The Anonymous Widower

£100m Station Revamp Could Double Local Train Services

The title of this post, is the same as that of this article on the Northern Echo.

This is the opening paragraph.

Officials behind plans for a £100m-plus transformation of Darlington’s Bank Top Station have confirmed it will remain the only one on the East Coast Mainline without a platform specifically for the London to Scotland service.

Darlington station has made various appearances in my life, all of which have been pleasurable ones.

I went several times to ICI’s Wilton site on Teesside in the 1970s, when the route to London was worked by the iconic Class 55 locomotives or Deltics.

I wrote about one memorable trip home from Darlington in The Thunder of Three-Thousand Three-Hundred Horses.

Over the years, I also seem to have had several clients for my computing skills in the area, including the use of my data analysis software; Daisy at Cummins Engines in the town.

And lately, it’s been for football at Middlesbrough to see Ipswich play, where I’ve changed trains. Sometimes, Town even won.

The improvements planned for the station are two-fold.

Improvement Of Local Services

This paragraph from Wikipedia, sums up the local train services on the Tees Valley Line between Saltburn and Bishop Auckland via Darlington, Middlesbrough and Redcar.

Northern run their Tees Valley line trains twice hourly to Middlesbrough, Redcar and Saltburn (hourly on Sundays), whilst the Bishop Auckland branch has a service every hour (including Sundays). The company also operates two Sundays-only direct trains to/from Stockton and Hartlepool.

If ever a route needed improvement it is this one.

This paragraph from the Northern Echo article, outlines the plans for Darlington station.

The meeting was also told the overhaul, which will see new platforms, a new station building, parking and an interchange for passengers, alongside other improvements, would also double capacity on Tees Valley and Bishop Auckland lines, meaning four trains an hour on the former and two trains an hour on the latter.

I also believe that the route is a shoe-in for zero-carbon services; hydrogen or battery electric.

Hydrogen Trains On Teesside

In Fuelling The Change On Teesside Rails, I discuss using hydrogen powered trains for the lines in the area and they could certainly provide services on more than just the Tees Valley Line.

The hydrogen powered trains would probably be this Alstom Breeze.

They would appear to be in pole position to change the image of Teesside’s trains.

Battery Electric Trains On Teesside

But I suspect. that an Anglo-Japanese partnership, based in the North-East could have other ideas.

  • Hitachi have a train factory at Newton Aycliffe on the Tees Valley Line.
  • Hyperdrive Innovation design and produce battery packs for transport and mobile applications in Sunderland.

The two companies have launched the Regional Battery Train, which is described in this Hitachi infographic.

Note than 90 kilometres is 56 miles, so the train has a very useful range.

Hitachi have talked about fitting batteries to their express trains to serve places like Middlesbrough, Redcar and Sunderland with zero-carbon electric services.

But their technology can also be fitted to their Class 385 trains and I’m sure that Scotland will order some battery-equipped Class 385 trains to expand their vigorous electric train network.

Both Scotland and Teesside will need to charge their battery trains.

Example distances on Teesside include.

  • Darlington and Saltburn – 28 miles
  • Darlington and Whitby – 47 miles
  • Darlington and Bishop Auckland – 12 miles

The last route would be possible on a full battery, but the first two would need a quick battery top-up before return.

So there will need to be strategically-placed battery chargers around the North-East of England. These could include.

  • Hexham
  • Nunthorpe
  • Redcar or Saltburn – This would also be used by TransPennine Express’s Class 802 trains, if they were to be fitted with batteries.
  • Whitby

If Grand Central did the right thing and ran battery electric between London and Sunderland, there would probably be a need for a battery charger at Sunderland.

It appears that Adrian Shooter of Vivarail has just announced a One-Size-Fits-All Fast Charge system, that has been given interim approval by Network Rail.

I discuss this charger in Vivarail’s Plans For Zero-Emission Trains, which is based on a video on the Modern Railways web site.

There is more about Vivarail’s plans in the November 2020 Print Edition of the magazine, where this is said on page 69.

‘Network Rail has granted interim approval for the fast charge system and wants it to be the UK’s standard battery charging system’ says Mr. Shooter. ‘We believe it could have worldwide implications.’

I believe that Hitachi and Hyperdrive Innovation, with a little bit of help from friends in Seaham, can build a battery-electric train network in the North-East.

The Choice Between Hydrogen And Battery Electric

Consider.

