The Anonymous Widower

Highview Power On The Good News Network

If the Good News Network, is what it says on the tin, then I’m pleased that they’ve written this article, which is entitled World’s Biggest Liquid-Air Battery – ‘The Climate-Emission Killer’ – Is Now Under Construction In England.

The article, appears to be a rehash of what appeared in the Guardian, slanted for American readers.

It has the usual American fault of mixing up England with the UK, but surely the fact that it’s on the site, is good news for Highview Power.

June 28, 2020 Posted by | Energy Storage | | Leave a comment

Do We Need A UK Lithium-Ion Battery Factory?

My post, Gore Street Acquires 50MW Ferrymuir Battery Project, Eyes More In Scotland and the article on the Energyst with the same name, got me thinking.

It was this statement about Gore Street Energy Fund, that really started the thought.

The fund said the addition takes its portfolio built or under development to 293MW and added that is has options for a further 900MW.

Gore Street obviously have the money to build all of this energy storage.

  • I have also looked at some of their projects on Google Maps and there are still plenty of sites on green- or brown-field land close to electricity sub-stations, where energy storage would be easy to connect.
  • I suspect, they have some good engineers or electricity marketing specialists available.
  • My worry, would be, with many countries going the energy storage route, is there enough capacity to build all the batteries we need.

We have three routes, we could easily take in this country.

  • Convert suplus energy to hydrogen using electrolysers from ITM Power in Rotherham.
  • Develop some BALDIES (Build Anywhere Long Duration Intermittent Energy Storage). British technology is available as the CRYObatteryfrom Highview Power, who signed to build their first full-size plant in the UK, last week.
  • Build a lithium-ion battery factory. Preferably of the next generation, so that battery vehicles will go further on a charge.

It is my view, that we should do all three!

Will Gore Street, add a BALDIES to their portfolio of lithium-ion energy storage.

I think the decision makers at Gore Street would sleep comfortably in their beds if they bought a CRYObattery for a location, that needed a larger battery.

Conclusion

As to the answer to my question, the answer is yes, as mobile application will need more and better batteries and on balance, we should have our own supply.

 

 

June 24, 2020 Posted by | Energy Storage | , , , | 2 Comments

Air-Powered Energy Storage Knocks Out Coal & Gas — Wait, What?

The title of this post, is the same as that of this article on CleanTechnica.

After reading, this must read article, it could have had a title with Knocks Out Coal, Gas and Nuclear.

It makes a passionate article for Highview Power’s long term air-powered energy storage and other systems with a similar energy profile like Form Energy.

It also showed this good graphic from Highview Power, which shows how their system works.

This paragraph gives Highview’s view on what their CRYObatteries will do.

Grid operators are turning to long-duration energy storage to improve power generation economics, balance the grid, and increase reliability. At giga-scale, CRYOBatteries paired with renewables are equivalent in performance to – and could replace – thermal and nuclear baseload power in addition to supporting electricity transmission and distribution systems while providing additional security of supply,” enthuses Highview.

The author then chips in with the attitude of the US Department of Energy.

Don’t just take their word for it. The US Department of Energy is eyeballing long duration energy storage for the sparkling green grid of the future despite all the hot air blowing out of 1600 Pennsylvania Avenue.

In an interesting twist, the Energy Department’s interest in long duration storage was initially connected to its interest in at least preserving, if not growing, the nation’s aging fleet of nuclear power plants.

Will renewables be able to see off nuclear in a country with plenty of sun and/or wind like the United States?

Conclusion

With a lot of help from their friends in the long term energy storage business, the answer must be yes!

 

June 20, 2020 Posted by | Energy Storage | , , , | Leave a comment

World First As Liquid-Air Energy Storage Makes Commercial Debut Near Manchester United Ground

The title of this post is the same as that of this article on Recharge.

I can add some extra information starting with this picture from Highview Power, which shows a visualisation of the CRYObattery.

Unfortunately, it doesn’t show any objects, which can give an idea of the size of the plant.

Levelised Cost Of Energy

LCOE or Levelised Cost Of Energy will be a term, that will be increasing used, when electricity generation is discussed. This is Wikipedia’s definition of the term.

The levelized cost of energy (LCOE), or levelized cost of electricity, is a measure of the average net present cost of electricity generation for a generating plant over its lifetime. The LCOE is calculated as the ratio between all the discounted costs over the lifetime of an electricity generating plant divided by a discounted sum of the actual energy amounts delivered. The LCOE is used to compare different methods of electricity generation on a consistent basis. The LCOE “represents the average revenue per unit of electricity generated that would be required to recover the costs of building and operating a generating plant during an assumed financial life and duty cycle.” Inputs to LCOE are chosen by the estimator. They can include cost of capital, “fuel costs, fixed and variable operations and maintenance costs, financing costs, and an assumed utilization rate.

