The Anonymous Widower

No News On Hydrogen Trains For The Midland Main Line

In April 2019, I wrote Hydrogen Trains To Be Trialled On The Midland Main Line, which was based on an article on Railway Gazette that is entitled Bimode And Hydrogen Trains As Abellio Wins Next East Midlands Franchise.

I said this in my post.

Abellio will be taking over the franchise in August this year and although bi-mode trains were certain to be introduced in a couple of years, the trialling of hydrogen-powered trains is a surprise to me and possibly others.

This is all that is said in the article.

Abellio will also trial hydrogen fuel cell trains on the Midland Main Line.

It also says, that the new fleet will not be announced until the orders are finalised.

Nothing has been heard since about the hydrogen train trial for the Midland Main Line.

But there have been several related developments, that might have implications for the trial.

East Midlands Railway Has Ordered Hitachi Class 804 Trains For EMR InterCity Services

Class 804 trains are Hitachi’s latest offering, that are tailored for the Midland Main Line.

The trains will have a few differences to the current Class 800,/801/802 trains.

But will they be suitable for conversion to hydrogen power?

Consider.

  • The Hitachi trains have a comprehensivecomputer system, that looks at the train and sees what power sources are available and controls the train accordingly.
  • Trains have already been ordered in five, seven and nine-car lengths. I have read up to twelve-car trains are possible in normal operation. See Do Class 800/801/802 Trains Use Batteries For Regenerative Braking?
  • Hydrogen train designs, with a useful range of several hundred miles between refuelling, seem to need a hydrogen tank, that takes up at least half of a twenty metre long carriage.
  • The Hitachi train design has pantographs on the driver cars and can support diesel generator units in the intermediate cars, as it does in current trains.
  • The Japanese are researching hydrogen trains.
  • The five-car Class 802 trains have 2,100 kW of installed generator power.

I think that Hitachi’s engineers can build another carriage, with the following characteristics.

  • It could be based on a Motor Standard car.
  • The passenger seats and interior would be removed or redesigned in a shorter space.
  • Powered bogies would be as required.
  • It would contain a hydrogen tank to give sufficient range.
  • Appropriately-sized batteries and fuel-cells would be inside or under the vehicle.
  • Regenerative braking would help to recharge the batteries.
  • There would probably be no diesel generator unit.

There would need to be a walkway through the car. Stadler have shown this works in the Class 755 train.

A Hydrogen Power car like this would convert a five-car bi-mode diesel-electric train into a six-car hydrogen-electric hybrid train. Or they might just replace one Motor Standard car with the Hydrogen Power Car to create a five-car hydrogen-electric hybrid train, if the longer train would cause problems in the short platforms at St. Pancras.

  • The computer system would need to recognise the Hydrogen Power Car and control it accordingly. It would probably be very Plug-and-Play.
  • The weight of the train could probably be reduced by removing all diesel generator units.
  • The passenger experience would be better without diesel power.
  • The range away from the wires would probably be several hundred miles.

The drivers and other staff would probably not need massive retraining.

What Do I Mean By Appropriately-Sized Batteries And Fuel Cells?

I can’t be sure,, but I suspect the following rules and estimates hold.

  • The batteries must be large enough to more than hold the kinetic energy of a full five-car train, running at the full speed of 140 mph.
  • I estimate that the kinetic energy of the train,will be around 200 kWh, so with a contingency, perhaps battery capacity of between 400-500 kWh would be needed.
  • Currently, a 500 kWh battery would weigh five tonnes, which is of a similar weight to one of the diesel generator units, that are no longer needed.
  • In How Much Power Is Needed To Run A Train At 125 mph?, I estimated that the all-electric Class 801 train, needs 3.42 kWh per vehicle mile to maintain 125 mph. This means that travelling at 125 mph for an hour would consume around 2,000 kWh or an output of 2,000 kW from the fuel cell for the hour.
  • Note that 1 kg of hydrogen contains 33.33 kWh of usable energy, so the hydrogen to power the train for an hour at 125 mph, will weigh around sixty kilograms.

From my past experience in doing chemical reaction calculations in pressure vessels, I think it makes the concept feasible. After all, it’s not that different to Alstom’s Breeze.

I would assume, that the train manufacturers can do a full calculation, to a much more accurate level.

Applying The Concept To Other Hitachi Trains

Once proven, the concept could be applied to a large number of Hitachi bi-mode trains. I suspect too, that it could be applied to all other Hitachi A-train designs, that are in service or on order, all over the world.

In the UK, this includes Class 385, Class 395 and Class 80x trains.

Bombardier Have Said That They’re Not Interested In Hydrogen Power

But Electrostars and Aventras have the same Plug-and-Play characteristic as the Hitachi train.

I wouldn’t be surprised to find that Bombardier have a Hydrogen Power Car design for an Aventra. All that it needs is an order.

They could also probably convert a five-car Class 377 train to effectively a four-car train, with a Hydrogen Power Car in the middle. This would be ideal for the Uckfield Branch and the Marshlink Lines. I suspect it could be done to meet the timescale imposed by the transfer of the Class 171 trains to East Midlands Railway.

There must be an optimal point, where converting an electric multiple unit, is more affordable to convert to hydrogen, than to add just batteries.

But then everybody has been dithering about the Uckfield and Marshlink trains, since I started this blog!

Stadler Have Shown That a Gangway Through A Power Car Is Acceptable To Passengers In The UK

Stadler’s Class 755 trains seem to be operating without any complaints about the gangway between the two halves of the train.