  • The hydrogen trains would need a refuelling system.
  • The battery electric trains would need a charging structure, which could also be used by other battery electric services to and from the North-East.
  • No new electrification or other infrastructure would be needed.
  • If a depot is needed for the battery electric trains, they could probably use the site at Lackenby, that has been identified as a base for the hydrogen trains.

Which train would I choose?

I think the decision will come down to politics, money and to a certain extent design, capacity and fuel.

  • The Japanese have just signed a post-Brexit trade deal and France or rather the EU hasn’t.
  • The best leasing deal might count for a lot.
  • Vivarail have stated that batteries for a battery electric train, could be leased on a per mile basis.
  • The Hitachi train will be a new one and the Alstom train will be a conversion of a thirty year old British Rail train.
  • The Hitachi train may well have a higher passenger capacity, as there is no need for the large hydrogen tank.
  • Some people will worry about sharing the train with a large hydrogen tank.
  • The green credentials of both trains is not a deal-breaker, but will provoke discussion.

I feel that as this is a passenger train, that I’m leaning towards a battery electric train built on the route.

An Avoiding Line Through Darlington

The Northern Echo also says this about track changes at the station.

A meeting of Darlington Borough Council’s communities and local services scrutiny committee was told a bus lane-style route off the mainline at the station would enable operators to run more high-speed services.

Councillors heard that the proposed track changes would enable very fast approaches to Darlington and allow other trains to pass as East Coast Mainline passengers boarded.

Some councillors seem to be unhappy about some trains passing through the station without stopping.

Are their fears justified?

This Google Map shows Darlington station.

Note.

  1. The station has two long platforms and two South-facing bay platforms.
  2. There is plenty of space.
  3. There already appear to be a pair of electrified avoiding lines on the Eastern side of the station.

Wikipedia also says this about how Darlington station will be changed by High Speed Two.

The new high speed rail project in the UK, High Speed 2, is planned to run through Darlington once Phase 2b is complete and will run on the existing East Coast Main Line from York and Newcastle. Darlington Station will have two new platforms built for the HS2 trains on the Main Line, as the station is built just off the ECML to allow for freight services to pass through.

This would appear to suggest that the two current avoiding lines will be turned into high speed platforms.

Current High Speed Services At Darlington

The current high speed services at Darlington are as follows.

  • LNER – two trains per hour (tph) – London Kings Cross and Edinburgh
  • Cross Country – one tph – Plymouth and Edinburgh or Glasgow
  • Cross Country – one tph – Southampton and Newcastle
  • TransPennine Express – one tph – Liverpool and Edinburgh
  • TransPennine Express – one tph – Manchester Airport and Newcastle

Northbound, this gives eight tph to Newcastle and four tph to Edinburgh

East Coast Trains

East Coast Trains‘s services are not planned to stop at Darlington.

High Speed Two Trains

Darlington is planned to be served by these High Speed Two trains.

  • 1 tph – Birmingham Curzon Street and Newcastle via East Midlands Hub, York and Durham
  • 1 tph – London Euston and Newcastle via Old Oak Common and York.

Both will be 200 metre High Speed Two Classic-Compatible trains

Northbound, this gives ten tph to Newcastle and four tph to Edinburgh.

As the Eastern Leg of High Speed Two has some spare capacity, I suspect there could be other services through Darlington.

Improvements To The East Coast Main Line

If you look at the East Coast Main Line between Doncaster and Newcastle, the route is a mixture of two and four-track railway.

  • Between Doncaster and York, there are two tracks
  • Between York and Northallerton, there are four tracks
  • Between Northallerton and Darlington, there are two tracks
  • North of Darlington, the route is mainly two tracks.

I have flown my virtual helicopter along much of the route and I can say this about it.

  • Much of the route is through agricultural land, and where absolutely necessary extra tracks could possibly be added.
  • The track is more-or-less straight for large sections of the route.
  • Routes through some towns and cities, are tightly hemmed in by houses.

I also believe that the following developments will happen to the whole of the East Coast Main Line before High Speed Two opens.

  • Full ERTMS in-cab digital signalling will be used on all trains on the route.
  • The trains will be driven automatically, with the driver watching everything. Just like a pilot in an airliner!
  • All the Hitachi Class 80x trains used by operators on the route, will be able to operate at up to 140 mph, once this signalling and some other improvements have been completed.
  • All level crossings will have been removed.
  • High Speed Two is being built using slab track, as I stated in HS2 Slab Track Contract Awarded. I suspect some sections of the East Coast Main Line, that are used by High Speed Two services, will be upgraded with slab track to increase performance and reduce lifetime costs.