Make sure, when comparing different LCOE values for different methods of energy generation, that the same method was used to calculate LCOE.

Comparative Costs

The article quotes the following costs on an LCOS or Levelised Cost Of Storage basis, which enables comparison to be made according to the same rules.

  • A 200 MW/2 GWh CRYObattery will cost £110/MWh
  • Pumped storage/hydro will cost £123-150/MWh
  • Lithium-ion will cost £231-470/MWh

I have converted some from dollars.

I do think that  a 2 GWh CRYObattery could be very good value!

Income

The article says this about how the CRYObattery will earn us keep.

Income will come through grid balancing, ancillary services such as frequency response and voltage support, and arbitrage — buying electricity when wholesale prices are low and selling it when prices are high.

I suspect that if a company like Carlton Highview Power had several large batteries around the country, this would be an advantage to the company.

June 19, 2020 Posted by | Energy Storage | | 1 Comment

Will BALDIES Save The World?

I just had to use this new acronym, I’ve just found on the Internet.

BALDIES are Build-Anywhere-Long-Duration-Intermittent-Energy-Storage.

June 19, 2020 Posted by | Energy Storage | , , , | 2 Comments

Climate Emission Killer: Construction Begins On World’s Biggest Liquid Air Battery

The title of this post, is the same at that of this article in the Guardian.

This is the introductory paragraph.

Construction is beginning on the world’s largest liquid air battery, which will store renewable electricity and reduce carbon emissions from fossil-fuel power plants.

These are a few points from the Guardian and other articles on other web sites, including Wikipedia.

  • The size of the battery is 250 MWh.
  • It can delivery up to 50 MW of power. which translates to five hours at full power, if the battery is full.
  • If it was already working, it would be the ninth biggest battery of all types, except for pumped storage, in the world.
  • It will be built at Trafford Energy Park near to Carrington power station.
  • It will be double the size of the largest chemical battery, which was built by Tesla in South Australia.
  • It is being built by a company call Carlton Highview Storage, which is a joint venture between Carlton Power and Highview Power.
  • It should start commercial operation in 2022.
  • The installation of the battery is an £85million project.
  • The Government have chipped in with a £10million grant.

Some reports say, this could be one of four of Highview Power’s 250 MWh CRYObatteries to be developed by the joint venture.

I will add some observations of my own.

Carrington Power Station

This Google Map shows the site of Carrington Power station.

Note.

  1. Flixton station is in the North-East corner of the map.
  2. Irlam station is on the Western edge of the map.
  3. South of the railway between the two stations, there is a large industrial site, that sits in a bend in the River Mersey.

This second Google Map shows an enlargement of the site.

Note.

  1. Carrington power station in the middle of the site.
  2. Large amounts of brownfield land.
  3. The Manchester Ship Canal passing to the West of the site.

Wikipedia says this about the design of Carrington power station.

The station is a Combined-Cycle Power Plant (CCPP), using natural gas to generate 884MW of electricity. The CCPP uses both a gas and a steam turbine together, to produce up to 50 percent more electricity from the same fuel than a traditional simple-cycle plant. The waste heat from the gas turbine is routed to the nearby steam turbine, which generates additional power. Carrington consists of two CCPP KA26-1 units. At operating design conditions, each CCPP unit generates 442.3 MW net output. The station generates enough power to meet the electricity needs of one million homes in the UK and began commercial operation on 18 September 2016.

Wikipedia also says the following.

  • The plant has an efficiency of 58%. Is that good for this type of gas-fired Combined Cycle Gas Turbine power station? 64% seems to be about the best but Carrington is better than the about 50% possible with a conventional gas turbine plant.
  • Much of the heavy equipment for the power station was brought by barge along the Manchester Ship Canal.
  • The station is also a combined heat and power plant, capable of providing nearby businesses with steam, if they require a supply. This could be useful to a Highview Power CRYObattery, as a low-grade heat-source is needed to recovery the stored energy by warming the liquid air.

Given the following.

  • There is space available near to the power station.
  • A 250 MWh CRYObattery would probably fit in a size smaller than two football pitches.
  • Carlton have permission to build another CCGT at the site.
  • Carrington has a very good electrical connection to the grid, as nearly all power stations do.
  • Heavy components can be brought in by barge on the canal.

, it would appear that the area would be a good place to site the first gr-scale CRYObattery.

Conclusion

I think siting the first grid-scale CRYObattery close to Carrington power station at the Trafford Energy Park, fits together well and I could see more CRYObatteries being installed in the following types of location.

  • At existing power stations.
  • On the sites of demolished power stations, that still have good grid connections.
  • Where interconnectors and power from offshore wind connects to the grid.

