
  2. Trains will be three-cars.
  3. Trains will be able to carry as many passengers as a two-car Class 156 train.

It is an inefficient design that can be improved upon.

Porterbrook and Birmingham University appear to have done that with their Class 799 train.

  • It can use 25 KVAC overhead or 750 VDC third-rail electrification.
  • The hydrogen tanks, fuel cell and other hydrogen gubbins are under the floor.

This picture from Network Rail shows how the train will appear at COP26 in Glasgow in November.

Now that’s what I call a train! Let alone a hydrogen train!

Without doubt, Porterbrook and their academic friends in Birmingham will be laying down a strong marker for hydrogen at COP26!

I know my hydrogen, as my first job on leaving Liverpool University with my Control Engineering degree in 1968 was for ICI at Runcorn, where I worked in a plant that electrolysed brine into hydrogen, sodium hydroxide and chlorine.

My life went full circle last week, when I rode this hydrogen powered bus in London.

The hydrogen is currently supplied from the same chemical works in Runcorn, where I worked. But plans have been made at Runcorn, to produce the hydrogen from renewable energy, which would make the hydrogen as green hydrogen of the highest standard. So sorry Roger, but totally carbon-free hydrogen is available.

The bus is a Wightbus Hydroliner FCEV and this page on the Wrightbus web site gives the specification. The specification also gives a series of cutaway drawings, which show how they fit 86 passengers, all the hydrogen gubbins and a driver into a standard size double-deck bus.

I believe that Alstom’s current proposal is not a viable design, but I wouldn’t say that about the Porterbrook/Birmingham University design.

Any Alternative To Full Electrification Must Meet Operator And Customer Expectations

This is a paragraph from the article.

It’s essential that an alternative traction solution offers the same levels of performance and frequency, while providing an increase in capacity and being economically viable.

In performance, I would include reliability. As the on-board engineer indicated on the Bombardier  test train on the Harwich branch, overhead electrification is not totally reliable, when there are winds and/or criminals about.

Easy Wins

Hitachi’s five-car Class 800 trains and Class 802 trains each have three diesel engines and run the following short routes.

  • Kings Cross and Middlesbrough- 21 miles not electrified – Changeover in Northallerton station
  • Kings Cross and Lincoln – 16.6 miles not electrified – Changeover in Newark Northgate station
  • Paddington and Bedwyn – 13.3 miles not electrified – Changeover in Newbury station
  • Paddington and Oxford – 10.3 miles not electrified – Changeover in Didcot Parkway station

Some of these routes could surely be run with a train, where one diesel engine was replaced by a battery-pack.

As I’m someone, who was designing, building and testing plug-compatible transistorised electronics in the 1960s to replace  older valve-based equipment in a heavy engineering factory, I suspect that creating a plug-compatible battery-pack that does what a diesel engine does in terms of power and performance is not impossible.

What would be the reaction to passengers, once they had been told, they had run all the way to or from London without using any diesel?

Hopefully, they’d come again and tell their friends, which is what a train operator wants and needs.

Solving The Electrification Conundrum

This section is from the article.

Where electrification isn’t likely to be a viable proposition, this presents a real conundrum to train operators and rolling stock leasing companies.

This is why Hitachi Rail and Hitachi ABB Power Grids are joining together to present a combined battery train and charging solution to solve this conundrum. In 2020, Hitachi and ABB’s Power Grids business, came together in a joint venture, and an early outcome of this is confidence that bringing together their expertise in rail, power and grid management, they can work together to make electrification simpler cheaper and quicker.

I agree strongly with the second paragraph, as several times, I’ve been the mathematician and simulation expert in a large multi-disciplinary engineering project, that went on to be very successful.

The Heart Of The Proposition

This is a paragraph from the article.

The proposition is conceptually simple. Rather than have extended dwell times at stations for battery-powered trains, why not have a short stretch of 25 KVAC overhead catenary (the exact length will depend on the types of train and the route) which can charge trains at linespeed on the move via a conventional pantograph?

The article also mentions ABB’s related expertise.

  • Charging buses all over Europe.
  • Creating the power grid for the Great Western Electrification to Cardiff.