Stadler Have Two Orders For Hydrogen-Powered Trains

These posts describe them.

Stadler also have a substantial order for a fleet of battery Flirt Akku in Schleswig Holstein and they are heavily involved in providing the rolling stock for Merseyrail and the South Wales Metro, where battery-powered trains are part of the solution.

It looks to me, that Stadler have got the technology to satisfy the battery and hydrogen train market.

The Driver’s View Of Stadler

It’s happened to me twice now; in the Netherlands and in the UK.

  • Both drivers have talked about hydrogen and Stadler’s trains with the engine in the middle.
  • They like the concept of the engine.
  • The English driver couldn’t wait to get his hands on the train, when he finished his conversion.
  • Both brought up the subject of hydrogen first, which made me think, that Stadler are telling drivers about it.

Or does driving a hydrogen-powered vehicle as your day job, score Greta points in the pub or club after work?

Could The Hydrogen Train On The Midland Main Line Be A Stadler?

Greater Anglia and East Midlands Railway are both controlled by Abellio or Dutch Railways.

In The Dutch Plan For Hydrogen, I laid out what the Dutch are doing to create a hydrogen-based economy in the North of the country.

Stadler are going to provide hydrogen-powered for the plan.

In addition.

  • Greater Anglia have bought a lot of Class 755 trains.
  • A lot of Lincolnshire and Norfolk is similar to the North of the Netherlands; flat and windy.
  • One of these trains with a hydrogen PowerPack, could be an ideal train for demonstrating hydrogen on rural routes like Peterborough and Doncaster via Lincoln.

But the promise was on the Midland Main Line?

Conclusion

Hydrogen trains seem to be taking off!

Even if there’s been no news about the trial on the Midland Main Line.

 

January 12, 2020 Posted by | Transport, Uncategorized | , , , , , , , , | 3 Comments

Fuelling The Change On Teesside Rails

The title of this post, is the same as that of an article in Edition 895 of RAIL Magazine.

The article is based on an interview with Ben Houchen, who is the Tees Valley Mayor.

Various topics are covered.

Hydrogen-Powered Local Trains

According to the article, the Tees Valley produces fifty percent of UK hydrogen and the area is already secured investment for fuelling road vehicles with hydrogen.

So the Tees Valley Combined Authority (TVCA) is planning to convert some routes to hydrogen.

The Trains

Ten hydrogen-powered trains will be purchased or more likely leased, as the trains will probably be converted from redundant electrical multiple units, owned by leasing companies.

The RAIL article says that the first train could be under test in 2021 and service could be started in 2022.

That would certainly fit the development timetables for the trains.

Lackenby Depot

A depot Will Be Created At Lackenby.

  • The site is between Middlesbrough and Redcar.
  • It already has rail and hydrogen connections.

This Google Map shows the area.

Note the disused Redcar British Steel station, which is still shown on the map.

I remember the area from the around 1970, when I used to catch the train at the now-closed Grangetown station, after visits to ICI’s Wilton site. It was all fire, smoke, smells and pollution.

Darlington Station

Darlington station will also be remodelled to allow more services to operate without conflicting with the East Coast Main Line.

Wikipedia says this under Future for Darlington station.

As part of the Tees Valley Metro, two new platforms were to be built on the eastern edge of the main station. There were to be a total of four trains per hour, to Middlesbrough and Saltburn via the Tees Valley Line, and trains would not have to cross the East Coast Main Line when the new platforms would have been built. The Tees Valley Metro project was, however, cancelled.

It does sound from reading the RAIL article, that this plan is being reinstated.

Would services between Bishop Auckland and Saltburn, use these new platforms?

Saltburn And Bishops Auckland Via Middlesbrough and Darlington

Currently, the service is two trains per hour (tph) between Saltburn and Darlington, with one tph extending to Bishop Auckland.

  • I estimate that the current service needs five trains.
  • If a two tph service were to be run on the whole route, an extra train would be needed.
  • I suspect, the limitations at Darlington station, stop more trains being run all the way to Bishops Auckland.

I could also see extra stations being added to this route.

The Mayor is talking of running a service as frequent as six or eight tph.

Thesenumbers of trains, will be needed for services of different frequencies between Saltburn and Darlington.

  • 2 tph – 6 trains
  • 4 tph – 12 trains
  • 6 tph – 18 trains
  • 8 tph – 24 trains

As the London Overground, Merseyrail and Birmingham’s Cross-City Line, find four tph a more than adequate service, I suspect that should be provided.

After updating, Darlington station, should be able to handle the following.

  • Up to six tph terminating in one of the new Eastern platforms, without having to cross the East Coast Main Line.
  • Two tph between Saltburn and Bishops Auckland could use the other platform in both directions.

I would suspect that the design would see the two platforms sharing an island platform.

Alternatively, trains could continue as now.

  • Terminating trains could continue to use Platform 2!
  • Two tph between Saltburn and Bishops Auckland stopping in Platforms 1 (Eastbound) and 4 (Westbound)

This would avoid any infrastructure changes at Darlington station, but terminating trains at Darlington would still have to cross the Southbound East Coast Main Line.

If the frequencies were as follows.

  • 4 tph – Saltburn and Darlington
  • 2 tph – Saltburn and Bishop Auckland

This would require fourteen trains and give a six tph service between Saltburn and Darlington.

Ten trains would allow a two tph service on both routes.

There would be other services using parts of the same route, which would increase the frequency.