I wouldn’t be surprised to see Drax Group install a system at one of their sites, as a CRYObattery could help cut their carbon-emissions.

 

 

 

 

 

June 18, 2020 Posted by | Energy Storage | , , , , | 1 Comment

Lithium Battery Cell Prices To Almost Halve By 2029

The title of this post, is the same as that of this article on Energy Storage News.

This is the introductory paragraph.

Lithium-ion cell prices will fall by around 46% between now and 2029, according to new analysis from Guidehouse Insights, reaching US$66.6 per kWh by that time.

The rest of the article contains a lot more useful predictions.

I will add a prediction of my own.

The drop in prices of lithium-ion batteries will surely result in a lot more applications, in the following areas.

  • Battery-electric vehicles
  • Battery-electric vans and buses and light-trucks.
  • Battery-electric trams and trains
  • Battery-electric aircraft.
  • Battery-electric ships.
  • Battery-electric tractors
  • Battety-electric construction plant

Lithium-ion batteries will also be used in hydrogen-powered versions of any of the above.

The cost of lithium-ion batteries, will also lead to more applications in the following areas.

  • Grid energy storage or as it sometimes called; front-of-the-meter storage.
  • Heavy trucks
  • Double-deck buses
  • Railway locomotives

These could use a very large number of lithium-ion cells.

Conclusion

Because as yet, there is no alternative to lithium-ion cells for mobile applications, I think we’ll see grid-energy storage going to one of the alternatives like Gravitricity, Highview Power or Zinc8.

 

 

June 9, 2020 Posted by | Energy Storage, Transport | , , , | 2 Comments

US Deployed 98MW / 208MWh Of Energy Storage During First Quarter Of 2020

The title of this post, is the same as that of this article on Energy Storage News.

This is the introductory paragraph.

Research firm Wood Mackenzie has held onto its forecast that the US will deploy around 7GW of energy storage annually by 2025 and found that 97.5MW / 208MWh of storage was installed during the first quarter of this year.

The United States may be led by a President, who doesn’t believe in global warming, but individuals and businesses in the country seem to believe in battery storage and the benefits it brings.

This is an interesting paragraph from the article.

The overall deployments were also down in megawatt-hour terms: 208MWh in total was a 43% decrease quarter-on-quarter and down 34% year-on-year. Wood Mackenzie found that this was due to a majority of front-of-the-meter projects coming online being short duration energy storage. This meant that FTM storage accounted for 13% of Q1 2020 deployments in megawatt-hours but for 22% of the total megawatts deployed.

Front-of-the-meter storage is mainly used to maintain supplies, when demand is going up and down like a yo-yo in an area. Companies like Gresham House Energy Sorage Fund seem to be funding these batteries in the UK. Gravutricity, Highview Power and Zinc8 also seem to be targeting this market.

Conclusion

It would appear that the energy storage market is healthy on both sides of the Atlantic

June 9, 2020 Posted by | Energy Storage | , , , , | 5 Comments

UK’s Largest Solar Park Cleve Hill Granted Development Consent

The title of this post, is the same as that of this article on Solar Power Portal.

These are the two introductory paragraphs.

Cleve Hill Solar Park, set to be the largest in the UK, has been granted development consent by the energy secretary.

The colossal 350MW project will include 880,000 panels along with battery storage, and sit just one mile northeast of Faversham, in Kent, situated close to the village of Graveney.

Other points from the article.

  • Cleeve Hill Solar Park is a £450million project.
  • It is the first solar project to be considered a Nationally Significant Infrastructure Project.
  • It is being developed as a joint venture between Hive Energy and Wirsol.
  • It is due to be operational by 2022.
  • To complete the project 700 MWh of energy storage will be added later.

The article also contains this quote from Solar Trade Associations chief executive Chris Hewett.

Solar has a significant role to play in boosting the economy in the wake of the coronavirus crisis. With the right policies we can expect to see an 8GW pipeline of solar projects unlocked and rapidly deployed, swiftly creating a wealth of skilled jobs and setting us on the path towards a green recovery.

8 GW of intermittent energy will need a lot of storage.

As Cleeve Hill’s developers are planning to provide 700 MWh of storage for 700 MW of solar panels, it would appear that 8 GW of solar panels could need up to 16 GWh of energy storage.

As our largest energy storage system is the pumped storage Electric Mountain in Snowdonia with a capacity of 9.1 GWh and most of the large solar developments are towards the South of England, the UK needs to develop a lot more energy storage, where the solar is generated and much of the energy is used.

I can see the following environmentally-friendly developments prospering.