I like the concept, but then it’s very similar to what I wrote in The Concept Of Electrification Islands in April 2020.

But as they are electrical power engineers and I’m not, they’d know how to create the system.

Collaboration With Hyperdrive Innovation

The article has nothing negative to say about the the collaboration with Hyperdrive Innovation to produce the battery-packs.

Route Modelling

Hitachi appear to have developed a sophisticated route modelling system, so that routes and charging positions can be planned.

I would be very surprised if they hadn’t developed such a system.

Modular And Scalable

This is a paragraph from the article.

In the heart of the system is a containerised modular solution containing everything needed to power a stretch of overhead catenary to charge trains. A three-car battery train might need one of these, but the great advantage is that it is scalable to capacity and speed requirements.

This all sounds very sensible and can surely cope with a variety of lines and traffic levels.

It also has the great advantage , that if a line is eventually electrified, the equipment can be moved on to another line.

Financing Trains And Chargers

The article talks about the flexibility of the system from an operator’s point of view with respect to finance.

I’ve had some good mentors in the area of finance and I know innovative finance contributed to the success of Metier Management Systems, the project management company I started with three others in 1977.

After selling Metier, I formed an innovative finance company, which would certainly have liked the proposition put forward in the article.

No Compromise, Little Risk

I would agree with this heading of the penultimate section of the article.

In February 2015, when I rode that Class 379 train between Manningtree and Harwich, no compromise had been made by Bombardier and it charged in the electrified bay platform at Manningtree.

But why was that train not put through an extensive route-proving exercise in the UK after the successful trial at Manningtree?

  • Was it the financial state of Bombardier?
  • Was it a lack of belief on the part of politicians, who were too preoccupied with Brexit?
  • Was it that an unnamed civil servant didn’t like the concept and stopped the project?

Whatever the reason, we have wasted several years in getting electric trains accepted on UK railways.

If no compromise needs to be made to create a battery-electric train, that is equivalent to the best-in-class diesel or electric multiple units, then what about the risk?

The beauty of Hitachi’s battery-electric train project is that it can be done in phases designed to minimise risk.

Phase 1 – Initial Battery Testing 

Obviously, there will be a lot of bench testing in a laboratory.

But I also believe that if the Class 803 trains are fitted with a similar battery from Hyperdrive Innovation, then this small fleet of five trains can be used to test a lot of the functionality of the batteries initially in a test environment and later in a real service environment.

The picture shows a Class 803 train under test through Oakleigh Park station.

This phase would be very low risk, especially where passengers are concerned.

Phase 2 – Battery Traction Testing And Route Proving

I am a devious bastard, when it comes to software development. The next set of features would always be available for me to test earlier, than anybody else knew.

I doubt that the engineers at Hyperdrive Innovation will be any different.

So I wouldn’t be surprised to find out that the batteries in the Class 803 trains can also be used for traction, if you have the right authority.

We might even see Class 803 trains turning up in some unusual places to test the traction abilities of the batteries.

As East Coast Trains, Great Western Railway and Hull Trains are all First Group companies, I can’t see any problems.

I’m also sure that Hitachi could convert some Class 800 or Class 802 trains and add these to the test fleet, if East Coast Trains need their Class 803 trains to start service.

This phase would be very low risk, especially where passengers are concerned.

Possibly, the worse thing, that could happen would be a battery failure, which would need the train to be rescued.

Phase 3 – Service Testing On Short Routes

As I indicated earlier, there are some easy routes between London and places like Bedwyn, Lincoln, Middlesbrough and Oxford, that should be possible with a Class 800 or Class 802 train fitted with the appropriate number of batteries.

Once the trains have shown, the required level of performance and reliability, I can see converted Class 800, 801 and Class 802 trains entering services on these and other routes.

Another low risk phase, although passengers are involved, but they are probably subject to the same risks, as on an unmodified train.

Various combinations of diesel generators and batteries could be used to find out, what is the optimum combination for the typical diagrams that train operators use.

Hitachi didn’t commit to any dates, but I can see battery-electric trains running on the Great Western Railway earlier than anybody thinks.

Phase 4 – Service Testing On Medium Routes With A Terminal Charger System

It is my view that the ideal test route for battery-electric trains with a terminal charger system would be the Hull Trains service between London Kings Cross and Hull and Beverley.