Hartlepool And The Esk Valley Line Via Middlesbrough

This is the other route through the area and was part of the cancelled Tees Valley Metro.

  • Service is basically one tph, with six trains per day (tpd) extending to Whitby.
  • A second platform is needed at Hartlepool station.
  • There is a proposal to add a Park-and-Ride station between Nunthorpe and Great Ayton stations.
  • One proposal from Modern Railways commentator; Alan Williams, was to simplify the track at Battersby station to avoid the reverse.
  • Currently, trains between Whitby and Middlesbrough are timetabled for around 80-100 minutes.
  • Hartlepool and Middlesbrough takes around twenty minutes.

Substantial track improvements are probably needed to increase the number of trains and reduce the journey times between Middlesbrough and Whitby.

But I believe that an hourly service between Hartlepool and Whitby, that would take under two hours or four hours for a round trip, could be possible.

This would mean that the hourly Hartlepool and Whitby service would need four trains.

Providing the track between Nunthorpe and |Whitby could be improved to handle the traffic, this would appear to be a very feasible proposition.

Nunthorpe And Hexham Via Newcastle

There is also an hourly service between Nunthorpe and Hexham, via Middlesbrough, Stockton, Hartlepool, Sunderland and Newcastle, there would be two tph.

  • It takes around two hours and twenty minutes.
  • I estimate that five trains would be needed for the service.
  • I travelled once between Newcastle and James Cook Hospital in the Peak and the service was busy.
  • A new station is being built at Horden, which is eight minutes North of Hartlepool.
  • The service could easily access the proposed fuelling station at Lackenby.
  • It would reduce carbon emissions in Newcastle and Sunderland stations..

Surely, if hydrogen power is good enough for the other routes, then it is good enough for this route.

Hartlepool Station

Hartlepool Station could become a problem, as although it is on a double track railway, it only has one through platform, as these pictures from 2011 show.

Consider.

  • There is no footbridge, although Grand Central could pay for one
  • There is a rarely-used bay platform to turn trains from Middlesbrough, Nunthorpe and Whitby.

This Google Map shows the cramped site.

The final solution could mean a new station.

Nunthorpe Park-And-Ride

This Google Map shows Nunthorpe with thje bEsk Valley Line running through it.

Note.

  1. Gypsy Lane and Nunthorpe stations.
  2. The dual-carriageway A171 Guisborough by-pass running East-West, that connects in the East to Whitby and Scarborough.
  3. The A1043 Nunthorpe by-pass that connects to roads to the South.

Would where the A1043 crosses the Esk Valley Line be the place for the Park-and-Ride station?

The new station could have a passing loop, that could also be used to turn back trains.

Battersby Station

Alan Williams, who is Chairman of the Esk Valley Railway Development Company, is quoted in the RAIL article as saying.

If you’re going to spend that sort of money we’d much rather you spent it on building a curve at Battersby to cut out the reversal there.

Williams gives further reasons.

  • Battersby is the least used station on the line.
  • It’s in the middle of nowhere.
  • The curve would save five minutes on the overall journey.

This Google Map shows Battersby station and the current track layout.

Note.

  1. The line to Middlesbrough goes through the North-West corner of the map.
  2. The line to Whitby goes through the North-East corner of the map.

There would appear to be plenty of space for a curve that would cut out the station.

LNER To Teesside

LNER, the Government and the TVCA are aiming to meet a target date of the Second Quarter of 2021 for a direct London to Middlesbrough service.

Middlesbrough Station

Middlesbrough Station will need to be updated and according to the RAIL article, the following work will be done.

  • A new Northern entrance with a glass frontage.
  • A third platform.
  • Lengthening of existing platforms to take LNER’s Class 800 trains.

This Google Map shows the current layout of the station.

From this map it doesn’t look to be the most difficult of stations, on which to fit in the extra platform and the extensions.

It should also be noted that the station is Grade II Listed, was in good condition on my last visit and has a step-free subway between the two sides of the station.

Journey Times

I estimate that a Kings Cross and Middlesbrough time via Northallerton would take aroud two hours and fifty minutes.

This compares with other journey times in the area to London.

  • LNER – Kings Cross and Darlington – two hours and twenty-two minutes
  • Grand Central – Kings Cross and Eaglescliffe – two hours and thirty-seven minutes.

I also estimate that timings to Redcar and Saltburn would be another 14 and 28 minutes respectively.

Frequencies

Currently, LNER run between three and four tph between Kings Cross and Darlington, with the competing Grand Central service between Kings Cross and Eaglescliffe having a frequency of five trains per day (tpd).

LNER have also started serving secondary destinations in the last month or so.

  • Harrogate, which has a population of 75.000, is served with a frequency of six tph.
  • Lincoln, which has a population of 130,000 is now served with a frequency of six tpd.

Note that the RAIL article, states that the Tees Valley has a population of 750,000.

I feel that Middlesbrough will be served by a frequency of at least five tod and probably six to match LNER’s new Harrogate and Lincoln services.

Will LNER’s Kings Cross and York Service Be Extended To Middlesbrough?

Cirrently , trains that leave Kings Cross at six minutes past the hour end up in Lincoln or York

  • 0806 – Lincoln
  • 0906 – York
  • 1006 – Lincoln
  • 1106 – York
  • 1206 -Lincoln
  • 1306 – York
  • 1406 – Lincoln
  • 1506 – York
  • 1606 – Lincoln
  • 1906 -Lincoln

It looks to me that a pattern is being developed.