Much of the East Coast Main Line could become a 140 mph high speed line, as against High Speed Two, which will be a 225 mph high speed line.

This will mean that all high speed trains will approach Darlington and most other stations on the route, at 140 mph.

Trains will take around a minute to decelerate from or accelerate to 140 mph and if the station stop took a minute, the trains will be up to speed again in just three minutes. In this time, the train would have travelled two-and-a-half miles.

Conclusion

I think that this will happen.

  • The Tees Valley Line trains will be greatly improved by this project.
  • Trains will generally run at up to 140 mph on the East Coast Main Line, under full digital control, like a slower High Speed Two.
  • There will be two high speed platforms to the East of the current station, where most if not all of the High Speed Two, LNER and other fast services will stop.
  • There could be up to 15 tph on the high speed lines.

With full step-free access between the high speed and the local platforms in the current station, this will be a great improvement.

October 25, 2020 Posted by | Computing, Hydrogen, Sport, Transport | , , , , , , , , , , , , , , , , , , | 2 Comments

Lithium Project Raises Millions In A Day

The title of this post, is the same as that of this article on Cornish Stuff.

This is the introductory paragraph.

Cornish Lithium raised over £3m yesterday to fund new exploration and today opens up the crowd fund to the community.

It does seem to have been a very successful funding.

This to me is a key paragraph.

The company say they are delighted to note that approximately 15% of the pre-registered investors were from Cornwall.

The Cornishmen and Cornishwomen seem to be backing their local business!

October 15, 2020 Posted by | Finance | , , , | Leave a comment

Drax, Velocys Help Launch Coalition For Negative Emissions

The title of this post, is the same as that of this article on Biomass Magazine.

This is the introductory paragraph.

U.K.-based companies Drax Group and Velocys are among 11 organizations that have launched the Coalition for Negative Emissions, which aims to achieve a sustainable and resilient recovery from COVID-19 by developing pioneering projects that can remove carbon dioxide and other pollutants from the atmosphere.

This paragraph details the companies and organisations involved.

In addition to Drax and Velocys, members of the coalition include Carbon Engineering, Carbon Removal Centre, CBI, Carbon Capture and Storage Association, Climeworks, Energy U.K., Heathrow, International Airlines Group, and the U.K. National Farmers Union.

They have sent a letter to the Government, which can be downloaded from the Drax website.

Conclusion

I have an open mind about biomass and products such as aviation biofuel and techniques such as carbon capture.

Keeping the wheels of commerce turning, needs a sustainable way to fly and ideas such as producing aviation biofuel from household and industrial waste, could enable sustainable transport in the short term.

Carbon capture is very difficult in a lot of processes, but I feel that in some, such as a modern gas-turbine powered station, if they are designed in an innovative manner, they an be made to deliver a pure stream of the gas. A pure gas must be easier to handle, than one contaminated with all sorts of unknowns, as you might get from burning some sources of coal.

I am pleased that the National Farmers Union is involved as using pure carbon dioxide, as a growth promoter for greenhouse crops is a proven use for carbon dioxide.

Overall, I am optimistic about the formation of the Coalition for Negative Emissions.

 

October 14, 2020 Posted by | Energy | , , , , , , , , , , | Leave a comment

Hull Station

On my recent visit to Hull station I took these pictures.

This Google Map shows the station.

These are my thoughts on the station .

Platforms

Consider.

  • The station has seven platforms, which are numbers 1 to 7 from South to North.
  • My Hull Trains service from London arrived in the Northernmost platform, which is numbered 7.
  • Most Hull Trains services seem to use this platform.
  • LNER services also seem to use Platform 7.
  • Platforms 4, 5 and 6 seem to be the same length as Platform 7
  • A friendly station guy told me, that LNER have run nine-car Class 800 trains into the station. These trains are 234 metres long.
  • My pictures show that Platform 7 is more than adequate for Hull Train’s five-car Class 802 train, which is 130 metres long.
  • The platforms are wide.

This second Google Map shows the Western platform ends.

It looks to me, that the station should be capable of updating to have at least four platforms capable of taking trains, that are 200 metres long.

Current Long Distance Services To Hull Station

There are currently, two long distance services that terminate at Hull station.

  • One train per hour (tph) – Manchester Piccadilly – two hours
  • Eight trains per day (tpd) – London Kings Cross – two hours and forty-four minutes

Both services are run by modern trains.