The route is effectively in three sections.

  • London Kings Cross and Temple Hirst junction – 169.2 miles – Full Electrification
  • Temple Hirst junction and Hull station – 36.1 miles – No Electrification
  • Hull station and Beverley station – 8.3 miles – No Electrification

Two things would be needed to run zero-carbon electric trains on this route.

  • Sufficient battery capacity in Hull Trains’s Class 802 trains to reliably handle the 36.1 miles between Temple Hirst junction and Hull station.
  • A charging system in Hull station.

As Hull station also handles other Class 800 and Class 802 trains, there will probably be a need to put a charging system in more than one platform.

Note.

  1. Hull station has plenty of space.
  2. No other infrastructure work would be needed.
  3. There is a large bus interchange next door, so I suspect the power supply to Hull station is good.

Hull would be a very good first destination for a battery-electric InterCity train.

Others would include Bristol, Cheltenham, Chester, Scarborough, Sunderland and Swansea.

The risk would be very low, if the trains still had some diesel generator capacity.

Phase 5 – Service Testing On Long Routes With Multiple Charger Systems

Once the performance and reliability of the charger systems have been proven in single installations like perhaps Hull and Swansea stations, longer routes can be prepared for electric trains.

This press release from Hitachi is entitled Hitachi And Eversholt Rail To Develop GWR Intercity Battery Hybrid Train – Offering Fuel Savings Of More Than 20%.

The press release talks about Penzance and London, so would that be a suitable route for discontinuous electrification using multiple chargers?

These are the distances between major points on the route between Penzance and London Paddington.

  • Penzance and Truro – 35.8 miles
  • Truro and Bodmin Parkway – 26.8 miles
  • Bodmin Parkway and Plymouth – 26.9 miles
  • Plymouth and Newton Abbot – 31,9 miles
  • Newton Abbot and Exeter – 20.2 miles
  • Exeter and Taunton – 30.8 miles
  • Taunton and Westbury – 47.2 miles
  • Westbury and Newbury – 42.5 miles
  • Newbury and Paddington – 53 miles

Note.

  1. Only Newbury and Paddington is electrified.
  2. Trains generally stop at Plymouth, Newton Abbott, Exeter and Taunton.
  3. Services between Paddington and Exeter, Okehampton, Paignton, Penzance, Plymouth and Torquay wouldn’t use diesel.
  4. Okehampton would be served by a reverse at Exeter.
  5. As Paignton is just 8.1 miles from Newton Abbot, it probably wouldn’t need a charger.
  6. Bodmin is another possible destination, as Great Western Railway have helped to finance a new platform at Bodmin General station.

It would certainly be good marketing to run zero-carbon electric trains to Devon and Cornwall.

I would class this route as medium risk, but with a high reward for the operator.

In this brief analysis, it does look that Hitachi’s proposed system is of a lower risk.

A Few Questions

I do have a few questions.

Are The Class 803 Trains Fitted With Hyperdrive Innovation Batteries?

East Coast Trains‘s new Class 803 trains are undergoing testing between London Kings Cross and Edinburgh and they can be picked up on Real Time Trains.

Wikipedia says this about the traction system for the trains.

While sharing a bodyshell with the previous UK A-train variants, the Class 803 differs in that it has no diesel engines fitted. They will however be fitted with batteries to enable the train’s on-board services to be maintained, in case the primary electrical supplies have failed.

Will these emergency batteries be made by Hyperdrive Innovation?

My experience of similar systems in other industries, points me to the conclusion, that all Class 80x trains can be fitted with similar, if not identical batteries.

This would give the big advantage of allowing battery testing to be performed on Class 803 trains under test, up and down the East Coast Main Line.

Nothing finds faults in the design and manufacture of something used in transport, than to run it up and down in real conditions.

Failure of the catenary can be simulated to check out emergency modes.

Can A Class 801 Train Be Converted Into A Class 803 Train?

If I’d designed the trains, this conversion would be possible.

Currently, the electric Class 801 trains have a single diesel generator. This is said in the Wikipedia entry for the Class 800 train about the Class 801 train.