  • Could it be that the York services will be extended to Middlesbrough in 2021?
  • Could six Middlesbrough trains leave Kings Cross at 0706, 0906, 1106, 1306, 1506 and 1706 or 1806?
  • York would still have the same number of trains as it does now!

LNER certainly seem to be putting together a comprehensive timetable.

Could Middlesbrough Trains Split At Doncaster Or York?

I was in Kings Cross station, this afternoon and saw the 1506 service to York, go on its way.

The train was formed of two five-car trains, running as a ten-car train.

If LNER employ spitting and joining,, as some of their staff believe, there are surely, places, where this can be done to serve more destinations, without requiring more paths on the East Coast Main Line.

  • Splitting at Doncaster could serve Hull, Middlesborough and York.
  • Splitting at York could serve Scarborough, Middlesborough and Sunderland.

Scarborough might be a viable destination, as the town has a population of over 100,000.

Onward To Redcar And Saltburn

One of the changes in the December 2019 timetable change, was the extension of TransPennine Express’s Manchester Airport to Middlesbrough service to Redcar Central station.

The RAIL article quotes the Mayor as being pleased with this, although he would have preferred the service to have gone as far as Saltburn, which is a regional growth point for housing and employment.

But the extra six miles would have meant the purchase of another train.

Redcar Central Station

This Google Map shows Redcar Central station and its position in the town.

It is close to the sea front and the High Street and there appears to be space for the stabling of long-distance trains to Manchester Airport and perhaps, London.

TransPennine seem to be using their rakes of Mark 5A coaches on Redcar services, rather than their Class 802 trains, which are similar to LNER’s Azumas.

Surely, there will be operational advantages, if both train operating companies ran similar trains to Teesside.

Saltburn Station

Saltburn station is the end of the line.

This Google Map shows its position in the town.

Unlike Redcar Central station, there appears to be very little space along the railway and turning back trains might be difficult.

There may be good economic reasons to use Saltburn as a terminal, but operationally, it could be difficult.

Will Redcar And Saltburn See Services To and From London?

Given that both towns will likely see much improved services to Middlesbrough, with at least a service of four tph, I think it will be unlikely.

But we might see the following.

  • LNER using Redcar as a terminus, as TransPennine Express do, as it might ease operations.
  • An early morning train to London and an evening train back from the capital, which is stabled overnight at Redcar.
  • TransPennine Express using Class 802 trains on their Redcar service for operational efficiency, as these trains are similar to LNER’s Azumas.

It would all depend on the passenger numbers.

A High-Frequency Service Between York And Teesside

After all the changes the service between York and Teesside will be as follows.

  • LNER will be offering a train virtually every two hours between York and Middlesbrough.
  • Grand Central will be offering a train virtually every two hours between York and Eaglescliffe, which is six miles from Middlesbrough.
  • TransPennine Express will have an hourly service between York and Redcar via Middlesbrough.
  • There will be between three and four tph between York and Darlington.

All services would connect to the hydrogen-powdered local services to take you all over Teesside.

Could this open up tourism without cars in the area?

Expansion Of The Hydrogen-Powered Train Network

Could some form of Hydrogen Hub be developed at Lackenby.

Alstom are talking of the hydrogen-powered Breeze trains having a range of over six hundred miles and possibly an operating speed of 100 mph, when using overhead electrification, where it is available.

In Breeze Hydrogen Multiple-Unit Order Expected Soon, I put together information from various articles and said this.

I am fairly certain, that Alstom can create a five-car Class 321 Breeze with the following characteristics.

  • A capacity of about three hundred seats.
  • A smaller three-car train would have 140 seats.
  • A near-100 mph top speed on hydrogen-power.
  • A 100 mph top speed on electrification.
  • A 1000 km range on hydrogen.
  • Regenerative braking to an on-board battery.
  • The ability to use 25 KVAC overhead and/or 750 VDC third rail electrification.

The trains could have the ability to run as pairs to increase capacity.

The distance without electrification to a selection of main stations in the North East from Lackenby is as follows.

  • Newcastle via Middlesbrough and Darlington – 21 miles
  • Newcastle via Middlesbrough and Durham Coast Line – 53 miles.
  • York via Northallerton – 27 miles
  • Doncaster via Northallerton and York – 27 miles
  • Leeds via Northallerton and York – 52 miles
  • Sheffield via Northallerton, York and Doncaster – 45 miles

I am assuming that the trains can use the electrification on the East Coast Main Line.

From these figures it would appear that hydroigen-powered trains stabled and refuelled at Lackenby could travel to Doncaster, Newcastle, Leeds, Sheffield or York before putting in a days work and still have enough hydrogen in the tank to return to Lackenby.

Several things would help.

  • As hydrogen-powered trains have a battery, with a battery range of thirty miles all these main stations could be reached on battery power, charging on the East Coast Main Line and at Lackenby.
  • Electrification between Darlington and Lackenby.
  • Electrification between Northallerton and Eaglescliffe.

I am fairly certain that a large proportion of the intensive network of diesel services in the North East of |England from Doncaster and Sheffield in the South to Newcastle in the North, can be replaced with hydrogen-powered trains.

  • Trains could go as far West as Blackpool North, Carlisle, Manchester Victoria, Preston and Southport.
  • Refueling could be all at Lackenby, although other refuelling points could increase the coverage and efficieny of the trains.
  • Green hydrogen could be produced by electrolysis from the massive offshore wind farms off the Lincolnshire Coast.
  • Hydrogen-powered trains would be ideal for re-opened routes like the proposed services from Newcastle to Blyth and Ashington.