Improvements To The Current London And Hull Service

I believe Hull Trains and LNER will run between London Kings Cross and Hull using battery-equipped versions of their Hitachi trains, within the next three years.

The trains will also be upgraded to make use of the digital in-cab signalling, that is being installed South of Doncaster, which will allow 140 mph running.

In Thoughts On Digital Signalling On The East Coast Main Line, I estimated that this could enable a two hours and thirty minute time between London Kings Cross and Hull.

It is very likely that the service will be hourly.

Hull Station As A High Speed Station

Plans for High Speed Two are still fluid, but as I said in Changes Signalled For HS2 Route In North, there is a possibility, that High Speed Two could be extended from Manchester Airport and Manchester Piccadilly to Leeds and ultimately to Newcastle and Hull.

In that post, I felt that services across the Pennines could be something like.

  • High Speed Two – Two tph between London and Hull via Manchester Airport, Manchester Piccadilly and Leeds
  • High Speed Two – One tph between London and Edinburgh via Manchester Airport, Manchester Piccadilly, Leeds, York and Newcastle.
  • Northern Powerhouse Rail – One tph between Liverpool and Edinburgh via Manchester Airport, Manchester Piccadilly, Leeds, York and Newcastle.
  • Northern Powerhouse Rail – Two tph between Liverpool and Sheffield via Manchester Airport and Manchester Piccadilly
  • Northern Powerhouse Rail – Two tph between Liverpool and Hull via Manchester Airport, Manchester Piccadilly and Leeds

There would be four tph between Manchester Airport and Hull via Manchester Piccadilly, Leeds and other intermediate stations.

I estimate that the following timings would be possible.

  • London Euston and Hull – two hours and 10 minutes – Currently two hours and forty-four minutes to London Kings Cross
  • Liverpool and Hull – one hour and thirty minutes – No direct service
  • Manchester and Hull – one hour and three minutes – Currently two hours

As I said earlier London Kings Cross and Hull could be only twenty minutes longer by the classic route on the East Coast Main Line.

I think it will be likely, that both High Speed Two and Northern Powerhouse Rail will use similar High Speed Two Classic-Compatible trains, which will have the following characteristics.

  • Two hundred metres long
  • Ability to run in pairs
  • 225 mph on High Speed Two
  • 125 mph and up to 140 mph on Classic High Speed Lines like East Coast Main Line, Midland Main Line and West Coast Main Line and sections of Northern Powerhouse Rail.

It would appear that as Hull station can already handle a nine-car Class 800 train, which is 234 metre long, it could probably handle the proposed High Speed Two Classic-Compatible trains.

I could see the following numbers of high speed trains terminating at Hull in a typical hour would be as follows.

  • Two High Speed Two trains from London Euston
  • Two Northern Powerhouse Trains from Liverpool Lime Street
  • One Hull Trains/LNER train from London Kings Cross

As Hull already has four platforms, that can accept 200 metre long trains, I don’t think the station will have any capacity problems.

Charging Battery Trains At Hull Station

If Hull Trains, LNER and TransPennine Express, decide to convert their Class 800 and Class 802 trains, that run to and from Hull to Hitachi Regional Battery Trains, they will need charging at Hull station, to be able to reach the electrification of the East Coast Main Line at Temple Hirst Junction.

In Thoughts On The Design Of Hitachi’s Battery Electric Trains, I said this about having a simple charger in a station.

At stations like Hull and Scarborough, this charger could be as simple as perhaps forty metres of 25 KVAC overhead electrification.

    • The train would stop in the station at the appropriate place.
    • The driver would raise the pantograph.
    • Charging would start.
    • When the battery is fully-charged, the driver would lower the pantograph.

This procedure could be easily automated and the overhead wire could be made electrically dead, if no train is connected.

Platforms 4 to 7 could be fitted out in this manner, to obtain maximum operational flexibility.

Full Electrification Of Hull Station

Full electrification of Hull station would also allow charging of any battery electric trains.

I would hope, that any partial electrification carried out to be able to charge trains would be expandable to a full electrification for the station and the connecting rail lines.

A Full Refurbishment

The station would need a full refurbishment and a possible sorting out of the approaches to the station.

But this type of project has been performed at Kings Cross and Liverpool Lime Street in recent years, so the expertise is certainly available.

These pictures are of Liverpool Lime Street station.

I could see Hull station being refurbished to this standard.