These provide emergency power for limited traction and auxiliaries if the power supply from the overhead line fails.

So it looks like the difference between the powertrain of a Class 801 train and a Class 803 train, is that the Class 801 train has a diesel generator and the Class 803 train has batteries. But the diesel generator and batteries, would appear to serve the same purpose.

Surely removing diesel from a Class 801 train would ease the maintenance of the train!

Will The System Work With Third-Rail Electrification?

There are three routes that if they were electrified would probably be electrified with 750 DC third-rail electrification, as they have this electrification at one or both ends.

  • Basingstoke and Exeter
  • Marshlink Line
  • Uckfield branch

Note.

  1. Basingstoke and Exeter would need a couple of charging systems.
  2. The Marshlink line would need a charging system at Rye station.
  3. The Uckfield branch would need a charging system at Uckfield station.

I am fairly certain as an Electrical Engineer, that the third-rails would only need to be switched on, when a train is connected and needs a charge.

I also feel that on some scenic and other routes, 750 VDC third-rail electrification may be more acceptable , than 25 KVAC  overhead electrification. For example, would the heritage lobby accept overhead wires through a World Heritage Site or on top of a Grade I Listed viaduct?

I do feel that the ability to use third-rail 750 VDC third-rail electrification strategically could be a useful tool in the system.

Will The System Work With Lightweight Catenary?

I like the design of this 25 KVAC overhead electrification, that uses lightweight gantries, which use laminated wood for the overhead structure.

There is also a video.

Electrification doesn’t have to be ugly and out-of-character with the surroundings.

Isuspect that both systems could work together.

 

Would Less Bridges Need To Be Rebuilt For Electrification?

This is always a contentious issue with electrification, as rebuilding bridges causes disruption to both rail and road.

I do wonder though by the use of careful design, that it might be possible to arrange that the sections of electrification and the contentious bridges were kept apart, with the bridges arranged to be in sections, where the trains ran on batteries.

I suspect that over the years as surveyors and engineers get more experienced, better techniques will evolve to satisfy all parties.

Get this right and it could reduce the cost of electrification on some lines, that will be difficult to electrify.

How Secure Are The Containerised Systems?

Consider.

  • I was delayed in East Anglia two years ago, because someone stole the overhead wires at two in the morning.
  • Apparently, overhead wire stealing is getting increasingly common in France and other parts of Europe.

I suspect the containerised systems will need to be more secure than those used for buses, which are not in isolated locations.

Will The Containerised Charging Systems Use Energy Storage?

Consider.

  • I’ve lived in rural locations and the power grids are not as good as in urban areas.
  • Increasingly, batteries of one sort or another are being installed in rural locations to beef up local power supplies.
  • A new generation of small-footprint eco-friendly energy storage systems are being developed.

In some locations, it might be prudent for a containerised charging system to share a battery with the local area.

Will The Containerised Charging Systems Accept Electricity From Local Sources Like Solar Farms?

I ask the question, as I know at least one place on the UK network, where a line without electrification runs through a succession of solar farms.

I also know of an area, where a locally-owned co-operative is planning a solar farm, which they propose would be used to power the local main line.

Will The System Work With Class 385 Trains?

Hitachi’s Class 385 trains are closely related to the Class 80x trains, as they are all members of Hitachi’s A-Train family.

Will the Charging Systems Charge Other Manufacturers Trains?

CAF and Stadler are both proposing to introduce battery-electric trains in the UK.

I also suspect that the new breed of electric parcel trains will include a battery electric variant.

As these trains will be able to use 25 KVAC overhead electrification, I would expect, that they would be able to charge their batteries on the Hitachi ABB  charging systems.

Will The System Work With Freight Trains?

I believe that freight services will split into two.

Heavy freight will probably use powerful hydrogen-electric locomotives.

In Freightliner Secures Government Funding For Dual-Fuel Project, which is based on a Freightliner press release, I detail Freightliner’s decarbonisation strategy, which indicates that in the future they will use hydrogen-powered locomotives.

But not all freight is long and extremely heavy and I believe that a battery-electric freight locomotive will emerge for lighter duties.

There is no reason it could not be designed to be compatible with Hitachi’s charging system.

