The Anonymous Widower

How To Build A Liverpool-Style Optical Bench

When I worked at ICI in Runcorn, one of the guys had developed a very accurate instrument for measuring trace chemicals in a process stream. I remember one of these instruments was used to measure water in parts per million in methyl methaculate, which is the misnomer or base chemical for Perspex.

All the optical compliments needed to be mounted on a firm base, so a length of one-inch C-section steel beam was chosen. The surface was then machined flat to a high accuracy.

In the end they found that instead of using new beams, old ones decades-old from the depths of a scrap yard gave better accuracy as the steel had all crystallised out. Machined and spray-painted no-one knew their history.

But they were superb instruments and ICI even sold them abroad.

October 14, 2021 Posted by | World | , , , , , , | Leave a comment

How Clean Energy And Jobs Can Flow From Morocco to The UK

The title of this post, is the same as that of this article in The Times.

  • The article has been written by Simon Morrish, who is the founder and CEO of Xlinks.
  •  The article is about his plans to build a 10.5 GW solar and wind power complex in Morocco and connect it to the UK, by an undersea power cable running up the coasts of Morocco, Spain, Portugal and France.
  • This page on the Xlinks web site gives details of the project.

These are some points from the article.

Relationship With The Exchequer

He makes these points about the projects relationship with the Exchequer.

  • The company will be a net contributor.
  • The project will not require government subsidy of finance.
  • Energy will be delivered under the Contract for Difference (CfD) price of £48/MWh.
  • This compares with a CfD price of £92/MWh for Hinckley Point C.

Simon Morrish also claims they will be energised before Hinckley Point C.

That sounds good to me.

Finance

I wonder if at the CfD price quoted in the  article, could this mean that this is a project that could be financed in the City of London or from a Sovereign Wealth Fund?

As Simon  is confident the project can be completed before Hinckley Point C, I suspect that the finance might be in place, even if it hasn’t been signed off.

The 20GWh/5GW Battery

Simon says this about the battery.

Alongside the consistent output from its solar panels and wind turbines, a 20GWh/5GW battery facility will ensure power generated can be delivered every day, resulting in a dedicated, near-constant source of flexible and predictable renewable energy, designed to complement renewable energy generated in the UK.

In Moroccan Solar-Plus-Wind To Be Linked To GB In ‘Ground-Breaking’ Xlinks Project, I forecast that the battery would be from Highview Power, but given the delivery date before Hinckley Point C, I would suspect that Xlinks have a battery supplier in mind.

Employment Benefits

Simon says this about employment benefits.

Thousands of jobs will be created in Morocco and also at home.

If the project goes ahead, given its size, I don’t think many would disagree with that.

Simon also claims the project will create 1350 permanent jobs by 2024. Sites mentioned include Hunterston, Port Talbot and the North East of England.

Simon’s Conclusion

This is Simon’s conclusion about the project.

I love the idea of clean electricity flowing, all the way from Morocco to the UK. I hope it may inspire other ambitious renewable energy projects too — which, together, will provide clean, secure and stable energy, at affordable prices, for businesses and households to rely on and help to protect this special planet.

If you can, I suggest you read the full article on The Times.

Conclusion

The more I read about this project, the more I tilt towards it being feasble

Engineering is the science of the possible, whereas politics is dreads of the impossible.

September 29, 2021 Posted by | Energy, Energy Storage, Finance | , , , , | 1 Comment

Mott’s £6m Plan Approved For Hammersmith Bridge

The title of this post, is the same as that of this article on Construction Index.

This is the introductory paragraph.

Hammersmith & Fulham Council has approved a new plan to stabilise Hammersmith Bridge at significantly below the original expected cost, with works completing in less than a year.

Consulting engineer, Mott MacDonald have developed a solution to the bridge that is simple in the extreme.

This sentence describes the principle at the heart of the solution.

The Mott MacDonald solution involves the use of elastomeric bearings, which allow any pressure to be applied equally to all four corners while protecting the vulnerable 134-year-old cast iron structure.

There would also appear, that some very serious computing has been applied to allow the new bearings to be inserted, by just jacking up the bridge.

In addition to the cost and the speed of installation, the Mott MacDonald plan has been welcomed by Heritage England, will require less closures and doesn’t involve diversion of the gas main.

Conclusion

This intervention will stabilise the bridge and give time for a long-term solution to be developed, that will allow the bridge to be opened to vehicles.

August 17, 2021 Posted by | Computing, Design, Transport | , , , | 2 Comments

BECCS Beats Hydrogen For Decarbonizing Steel In Europe: ArcelorMittal

The title of this post, is the same as that of this article on S & P Global Platts.

This is the first paragraph.

Bioenergy with carbon capture and storage (BECCS) offers a more cost-effective, readily available solution for decarbonizing the steel industry in Europe than clean hydrogen, steel producer ArcelorMittal’s head of strategy David Clarke said May 17.

So what do they mean by bioenergy?

To make iron from iron ore, you need a reducing agent like carbon or hydrogen.