Conclusion

It is my belief that Hull would make a superb terminal station for both High Speed Two and Northern Powerhouse Rail

In the interim, it could be quickly developed as a modern terminal for long-distance battery electric trains to make services across the Pennines and to London zero carbon.

The work could also be organised as a series of smaller work packages, without interrupting train services to and from Hull.

 

 

 

 

 

 

 

October 9, 2020 Posted by | Transport | , , , , , , , , , , , , , | 1 Comment

Thoughts On The Design Of Hitachi’s Battery Electric Trains

If you look at a Class 800 or Class 802 train, they have underfloor diesel engines. Their powertrain is described like this in its own section in Wikipedia.

Despite being underfloor, the generator units (GU) have diesel engines of V12 formation. The Class 801 has one GU for a five to nine-car set. These provide emergency power for limited traction and auxiliaries if the power supply from the overhead line fails. The Class 800 and Class 802 bi-mode has three GU per five-car set and five GU per nine-car set. A five-car set has a GU situated under vehicles 2/3/4 and a nine-car set has a GU situated under vehicles 2/3/5/7/8.

There have been rumours of overheating.

Hitachi’s Regional Battery Train

Hitachi have teamed up with Hyperdrive Innovation to create a Regional Battery Train. There is this Press Release on the Hyperdrive Information web site, which is entitled Hitachi Rail And Hyperdrive Agreement P[ens Way For Battery Trains Across Britain.

This Hitachi infographic gives the specification.

Note, that this is a 100 mph train, with a range of 56 miles.

Typical routes would include a route like Norwich and Stansted Airport via Cambridge.

  • It is 93 miles.
  • There are thirty-nine miles of electrification at the Stansted Airport end.
  • Norwich station is fully-electrified.
  • There is just 53 miles between the Trowse swing-bridge and Ely station, that is not electrified.

Trains would charge the batteries at both ends of the route and use battery power, where no electrification exists.

There are many similar routes like this in the UK.

Hitachi have also produced this video.

My thoughts lead me to a few questions.

Are The Battery Modules Simulated Diesel Engines?

At the age of sixteen, for a vacation job, I worked in the Electronics Laboratory at Enfield Rolling Mills.

It was the early sixties and one of their tasks was at the time replacing electronic valve-based automation systems with new transistor-based systems.

The new equipment had to be compatible to that which it replaced, but as some were installed in dozens of places around the works, they had to be able to be plug-compatible, so that they could be quickly changed. Occasionally, the new ones suffered infant-mortality and the old equipment could just be plugged back in, if there wasn’t a spare of the new equipment.

Stadler have three very similar trains, that are destined for the UK.

All share the same PowerPack-in-the-Middle design, which is shown in this picture.

There are four slots in the PowerPack, with two on either side and they can all hold, either a diesel engine or a battery. Only, the Class 756 trains, are planned to have batteries at present, to make the trains tri-mode and capable of being powered by overhead electric, on-board batteries or a diesel generator.

If I was designing the battery modules to slot into the PowerPack, I and many other engineers would make the battery module deliver similar characteristics and plug compatibility to the diesel module.

The train’s control computer, would be simpler to program and debug and would use modules appropriately to drive the train according to the driver’s instructions.

This interchangeability would also give the operator lots of flexibility, in how they configured and used the trains.

So will Hyperdrive Innovation use an approach for Hitachi, where the battery module has similar characteristics and plug compatibility to the current diesel module?

I wouldn’t be surprised if they did, as it allows modules to be quickly swapped as operational needs change and the train’s computer sorts out the train’s formation and acts accordingly.

On An Hitachi Regional Battery Train Will All Diesel Engines Be Replaced With Battery Modules?

If the computer is well-programmed, it should handle any combination of diesel engines and battery modules.

Perhaps for various routes different combinations might apply.

  • For maximum battery range, all modules would be batteries.
  • For maximum power, all modules would be diesel engines.
  • To handle some out and back routes, there might be three battery modules and a diesel engine to charge the batteries before return.
  • Could perhaps one or two battery modules be fitted to avoid using the diesel engines in stations and in sensitive areas?

On some routes all diesel engines will be replaced with batteries on Battery Regional Trains, but on others there could be a mixture of both battery and diesel engines.

It should be noted that Stadler achieve the same flexibility with their PowerPack-in-the-Middle design.

Operators will like this flexibility.

What Is The Capacity Of A Battery Module?

In How Much Power Is Needed To Run A Train At 125 mph?, I calculated that an all-electric Class 801 train uses 3.42 kWh per vehicle mile.