In Is This The Shape Of Freight To Come?, I talked about the plans for 100 mph parcel services based on redundant electric multiple units. Eversholt Rail Group have said they want a Last-Mile capability for their version of these trains.

Perhaps they need a battery-electric capability, so they can deliver parcels and shop supplies to the remoter parts of these islands?

Where Could Hitachi’s System Be Deployed?

This is the final paragraph from the article.

Hitachi is not committing to any routes yet, but a glance at the railway map shows clear potential for the battery/OLE-technology to be deployed on relatively lightly used rural and regional routes where it will be hard to make a case for electrification. The Cambrian Coast and Central Wales Lines would appear to be worthy candidates, and in Scotland, the West Highland Line and Far North routes are also logical areas for the system to be deployed.

In England, while shorter branch lines could simply be operated by battery trains, longer routes need an alternative. Network Rail’s Traction Decarbonisation Network Strategy interim business case recommends hydrogen trains for branch lines in Norfolk, as well as Par to Newquay and Exeter to Barnstaple. However, it is also entirely feasible to use the system on routes likely to be electrified much later in the programme, such as the Great Western main line West of Exeter, Swansea to Fishguard and parts of the Cumbrian Coast Line.

Everyone is entitled to their own opinion and mine would be driven by high collateral benefits and practicality.

These are my thoughts.

Long Rural Lines

The Cambrian, Central Wales (Heart Of Wales), Far North and West Highland Lines may not be connected to each other, but they form a group of rail routes with a lot of shared characteristics.

  • All are rural routes of between 100 and 200 miles.
  • All are mainly single track.
  • They carry occasional freight trains.
  • They carry quite a few tourists, who are there to sample, view or explore the countryside.
  • All trains are diesel.
  • Scotrail have been experimenting with attaching Class 153 trains to the trains on the West Highland Line to act as lounge cars and cycle storage.

Perhaps we need a long-distance rural train with the following characteristics.

  • Four or possibly five cars
  • Battery-electric power
  • Space for a dozen cycles
  • A lounge car
  • Space for a snack trolley
  • Space to provide a parcels service to remote locations.

I should also say, that I’ve used trains on routes in countries like Germany, Poland and Slovenia, where a similar train requirement exists.

Norfolk Branch Lines

Consider.

  • North of the Cambridge and Ipswich, the passenger services on the branch lines and the important commuter routes between Cambridge and Norwich and Ipswich are run by Stadler Class 755 trains, which are designed to be converted to battery-electric trains.
  • Using Hitachi chargers at Beccles, Bury St. Edmunds, Lowestoft, Thetford and Yarmouth and the existing electrification, battery-electric Class 755 trains could provide a zero-carbon train service for Norfolk and Suffolk.
  • With chargers at Dereham and March, two important new branch lines could be added and the Ipswich and Peterborough service could go hourly and zero carbon.
  • Greater Anglia have plans to use the Class 755 trains to run a London and Lowestoft service.
  • Could they be planning a London and Norwich service via Cambridge?
  • Would battery-electric trains running services over Norfolk bring in more visitors by train?

Hitachi may sell a few chargers to Greater Anglia, but I feel they have enough battery-electric trains.

Par And Newquay

The Par and Newquay Line or the Atlantic Coast Line, has been put forward as a Beeching Reversal project, which I wrote about in Beeching Reversal – Transforming The Newquay Line.

In that related post, I said the line needed the following.

  • An improved track layout.
  • An hourly service.
  • An improved Par station.
  • A rebuilt Newquay station with a second platform, so that more through trains can be run.

I do wonder, if after the line were to be improved, that a new three-car battery-electric train shuttling between Par and Newquay stations could be the icing on the cake.

Exeter And Barnstaple

The Tarka Line between Exeter and Barnstaple is one of several local and main lines radiating from Exeter St. David’s station.

  • The Avocet Line to Exmouth
  • The Great Western Main Line to Taunton, Bristol and London
  • The Great Western Main Line to Newton Abbott, Plymouth and Penzance
  • The Riviera Line to Paignton
  • The West of England Line to Salisbury, Basingstoke and London.

Note.