The hydrogen-powered trains on Teesside could be the start of a large zero-carbon railway network.

The Alstom Breeze And The HydroFlex Would Only Be The Start

As I said earlier, the initial trains would be conversions of redundant British Rail-era electrical multiple units.

Thirty-year-old British Rail designs like the Class 319 and Class 321 trains based on the legendary Mark 3 carriages with its structural integrity and superb ride, may have been state-of-the-art in their day, but engineers can do better now.

  • Traction and regenerative braking systems are much more energy efficient.
  • Train aerodynamics and rolling resistance have improved meaning less energy is needed to maintain a speed.
  • Interior design and walk-through trains have increased capacity.
  • Crashworthiness has been improved.

Current Bombardier Aventras, Stadler Flirts or Siemens Desiros and CAF Civities are far removed from 1980s designs.

I can see a design for a hydrogen-powered train based on a modern design, tailored to the needs of operators being developed.

A place to start could be an electric CAF Class 331 train. or any one of a number of Aventras.

  • From the visualisation that Alstom have released of their Breeze conversion of a Class 321 train, I feel that to store enough hydrogen, a large tank will be needed and perhaps the easiest thing to do at the present time would be to add an extra car containing the hydrogen tank, the fuel cells and the batteries.
  • Alstom have stated they’re putting the fuel cells on the roof and the batteries underneath the train.

Although, it is not a hydrogen train, Stadler have developed the Class 755 train, with a power car in the middle of the train.

Stadler’s approach of a power car, must be working as they have received an order for a hydrogen-powered version of their popular Flirts, which I wrote about in MSU Research Leads To North America’s First Commercial Hydrogen-Powered Train.

I think we can be certain, that because of the UK loading gauge, that a hydrogen-powered train will be longer by about a car, than the equivalent electric train.

I can see a certain amount of platform lengthening being required. But this is probably easier and less costly than electrification to achieve zero-carbon on a route.

Batteries can be distributed under all cars of the train, anywhere there is space., But I would suspect that fuel cells must be in the same car as the hydrogen tank, as I doubt having hydrogen pipes between cars would be a good idea.

Alstom have resorted to putting hydrogen tanks and fuel cells in both driving cars and must have sound reasons for this.

Perhaps, it is the only way, they can get the required power and range.

As I understand it, the Alstom Breeze draws power from three sources.

  • The electrification if the route is electrified.
  • The electricity generated by regenerative braking.
  • The hydrogen system produces electricity on demand, at the required level.

Energy is stored in the batteries, which power the train’s traction motors and internal systems.

The electrical components needed for the train are getting smaller and lighter and I feel that it should be possible to put all the power generation and collection into a power car, that is somewhere near the middle of the train. Stadler’s power car is short at under seven metres, but there is probably no reason, why it couldn’t be the twenty metres typical of UK trains.

Suppose you took a four-car version of CAF’s Class 331 train, which has two driver cars either side of a pantograph car and a trailer car.

This has 284 seats and by comparison with the three-car version the trailer car has eighty. As the vpantograph car is also a trailer, I’ll assume that has eight seats too! Until I know better!

Replacing the pantograph car with a hydrogen car, which would be unlikely to have seats, would cut the seats to 204 seats, but a second trailer would bring it back up to 284 seats.

I actually, think the concept of a hydrogen car in the middle of a four-car electric train could work.

  • The five-car hydrogen train would have the same capacity as the four-car electric version.
  • The train would need an updated software system and some rewiring. Bombardier achieved this easily with the Class 379 BEMU trial.
  • There are several types of four-car electrical multiple units, that could possibly be converted to five-car hydrogen-powered multiple units.

Obviously, if an existing train can be adapted for hydrogen, this will be a more cost effective approach.

Conclusion

Overall, the plans for rail improvements on Teesside seem to be good ones.

I’m looking forward to riding LNER to Teesside and then using the network of hydrogen-powered trains to explore the area in 2022.

My only worry, is that, if the network is successful, the many tourists visiting York will surely increase the numbers of day visitors to Whitby.

This is a paragraph from the RAIL article.

Alan Williams says that the EVRDC’s long-term objective is to see the Esk Valley served at intervals of roughly every two hours, equating to eight return trains per day, but with Northern and NYMR services sharing the single line between Grosmont and Whitby, introducing further Middlesbrough trains during the middle of the day, brings the conversation back to infrastructure.

He goes on to detail what is needed.

January 8, 2020 Posted by | Transport | , , , , , , , , , , , , , , , , | 3 Comments

Pesa And PKN Orlen To Develop Hydrogen Fuel Cell Trains

The title of this post is the same as that of this article on Railway Gazette.

This is the introductory paragraph.

Rolling stock manufacturer Pesa and energy company PKN Orlen signed a letter of intent to develop hydrogen fuel cell trains on December 12.

I am pleased that Poland appears to be turning to trains that emit less carbon, but I do worry about how the hydrogen is produced.

It appears the Dutch are moving towards green hydrogen, which is produced by the electrolysis of water using electricity produced by offshore wind farms.

But how are the Poles producing their hydrogen?

I did find this article on biznewsalert.com, which is entitled Poland Wants To Be A Hydrogen Kuwait. P2G Can Help.

This is the introductory sentence.

Hydrogen could drive low-carbon transport and also help reduce CO2 emissions. Although it is a distant perspective for now, the production of the element could support onshore wind farms.

It does appear that the Poles are thinking along lines, that will reduce carbon emissions.

What is P2G?