I can do a simple estimate based on this figure.

When running on batteries the train will need less energy due to less air resistance, because it is going at 100 mph, rather than 125 mph.

  • If the energy use is proportional to the speed, then at 100 mph, the energy use will be 2.73 kWh per vehicle mile.
  • But if the energy use is proportional to the square of the speed, the energy use will be 2.19 kWh per vehicle mile.

I will compromise and use 2.5 kWh per vehicle mile.

Total energy needed to move a five-car train 56 miles would be 5 x 56 x 2.5 or 700 kWh, which could be three batteries of 233 kWh.

These are not outrageous sizes and the batteries could probably be of a comparable weight to the current diesel engines. So replacement wouldn’t affect the handling of the train.

In addition, the batteries would need to be large enough to hold all the regenerated by braking during a stop.

  • The weight of a Class 800 train is 243 tonnes.
  • It can carry 326 passengers, who probably weigh 80 Kg with baggage, bikes and buggies.
  • This gives a total train weight of 269 tonnes.
  • Using Omni’s Kinetic Energy Calculator, the kinetic energy at 100 mph is just 75 kWh.
  • For completeness, at 125 mph, the kinetic energy is 117 kWh and at 140 mph, the kinetic energy is 146 kWh.

All these figures are small compared to the battery size needed for traction.

Will East Coast Train’s Class 803 trains Use The Same Technology?

On East Coast Trains‘s Class 803 trains, batteries will be fitted to maintain onboard services, in case of a power failure.

Have these batteries been designed by Hyperdrive Innovation, with perhaps less capacity?

As East Coast Trains’s route between London Kings Cross and Edinburgh is fully electrified, the trains probably won’t need any auxiliary traction power.

But would increasing the battery size make this possible?

Where Do Avanti West Coast Class 807 Trains Fit In?

Avanti West Coast‘s Class 807 trains are also members of the same Hitachi A-Train family.

In the January 2020 Edition of Modern Railways, there is an article, which is entitled Hitachi Trains For Avanti.

This is said about the ten all-electric AT-300 trains for Birmingham, Blackpool and Liverpool services, which have now been numbered as Class 807 trains.

The electric trains will be fully reliant on the overhead wire, with no diesel auxiliary engines or batteries.

It may go against Hitachi’s original design philosophy, but not carrying excess weight around, must improve train performance, because of better acceleration.

It may also have the wiring for a diesel engine or a battery module, should operational experience indicate one is needed.

Will All Cars Be Wired Ready For A Diesel Or Battery Module?

A five-car Class 802 train currently has a diesel engine in cars 2, 3 and 4.

The Hitachi infographic says that a Regional Battery Train has a range of 56 miles on batteries.

Let’s assume that this range applies to a Class 802 train, that has been fitted with three battery modules.

If we take Hull Trains as an example, their Class 802 trains do the following sections using their diesel engines

  • Temple Hirst Junction and Beverley – 44.34 miles or 87 miles round trip
  • Temple Hirst Junction and Hull – 36 miles or 72 miles round trip

These distances mean that with a 56 mile range, there needs to be some form of changing at Hull and/or Beverley.

But supposing all cars are wired to accept batteries or diesel engines. This could mean the following.

  • A train with three batteries and a range of 56 miles, could fit a standard diesel engine as a range extender, which could also be used to charge the batteries at Hull or Beverley.
  • A train with four batteries, could have a range of 75 miles, which with regenerative braking and precise energy-saving driving could be able to go between Temple Hirst Junction and Hull and back on battery power.
  • A train with four batteries and a diesel engine,, could have a range of 75 miles on battery power. The diesel energy could be used as a range extender or to charge the batteries at Hull and/or Beverley.
  • Could a train with five batteries, which could have a range of 90 miles, be able to reach Beverley and return to Temple Hirst Junction?

Note.

  1. I have assumed that battery range is proportional to the number of batteries.
  2. There must also be scope for running slower to cut the amount of energy used.

In addition, all Hull Trains schedules seem to spend fifteen minutes or more in Hull station. This would be enough time to recharge the batteries.

I’m fairly certain, that if all cars were wired  for batteries or diesel engines, it would give the operators a lot of flexibility.

Running With Batteries And A Range Extender Diesel Engine

The LEVC TX taxi is described as a plug-in hybrid range extender electric vehicle, where a small petrol engine, can also be used to generate electricity to power the vehicle.

Suppose a Class 802 train was fitted with two battery modules and a diesel engine. Could the diesel act as a range extender, in the same way as the petrol engine does on the LEVC TX?