  1. The Dartmoor Line to Okehampton is under development.
  2. Several new stations are planned on the routes.
  3. I have already stated that Exeter could host a charging station between London and Penzance, but it could also be an electrified hub for battery-electric trains running hither and thither.

Exeter could be a city with a battery-electric metro.

Exeter And Penzance

Earlier, I said that I’d trial multiple chargers between Paddington and Penzance to prove the concept worked.

I said this.

I would class this route as medium risk, but with a high reward for the operator.

But it is also an enabling route, as it would enable the following battery-electric services.

  • London and Bodmin
  • London and Okehampton
  • London and Paignton and Torquay

It would also enable the Exeter battery-electric metro.

For these reasons, this route should be electrified using Hitachi’s discontinuous electrification.

Swansea And Fishguard

I mentioned Swansea earlier, as a station, that could be fitted with a charging system, as this would allow battery-electric trains between Paddington and Swansea via Cardiff.

Just as with Exeter, there must be scope at Swansea to add a small number of charging systems to develop a battery-electric metro based on Swansea.

Cumbrian Coast Line

This is a line that needs improvement, mainly for the tourists and employment it could and probably will bring.

These are a few distances.

  • West Coast Main Line (Carnforth) and Barrow-in-Furness – 28.1 miles
  • Barrow-in-Furness and Sellafield – 25 miles
  • Sellafield and Workington – 18 miles
  • Workington and West Coast Main Line (Carlisle) – 33 miles

Note.

  1. The West Coast Main Line is fully-electrified.
  2. I suspect that Barrow-in-Furness, Sellafield and Workington have good enough electricity supplies to support charging systems  for the Cumbrian Coast Line.
  3. The more scenic parts of the line would be left without wires.

It certainly is a line, where a good case for running battery-electric trains can be made.

Crewe And Holyhead

In High-Speed Low-Carbon Transport Between Great Britain And Ireland, I looked at zero-carbon travel between the Great Britain and Ireland.

One of the fastest routes would be a Class 805 train between Euston and Holyhead and then a fast catamaran to either Dublin or a suitable rail-connected port in the North.

  • The Class 805 trains could be made battery-electric.
  • The trains could run between Euston and Crewe at speeds of up to 140 mph under digital signalling.
  • Charging systems would probably be needed at Chester, Llandudno Junction and Holyhead.
  • The North Wales Coast Line looks to my untrained eyes, that it could support at least some 100 mph running.

I believe that a time of under three hours could be regularly achieved between London Euston and Holyhead.

Battery-electric trains on this route, would deliver the following benefits.

  • A fast low-carbon route from Birmingham, London and Manchester to the island of Ireland. if coupled with the latest fast catamarans at Holyhead.
  • Substantial reductions in journey times to and from Anglesey and the North-West corner of Wales.
  • Chester could become a hub for battery-electric trains to and from Birmingham, Crewe, Liverpool, Manchester and Shrewsbury.
  • Battery-electric trains could be used on the Conwy Valley Line.
  • It might even be possible to connect the various railways, heritage railways and tourist attractions in the area with zero-carbon shuttle buses.
  • Opening up of the disused railway across Anglesey.

The economics of this corner of Wales could be transformed.

My Priority Routes

To finish this section, I will list my preferred routes for this method of discontinuous electrification.

  • Exeter and Penzance
  • Swansea and Fishguard
  • Crewe and Holyhead

Note.

  1. Some of the trains needed for these routes have been delivered or are on order.
  2. Local battery-electric services could be developed at Chester, Exeter and Swansea by building on the initial systems.
  3. The collateral benefits could be high for Anglesey, West Wales and Devon and Cornwall.

I suspect too, that very little construction work not concerned with the installation of the charging systems will be needed.

Conclusion

Hitachi have come up with a feasible way to electrify Great Britain’s railways.

I would love to see detailed costings for the following.

  • Adding a battery pack to a Class 800 train.
  • Installing five miles of electrification supported by a containerised charging system.

They could be on the right side for the Treasury.

But whatever the costs, it does appear that the Japanese have gone native, with their version of the Great British Compromise.

 

 

 

 

 

 

 

 

 

 

 

July 9, 2021 Posted by | Design, Energy, Hydrogen, Transport/Travel | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | 12 Comments