P2G or Power-to-Gas has an informative Wikipedia entry.

This is the first paragraph, which outlines the process.

Power-to-gas (often abbreviated P2G) is a technology that converts electrical power to a gas fuel. When using surplus power from wind generation, the concept is sometimes called windgas. There are currently three methods in use; all use electricity to split water into hydrogen and oxygen by means of electrolysis.

There certainly a lot of activity in the sector.

My Experience Of Polish Transport

Poland is a large country with an extensive rail system. I have travelled long distances across the country and many of the passenger trains are electric.

I can’t remember seeing a freight train, but I do remember large numbers of diesel trucks moving freight across the country.

Conclusion

Hydrogen could be a very important fuel for transport in Poland.

December 18, 2019 Posted by | Transport | , , , , | Leave a comment

MSU Research Leads To North America’s First Commercial Hydrogen-Powered Train

The title of this post, is the same as that of this article in Railway Age.

This is the introductory paragraph.

Research from Michigan State University’s Center for Railway Research and Education (CRRE) contributed to the San Bernardino County Transportation Authority’s (SBCTA) decision to order the first commercial hydrogen-powered train for use in North America.

These statements were also made.

  • The research was conducted in partnership with the Birmingham CRRE and Mott MacDonald.
  • Funding was from the California State Transportation Agency (CalSTA).
  • The trains will be built by Stadler, probably in their US factory.

There is also a picture of the hydrogen-powered Flirt in the article, and it is very similar in formation to a Class 755 train, with a PowerPack in the middle.

The picture shows a Class 755 train at Norwich station.

The article indicates that hydrogen-power was chosen, as the rail line may be extended by sixty miles to Los Angeles.

Conclusion

After reading the full article, it certainly looks like San Bernardino County Transportation Authority have planned their new railway in a very professional way.

 

 

December 12, 2019 Posted by | Transport | , , , , | 2 Comments

RSSB Appoint Arup To Review Hydrogen Trains

The title of this post is the same as that of this article on Rail Technology Magazine.

This is the first two paragraphs.

The Rail Safety and Standards Board (RSSB) has tasked Arup with developing a case for hydrogen-powered trains on the Great Britain (GB) mainline.

The review will move to establish a high-level operational concept, any relevant operational hazards and obligations of regulation.

This must be good forward thinking.

November 29, 2019 Posted by | Transport | , | 2 Comments

Boris Johnson Vows New Life For High Streets And Axed Rail Lines

The title of this post is the same as that of this article in The Times.

This is the introductory paragraph.

Boris Johnson is promising to revitalise “left behind” high streets through tax cuts for pubs and shops and reversing some of the Beeching rail cuts to branch lines.

The article gives a map of the lines and here is a list of them.

  • Newcastle and Ashington/Blyth.
  • Bristol and Portishead
  • Camp Hill Line
  • Willenhall and Darlaston
  • Thornton-Cleveleys and Fleetwood
  • Okehampton and Exeter
  • March and Wisbech
  • Uckfield and Lewes
  • A new station he building of a station at Skelmersdale.

I will suggest other possibilities and add them here.

There could be several!

The Technology Is With Us!

Anyone who follows railway technology, as I do, knows that technology coming on stream will ease the creation of these routes.

  • Modern digital in-cab signalling, as already used on Thameslink.
  • Battery-electric trains.
  • Innovative charging for battery-electric trains.
  • Hydrogen-powered trains.
  • Tram-trains
  • Automatic train control
  • Remote services in simple depots.
  • Better bridge-raising and other construction techniques.

Many of these new routes will be able to use a standard train.

 

 

 

 

November 15, 2019 Posted by | Transport | , , , , , , , , | 2 Comments

US Hydrogen Train Contract Awarded

The title of this post is the same as that of this article on Railway Gazette.

This is the introductory paragraph.

Southern California’s San Bernardino County Transportation Authority has awarded Stadler a contract to supply a Flirt H2 hydrogen fuel cell powered multiple-unit to enter passenger service in 2024, with an option for a further four units.

The train follows the layout of Greater Anglia’s Class 755 train, with a power-pack in the middle.

The project was originally called the Redlands Passenger Rail Project, but it has now been renamed Arrow.

Stadler’s press release gives the following details.

  • Two cars and a central power-pack.
  • 108 seats and standing spaces.
  • Operating speed of 79 mph.
  • Entry into passenger service in 2024.

It looks to me, that Stadler are not being over-ambitious with their offering to the Californians.

But imagine replacing the diesel power-pack of a Class 755 train on the Felixstowe and Sudbury branches with a hydrogen power-pack!

Conclusion

Stadler could have designed the ideal train for branch lines!

Consider London Bridge and Uckfield.

  • The train could use third-rail electrification on the 21 miles between London Bridge and Hurst Green.
  • The train would use hydrogen on the 25 miles between Hurst Green and Uckfield

The train would need an appropriate sized hydrogen tank.

Could the required hydrogen tank, fuel cells, batteries and gubbins be fitted in a power-pack in the middle, which would not need any diesel engines.

This picture shows a visualisation of an Alstom Breeze train based on a Class 321 train.

The hydrogen tank, fuel cells, batteries and gubbins are in the blocked off area at the right end of the train.

  • As cars on a Class 321 train are twenty metres long, I estimate that the hydrogen section is about eight metres long.
  • Stadler’s power-packs are 6.69 metres long.

Efficient design should mean that a hydrogen engine with a range of several hundred miles could be installed in a Stadler Firt H2.