The diesel engines fitted to a Class 802 train are 700 kW, so if I’m right about the train having total battery capacity of 700 kWh, one engine would take an hour to charge the batteries.

Returning to my Hull Trains example, drivers could probably ensure that the train didn’t get stranded by judicial use of the a single diesel engine to charge the batteries, whilst running in rural areas along the route.

As there would only be one diesel engine rather than three, the noise would be much lower.

I suspect too, that a simple charger in Hull station could charge a train, as it passes through, to make sure it doesn’t get stranded in the countryside.

I suspect that a mix of batteries and diesel engines could be part of an elegant solution on some routes.

  • Edinburgh and Aberdeen
  • Edinburgh and Inverness
  • London Kings Cross and Hull
  • London Paddington and Swansea
  • London St. Pancras and Sheffield.
  • London St. Pancras and Nottingham

It might also be a useful configuration on some TransPennine routes.

Charging Battery Trains

Having a charger in a terminal station would open up a lot of routes to Hitachi’s battery electric trains.

At stations like Hull and Scarborough, this charger could be as simple as perhaps forty metres of 25 KVAC overhead electrification.

  • The train would stop in the station at the appropriate place.
  • The driver would raise the pantograph.
  • Charging would start.
  • When the battery is fully-charged, the driver would lower the pantograph.

This procedure could be easily automated and the overhead wire could be made electrically dead, if no train is connected.

It should be noted that Hitachi have recently acquired ABB’s power grid business, as announced in this Hitachi press release which is entitled Hitachi Completes Acquisition of ABB’s Power Grids Business; Hitachi ABB Power Grids Begins Operation.

Rail is not mentioned, but mobility is. So will this move by Hitachi, strengthen their offering to customers, by also providing the systems in stations and sidings to charge the trains.

This Google Map shows Hull station, with its large roof.

Could an integrated solution involving solar panels over the station be used to power electrification to charge the trains and dome electric buses next door?

Integrated solutions powered by renewable energy would appeal to a lot of municipalities seeking to improve their carbon profile.

Conclusion

These trains will transform a lot of rail services in the UK and abroad.

 

 

 

 

 

October 9, 2020 Posted by | Transport | , , , , , , , , | 3 Comments

New Transmission Technology Is Helping UK Offshore Wind Farms Go Bigger, Farther

The title of this post, is the same as that of this article on Reve.

It is rather technical, but it describes how the electricity is brought onshore from the 1.4 GW Sofia wind-farm, which is being built 220 kilometres out in the North Sea on the Dogger Bank. where upwards of 5 GW of capacity is proposed.

New lighter equipment is being used to convert the electricity to and from DC to bring it ashore at Lazenby, on Teesside. Note that sub-sea electricity links usually use high-voltage direct current or HVDC, The equipment has been designed and built by GE in Stafford.

It looks like the North East of England will have enough power.

The North Sea Wind Power Hub

The North Sea Wind Power Hub, will lie to the East of the UK capacity on the Dogger Bank  in European territorial waters. This is the introductory paragraph from Wikipedia.

North Sea Wind Power Hub is a proposed energy island complex to be built in the middle of the North Sea as part of a European system for sustainable electricity. One or more “Power Link” artificial islands will be created at the northeast end of the Dogger Bank, a relatively shallow area in the North Sea, just outside the continental shelf of the United Kingdom and near the point where the borders between the territorial waters of Netherlands, Germany, and Denmark come together. Dutch, German, and Danish electrical grid operators are cooperating in this project to help develop a cluster of offshore wind parks with a capacity of several gigawatts, with interconnections to the North Sea countries. Undersea cables will make international trade in electricity possible.

So will the connection to Lazenby, also be used to bring electricity from the North Sea Wind Power Hub to the UK, when we need it? And will electricity from our part of the Dogger Bank be exported to Europe, when they need it?

The North Sea Intranet of electricity is emerging and it could be one of the biggest factors in the decarbonisation of Western Europe.

The technology developed at Stafford, will be needed to support all this zero-carbon electricity.

September 29, 2020 Posted by | Energy | , , , | Leave a comment

Tesco Joins Climate Group’s EV100 Campaign To Electrify Its Fleet Of 5,500 Vehocles

The title of this post, is the same as that of this article on Post and Parcel.

This is the introductory paragraph.

Tesco today joined a group of now 27 big corporates publicly calling on the UK Government to target 100% zero emission car and van sales from 2030. The Government is currently revising its plans.