Iron ore is rich in oxides of iron.

The carbon is usually some form of coal, which produces large amounts of carbon dioxide with the oxygen from the iron oxides.

Hydrogen produces lots of water with the oxygen.

David Clarke of ArcelorMittal explains the process in the article.

“We know biomass worked as a replacement for coal,” he said. “We’ve been using it in our operations in Brazil and other places for many, many years. We have a project in Belgium that we’ll be starting up next year using waste wood, using that to make bio-coal,” with a project to take the emissions from the bio-coal to produce bioethanol.

Is this a case of Back-To-The-Future? If I remember my history, didn’t Iron Age men use charcoal to smelt iron and other metal ores?

If those scientists from Velocys can make Sustainable Aviation Fuel and biodiesel from household waste and used disposable nappies, can they apply their magic to make bio-coal?

I see great cost advantages with this process, as surely it would enable existing blast furnaces to be used, provided they were fitted with carbon capture and storage.

May 17, 2021 Posted by | World | , , , , , , , | 3 Comments

Alternative Energy Storage Technologies To Challenge Electrochemistry

The title of this post, is the same as that of this article on Battery and Energy Storage Magazine.

It gives a good summary of two energy storage system; Highview Power and Gravitricity, that I rate highly promising.

It also gives details of a Danish system called Stiesdal Storage Technologies, which is developing a hot rocks energy storage system.

The article says this about the system.

The pumped-heat ESS uses pea-sized crushed basalt, rock in insulated steel tanks with the stored energy released by turbine.

SST CEO Peder Riis Nickelsen said: “The cost of crushed stone is at a totally different level per unit of energy than practically any other material for energy storage. Our charging and discharging system can utilise well-known technologies that have been applied for a century within other industries and are well-suited for mass production.”

The cost of materials is estimated to be €10 ($12) per kWh.

The first demonstration project, a 1-2MW, 24h capacity unit, will be installed at a power plant in Denmark next year, and will operate commercially.

This page on the Striesdal web site, explains the technology.

It sounds like the system uses very similar principles to Siemens Gamesa ETES, with a different heat storage medium.

Conclusion

At my last count, there now appears to be upwards of half-a-dozen viable alternatives to chemical batteries and traditional pumped storage. Some of the technologies are also backed, by large companies, organisations and countries, who can afford to take a long-term view.

I hope those, who claim that renewables will never power the world, have at least got the recipe for the cooking of humble pie ready.

April 30, 2021 Posted by | Energy, Energy Storage | , , , , | Leave a comment

MAN Energy Partners With Highview Power On Liquid-Air Energy-Storage Project

The title of this post, is the same as that of this article on Renewable Energy Magazine.

This is the introductory paragraph.

Highview Power, a leader in long duration energy storage solutions, has selected MAN Energy Solutions to provide its LAES turbomachinery solution to Highview Power for its CRYOBattery™ facility, a 50 MW liquid-air, energy-storage facility – with a minimum of 250MWh – located in Carrington Village, Greater Manchester , U.K.

The article is almost a word-for-word copy of this press release from MAN Energy Solutions, which has a similar title to this post and the Renewable Energy Magazine article.

As an Electrical Engineer who has done a lot of work in Project Management, I find these two paragraphs significant.

Construction will proceed in two phases. Phase 1 will involve the installation of a ‘stability island’, to provide near-instantaneous energy grid stabilisation. This will be achieved using a generator and flywheel, among other components. Enabling short-term stabilisation will provide the basis for Phase 2 and the completion of the more complex liquid air energy storage system that includes various compressors, air expanders and cryogenic equipment.

Phase 2 will represent the integration of stability services with a full-scale long-duration energy storage system, and in doing so promote the full integration of renewable energy. The Carrington project will offer a blueprint for future projects and cement the partnership between MAN Energy Solutions and Highview Power.

I first became acquainted with the use of flywheels to stabilise energy, when I was working in Enfield Rolling Mills as a vacation job at sixteen.

The centerpiece of their factory was a rolling mill, which took heated copper wirebars about two metres long  amd ten centimetres square and rolled them into thick copper wire just a few millimetres in diameter. The mill was driven by a powerful electric motor, to which it was connected with a 97 tonne flywheel perhaps four metres in diameter in between. The flywheel spun at probably 3000 revolutions per minute.

The wirebar used to meander through the rolling mill several times and at each turn, the head would be caught by a man with a pair of tongs and turned back through the mill.

Each time the wire-bar went through a new pair of rolls the energy needed increased, as there was more rolling to do. So this extra energy was taken from the flywheel!

The rolling mill incidentally had been built by Krupp before the First World War. It still had the Krupp trademark of three interlocked railway tyres all over it. It had ended up in Enfield as reparations after the First World War. Enfield Rolling Mills added a fourth ring to create their own trademark.

It would appear that the kinetic energy of that flywheel could be as high as 1.6 MWh. Flywheels also react very fast.

Flywheel energy storage would appear to be a feasible intermediate energy store for this type of application.