Stadler’s unusual design with the power-pack or engine in the middle is looking good.

 

 

 

 

 

November 14, 2019 Posted by | Transport | , , | Leave a comment

Fuel Cell Train To Be Tested In The Netherlands

The title of this post, is the same as that of this article on Railway Gazette.

This is the introductory paragraph.

A Coradia iLint hydrogen fuel-cell multiple-unit is to be tested on the Groningen – Leeuwarden line after an agreement was signed at the Klimaattop Noord NL climate summit by manufacturer Alstom, the province of Groningen, local operator Arriva, infrastructure manager ProRail and energy company Engie.

You can get a flavour of some of the Dutch railways in the area from The Train Station At The Northern End Of The Netherlands.

Hydrogen powered trains are also part of the future plans for the use of hydrogen, which I wrote about in The Dutch Plan For Hydrogen.

The Railway Gazette article gives more details on how they will be introducing low carbon trains in the network around Groningen and the wider Netherlands.

These general points are made.

  • The Netherlands has nearly a thousand kilometres of lines without electrification.
  • Alstom has forty-one orders for their hydrogen-powered Coradia iLints.

They will also be refurbishing the 51 Stadler GTW trains in the area.

The main improvement, is that they will be fitted with batteries to handle regenerative braking and cut their carbon footprint.

The Railway Gazette article also says this.

A further 18 new Stadler Wink trainsets have been ordered which will be able use overhead electrification or hydrotreated vegetable oil fuel, with batteries for regenerated braking energy. These will be designed so that their engines can be replaced with larger batteries when the planned 1·5 kV DC discontinuous electrification of the routes is completed.

The Stadler Wink appears to be the another train from the Flirt family, which is the successor to the GTW.

The Dutch seem to be moving very firmly towards a zero-carbon railway in the North.

Collateral Benefits For The UK

What areas of the UK would be ideal places to adopt a similar philosophy to that which the Dutch are using in the North of the Netherlands?

I think they will be areas, where there are lots of zero carbon electricity, railways without electrification and terrain that’s not to challenging.

These areas come to mind.

  • East Anglia
  • Lincolnshire
  • East Yorkshire
  • Far North and North East Scotland.

Note.

    1. The only electrification in these areas is the main lines to Norwich and Cambridge in East Anglia.
    2. All areas have Gigawatts of offshore wind farms either operating or under development.
    3. Vivarail are proposing to run battery-electric trains between Wick and Turso, as I wrote about in Is This The Most Unusual Idea For A New Railway Service in The UK?
    4. With the exception of East Yorkshire, the train operating company is Abellio, who are Dutch railways, by another name.
    5. East Anglia is already using Stadler Flirt Class 755 trains, that can be fitted with batteries.

I also believe that Hitachi will soon be providing battery-electric versions of their AT300 trains. I wrote about this in Thoughts On The Next Generation Of Hitachi High Speed Trains.

Battery electric AT300 trains could provide long distance services to the areas I listed.

Conclusion

What is happening in the North of the Netherlands, will be watched with interest in the UK.

 

November 2, 2019 Posted by | Transport | , , , , , , , , , | Leave a comment

RTRI Tests Fuel Cell Multiple Unit

The title of this post is the same as that of this article on Railway Gazette.

This is the first two paragraphs.

JAPAN: Railway Technical Research Institute has started test running with a prototype multiple-unit which can work as a conventional or battery EMU or using a fuel cell powerpack.

Converted from an older 1·5 kV DC EMU, the test train comprises a 34 tonne motor car and 29 tonne trailer vehicle. Each car is 19 760 mm long and 2 950 mm wide. It is able to operate as a conventional EMU when running under overhead catenary, or as a battery unit off-wire, with or without the fuel cell in use to trickle-charge the batteries.

These are my thoughts.

The Hydrogen Fuel Cells.

The article says this about the hydrogen fuel cells.

Two polymer electrolyte fuel cells are contained in an underfloor module 2 600 mm long, 2 655 mm wide and 720 mm high, which weighs 1·9 tonnes.

The fuel cells are stated to have a rating of 90 kW at 200 to 350 V.

To get a handle on how powerful the hydrogen fuel cells are, these are some characteristics of a British Rail Class 456 train.

  • It is a two-car electric multiple unit.
  • It weighs 72.5 tonnes.
  • It has an operating speed of 75 mph.
  • It is a 750 VDC train.
  • It has a power output of 373 kW

I wouldn’t think that the two trains are that far apart in performance and capacity.

The Japanese train has a total power output from the fuel cells of 180 kW, but it can also use power from the battery.

I wouldn’t be surprised to find out that the Japanese fuel cell and battery combination was powerful enough to power the British train.

I also think, they would fit underneath a typical British train like the Class 456 train, which has a width of 2800 mm.

The Hydrogen Tanks

The article says this about the hydrogen tanks and the range.

Hydrogen is stored in four high pressure cylinders at 35 MPa, with a capacity of 180 litres, giving a range of 72 km.

The mass of the hydrogen in the tank according to this calculator on the Internet is around 4.3 Kg.

In How Much Energy Can Extracted From a Kilogram Of Hydrogen?, I showed that a typical fuel cell can produce 16 kWh from a kilogram of hydrogen.

So the hydrogen tank can be considered a battery holding 4.3 * 16 = 68.8 kWh.

That doesn’t sound much, so perhaps the capacity figure is for a single tank. In that case the total for the train would be 275.2 kWh, which seems more in line with the battery size of Vivarail’s two-car battery prototype, which has 424 kWh.