  • Highview Power‘s CRYOBattery, which uses liquid air to store energy. Systems have a small footprint and up to a GWh could be possible.
  • Electrothermal energy storage like this system from Siemens.
  • Using electrolysers from companies like ITM Power to convert excess energy into hydrogen for transport, steelmaking and injecting into the gas main.
  • Zinc8‘s zinc-air battery could be the outsider, that comes from nowhere.

Developers could opt for conservative decision of lithium-ion batteries, but I don’t like the environmental profile and these batteries should be reserved for portable and mobile applications.

Floatovoltaics

One concept, I came across whilst writing was floatovoltaics.

The best article about the subject was this one on Renewable Energy World, which is entitled Running Out of Precious Land? Floating Solar PV Systems May Be a Solution.

A French company call Ciel et Terre International seem to be leading the development.

Their web site has this video.

Perhaps, some floatovoltaics, should be installed on the large reservoirs in the South of England.

  • The Renewable Energy World article says that panels over water can be more efficient due to the cooling effect of the water.
  • Would they cut evaporative losses by acting as sunshades?
  • As the French are great pecheurs, I suspect that they have the answers if anglers should object.

This Google Map shows the reservoirs to the West of Heathrow.

Note.

  1. Wraysbury Reservoir has an area of two square kilometres.
  2. King George VI Reservoir has an area of one-and-a-half square kilometres.
  3. Using the size and capacity of Owl’s Hatch Solar Farm, it appears that around 65 MW of solar panels can be assembled in a square kilometre.
  4. All these reservoirs are Sites of Special Scientific Interest because of all the bird life.
  5. Heathrow is not an airport, that is immune to bird-strikes.

Could floatovoltaics be used to guide birds away from the flightpaths?

Incidentally, I remember a report from Tomorrow’s World, probably from the 1960s, about a porous concrete that had been invented.

  • One of the uses would have been to fill reservoirs.
  • The capacity of the reservoir would only have been marginally reduced, as the water would be in the voids in the concrete like water in a sponge.
  • Soil would be placed at the surface and the land used for growing crops.

I wonder what happened to that idea from fifty years ago!

June 5, 2020 Posted by | Energy Storage | , , , , , , , , | Leave a comment

Sizewell C: Nuclear Power Station Plans For Suffolk Submitted

The title of this post, is the same as that as this article on the BBC.

A few points from the article.

  • It will provide enough electricity for six million homes.
  • It will create 25,000 jobs during construction.
  • Sizewell C will be a near replica to Hinckley Point C.
  • It will generate 3.2 GW of electricity.
  • It will be low-carbon electricity.

As a well-read and experienced engineer, I am not against the technologies of nuclear power.

But I do think, by the time it is completed , other technologies like wind and energy storage will be much better value. They will also be more flexible and easier to expand, should we get our energy forecasts wrong.

  • We will see higher power and more efficient wind farms, further out in the North Sea.
  • Massive energy storage systems, based on improved pumped storage technology and using new technology from companies like Highview Power, Zinc8 and others will be built.
  • Wind and solar power an energy storage are much easier to fund and financial institutions like L & G, Aberdeen Standard and Aviva have invested in the past for our future pensions.
  • If you want to go nuclear, small modular reactors, look to be much better value in the longer term.
  • I also don’t like the involvement of the Chinese in the project. History tells me, that all pandemics seem to start in the country!

It is my view that the biggest mistake we made in this country over energy was not to built the Severn Barrage.

My preferred design would be based on the ideas of Sir Frederick Snow.

There would have been a high and a low lake, either side of a central spine, behind an outer barrage.

  • Reversible turbines and pumps between the lakes would both generate and store electricity.
  • When proposed in the 1970s, it would have generated ten percent of the UK’s electricity.
  • A new road and rail crossing of the Severn, could have been built into the outer barrage.
  • A lock would have provided access for shipping.
  • It would have controlled the periodic, regular and often devastating flooding of the River Severn.

Some versions of the original design, even incorporated an international airport.

  • The runways would be in the right direction for the prevailing wind, with regard to take-off and landing.
  • Take-off would be over open sea.
  • High speed trains could speed travellers to and from London on an updated Great Western Railway.

I believe a modern design could be even better.

  • The central spine and the outer barrage would be the foundations for a large wind farm.
  • There would also be a large number of powerful floating wind turbines to the West of the outer barrage in the Severn Estuary.
  • A giant electrolyser on the central spine would produce hydrogen, that could be used to decarbonise the UK’s gas network.
  • A power interconnector could be built into the outer barrage to connect Wales to the nuclear power stations at Hinckley :Point.
  • A cluster of small nuclear reactors could be built on the central spine.
  • In the intervening fifty years, we have probably learned how to build a barrage like this, so that it can benefit birds and other wildlife.

I believe, it will never be too late to build a Severn Barrage.

 

May 27, 2020 Posted by | Energy Storage, Transport | , , , , , , , , , , | 3 Comments