As Tesco say or used to say. “Every Little Helps!”

September 23, 2020 Posted by | Energy, Transport | , | Leave a comment

Top 1% Emit Double The Carbon Of Poorest 50%

The title of this post is the same as that of this article in today’s copy of The Times.

This is the introductory paragraphs.

The richest 1 per cent of people globally cause more than double the carbon emissions of the three billion who make up the poorest 50 per cent, a report says.

This inequality should be addressed with taxes on frequent flyers, SUVs and luxury items such as private jets and super yachts, according to Oxfam, which has written a report with the Stockholm Environment Institute, a not-for-profit research body.

It is an article well-worth a read.

But as I am not a frequent flyer and don’t own an SUV, private jet or super yacht, I doubt I’ll suffer if the report’s recommendations are implemented.

September 21, 2020 Posted by | Transport | , | 1 Comment

Scunthorpe Steelworks

On my way back from Cleethorpes, I passed Scunthorpe Steelworks.

It did seem rather quiet, although I did pass a train-load of new rails on their way to somewhere.

The Future Of Steel-Making

Steel-Making is on its uppers in the UK and it has a bad carbon footprint.

However, various processes are in development that could make the industry fit for the Twenty-First Century.

HIsarna Steelmaking

In Whitehaven Deep Coal Mine Plan Moves Step Closer, I said this.

In Wikipedia, there is an entry for the HIsarna ironmaking process.

This process is being developed by the Ultra-Low Carbon Dioxide Steelmaking (ULCOS) consortium, which includes Tata Steel and the Rio Tinto Group. Reduction in carbon-dioxide produced by the process compared to traditional steel-making are claimed to be as high as fifty percent.

This figure does not include carbon-capture to reduce the carbon-dioxide still further.

However, looking at descriptions of the process, I feel that applying carbon-capture to the HIsarna steelmaking process might be a lot easier, than with traditional steelmaking.

As Scunthorpe is close to Theddlethorpe Gas Terminal, the captured carbon-dioxide could probably be stored in wells connected to the terminal.

Hydrogen Steelmaking

North-East Lincolnshire is becoming the new Aberdeen, but instead of being based solely on oil and gas, there is a large proportion of wind energy being reaped.

In the future, I believe that a lot of this wind energy will be turned into hydrogen gas both onshore and increasing off-shore scores of miles out in the North Sea. There is talk of upwards of 70 GW of wind turbines being installed and much of it will be turned into hydrogen in North-East Lincolnshire.

In Funding Award to Supply An 8MW Electrolyser, I wrote about hydrogen steelmaking and the HYBRIT process in particular.

Will some of this massive amount of hydrogen be piped to Scunthorpe to make steel?

Conclusion

The future of steelmaking in Scunthorpe, doesn’t have to be all doom and gloom.

September 20, 2020 Posted by | Energy, Hydrogen, World | , , , , | Leave a comment

Green Tugboats? ‘Revolutionary’ Hydrogen Ship Engine Unveiled In Belgium

The title of this post, is the same as that of this article on Business Green.

This is the first paragraph.

A “revolutionary” hybrid ship engine powered by green hydrogen and diesel has been unveiled today in Belgium, with developers claiming the innovation could cut CO2 emissions from ships, trains and electricity generators by up to 85 per cent.

The engine has been given the name BeHydro.

The first order has been received by the developers; ABC, for two 2MW dual fuel engines that will be installed on a hydrogen-powered tug for the Port of Antwerp.

Motors up to the size of 10 MW are under development.

This is the last sentence of the article.

In theory, any large diesel engine can be replaced by a BeHydro engine. The hydrogen future starts today.

It is a quote from the CEO  of one of the companies involved.

Conclusion

This is a development to follow.

The BeHydro engine, with its dual-fuel approach, is claimed to cut carbon emissions by 85 %.

In the Wikipedia entry for ABC or Anglo Belgian Corporation, there is a section called Products. This is a paragraph.

The engines are found in use on large river barges such as those found on the Rhine, coastal freighters, fishing boats, ferries, tugboats (which typically use 2 engines), and other ships. Other applications include electricity generation, and pumping engines, engines for cranes, and locomotives (including the Belgian Railways Class 77 and Voith Maxima), as well as dual fuel (gas/oil) DZD engines.

I feel that that the BeHydro engine will keep the company busy.

September 19, 2020 Posted by | Energy, Hydrogen | , , , , , , | Leave a comment