Each tank would be something like 2500 mm long and 300 mm in diameter, if they were cylindrical. Double the diameter to 600 mm and the capacity would be over 700 litres.

The Battery

The article says the train has a 540 kW battery, which I think could be a misprint, as it would more likely be 540 kWh.

Performance

The article says this about the performance.

The four 95 kW traction motors provide a maximum acceleration of 0·7 m/s2, and an electric braking rate of 0·86 m/s2

It also says that the range is 72 km.

My observations on the performance and traction system are.

  • The traction power of the two-car Japanese train at 380 kW is very similar to the 373 kW of the similar-sized British Class 456 train
  • The acceleration rate is very typical of an electric multiple unit.
  • Bracking is regenerative and used to charge the batteries. As it should!

This leads me to conclude, that this is a train, that could run a short public service, just as the Class 379 BEMU demonstrator did in 2015.

Thoughts About Range

The range is quoted at 72 kilometres (forty five miles.) This figure is unusual in that it is very precise, so perhaps it’s the Japanese way to give an exact figure, whereas we might say around or over seventy kilometres.

Applying my trusty formula of three kWh per vehicle-mile for cruising gives a energy requirement of 270 kWh for the full range, which is close to the four-tank energy capacity of 275.2 kWh.

Comparison With Alstom’s Breeze

Alstom are building a hydsrogen-powered version of a Class 321 train, which they have named Breeze.

Like the Japanese train, this is a effectively two-car train with respect to capacity as large hydrogen tanks to give a thousand kilometre range are installed.

So do the developers of both trains feel that a hydrogen-powered train to replace two- and three-car diesel multiple units is the highest priority?

Conclusion

If nothing else, it seems the Japanese have designed a two-car electric multiple unit, that has the following characteristics.

  • Practical size of two-cars.
  • Most equipment underneath the train.
  • Useful range.
  • Acceleration and braking in line with modern units.
  • Regenerative braking.
  • Ability to work on overhead, battery and hydrogen power.

I am led to the conclusion, that once their research is finished, the Japanese could design a very practical hydrogen-powered train for production in the required numbers.

 

 

 

September 7, 2019 Posted by | Transport | , , , | Leave a comment

Little Has Been Said About East Midlands Railway’s Promised Hydrogen Trains

In their proposal for the East Midlands franchise, Abellio said that they would trial hydrogen-powered trains on the Midland Main Line.

But little has been heard of this promise since winning the franchise.

So where could the franchise use hydrogen-powered trains on the Midland Main Line?

Extending Corby Trains To Oakham And Melton Mowbray

This is a distance of under thirty miles, so it would probably be within range of a well-designed hybrid battery-hydrogen-electric train.

  • Refuelling with hydrogen could be at Corby or Melton Mowbray stations.
  • Trains would be 240 metres long.
  • In addition batteries would be charged between St. Pancras and Corby stations.
  • Trains would run at 125 mph for much of the route between St. Pancras and Corby.
  • Hydrogen power would be used as a top-up between Corby and Melton Mowbray if required.

The service could even go further and turn back at Leicester.

Perhaps one train per hour (tph) of the two Corby services could be extended.

Non-Stop London To Leicester Trains

The Midland Main Line will be electrified as far as Market Harborough, so there would be under twenty miles without electrification on the route between St. Pancras and Leicester stations.

  • Trains would run at 125 mph for much of the route between St. Pancras and Leicester.
  • Refuelling could be at Leicester.
  • To publicise the service, it might be best to run two tph non-stop.
  • Perhaps the only stop would be Luton Airport Parkway, as the Airport wants more fast services.

As with the Corby Extension service, it wouldn’t require a great deal of running on hydrogen.

Why Not Run A Loop From London?

If the Corby Extension service went as far as Leicester it would approach the station from the North, whereas the London service would approach from the South.

So why not run the services back-to-back?

  • There could be two tph in each direction.
  • There could be a longer stop at Leicester to take on hydrogen.
  • Stops could include Luton Airport Parkway in both directions, to give the Airport four tph to and from London and Leicester.
  • There might also be the possibility of an improved station at Syston, which is to the North-East of Leicester.

It wouldn’t need any new platforms or other infrastructure, except for the hydrogen filling station at Leicester and the possible improvements at Syston.

It would deliver high speed hydrogen-powered trains to Leicester at a frequency of two tph direct and two trph via Corby.

It would fit Luton Airport’s ambitions as I outlined in Luton Trains Its Eye On Sub 30-Minute Express.

What would that do for the prestige of the Leicester and the ambitions of Luton Airport?

Who Would Build The Trains?

These are my thoughts.

  • Alston have the technology, but do they have the train?
  • Bombardier have stated they are not interested in hydrogen.
  • CAF have the train and the battery technology, but do they have the hydrogen technology?
  • Hitachi have the train, but do they have the battery and hydrogen technology?
  • Stadler have the train and the battery technology, but do they have the hydrogen technology?

I have heard rumours they are pushing hydrogen technology and also that their PowerPack concept works at 125 mph, so I suspect that Stadler are as likely as any to produce a working high speed hybrid hydrogen train.

But they will have several dozen trains working in the UK in a year or so.

They are not to be underestimated.

But then the prize for successfully running a 200 kph or 125 mph zero-carbon train will be immense, and this will not be lost on the train builders.

Or East Midlands Railway for that matter!

The first person, who does something is always remembered!

Losers come second!

August 21, 2019 Posted by | Transport | , , , | Leave a comment