I always remember Shimatovitch, who was the Chief Engineer of the company had jokingly once said that if the flywheel came off its bearings, it would have ended up a couple of miles away and would have demolished all the houses in its path. But he was a man with a dark sense of humour, who had spent most of the Second World War in a Nazi concentration camp.

Could it be that Phase 1 is the installation of a similar system to that I saw working in the 1960s, but upgraded with modern electronics, which exchanges power with the grid to create the stability island referred to in the press release.

In Phase 2 electricity can be passed to and from the CRYOBattery.

Looking at the MAN Energy Solutions web site, I suspect that they don’t care what sort of energy store they connect to the grid.

They would appear to be an excellent choice of engineering partner for Highview Power.

I also wonder how many other applications and customers, they will bring into the partnership.

Conclusion

This looks like a very sensible and low-risk strategy to connect the CRYOBattery to the grid.

 

April 22, 2021 Posted by | Energy, Energy Storage | , , , , , | 2 Comments

Velocys Signs Agreement For Commercial-Scale Biomass-To-Jet Fuel In Japan

The title of this post, is the same as that of this article on the Chemical Engineer.

I am very hopeful about Velocys, who are a UK public company, that were spun out of Oxford University and do clever things in the area of chemical catalysts.

Velocys’ Fischer-Tropsch technology does seem to be a good way of creating sustainable aviation fuel from household rubbish and biomass.

February 18, 2021 Posted by | Energy, Transport | , , , , , , | Leave a comment

Network Rail’s Big Push

The title of this press release on the Network Rail web site is 11,000 Tonne Tunnel To Be Installed On The Railway In First For UK Engineering.

They have also released this aerial photograph of the tunnel, before it is pushed into place.

Note.

  1. The tunnel, which is just a curved concrete box is in the middle of the picture.
  2. To its left is the double-track Peterborough-Lincoln Line.
  3. Running across the far end of the tunnel are the multiple tracks of the East Coast Main Line.
  4. Peterborough is a few miles to the left, with the North to the right.

This Google Map shows the same area from directly above.

Note.

  1. The double-tracks of the Stamford Lines closest to the South-West corner of the map.  These link the Peterborough-Birmingham Line to Peterborough.
  2. Next to them are the triple tracks of the East Coast Main Line.
  3. The third rail line is the double-track of the Peterborough and Lincoln Line.
  4. The new tunnel can be seen at the top of the map.

This map from Network Rail, shows the new track layout.

The map shows that the Stamford Line will divide with two tracks (1 and 4) going North to Stamford as now. Two new tracks (2 and 3) will dive-under the East Coast Main Line to join the  existing Peterborough and Lincoln Line.

The tracks will run through the tunnel in the pictures, after it has been pushed under the East Coast Main Line.

  • This will mean that the many freight trains between Peterborough and Lincoln will not have to cross the East Coast Main Line on the flat.
  • This in turn could allow faster running of trains on the East Coast Main Line, that are not stopping at Peterborough.

This second Google Map shows the area to the North of the first map.

Note.

  1. The East Coast Main Line in the South-West corner of the map.
  2. The Peterborough and Lincoln Line curving from North-South across the map.
  3. A bridge would appear to be being constructed to take the A15 road over the new tracks, that will go through the tunnel.
  4. Another bridge will be constructed to take Lincoln Road over the new tracks.

It is certainly not a small project.

That is emphasised by this third Google Map, which is to the North of the previous map.

This map would appear to show space for more than a pair of tracks.

It looks to me, that space is being left for future rail-related development.

  • Could it be for a small freight yard, where trains could wait before proceeding?
  • If it were electrified, it could be where freight trains to and from London, switched between electric and diesel power.
  • Could it be passing loops, so that freight trains can keep out of the way of faster passenger trains?
  • Would it be a place for a possible new station?

If it is to be a full rail freight interchange, I can’t find any mention of it on the Internet.

The Big Push

Summarising, what is said in the press release, I can say.

  • Major works to occur over nine days between 16 and 24 January
  • It will be pushed at 150cm per hour.
  • A reduced level of service will operate.
  • It will take several weekends.

I hope it’s being filmed for later broadcasting.

Thoughts On Services

I have a few thoughts on passenger services.

London And Lincoln Via Spalding And Sleaford

Consider.

  • Peterborough and Lincoln is 57 miles.
  • The route has lots of level crossings.
  • Much of the route between Peterborough and Lincoln has an operating speed of 75 mph
  • There is a 50 mph limit through Spalding. Is this to cut down noise?
  • Trains between Peterborough and Lincoln take a shortest time of one hour and twenty-three minutes, with four stops.
  • Peterborough and Lincoln is 57 miles.
  • This is an average speed of 41 mph.

I wonder what time a five-car Class 800 train would take to do the journey.

  • At an average speed of 50 mph, the train would take 68 minutes and save 15 minutes.
  • At an average speed of 60 mph, the train would take 57 minutes and save 26 minutes.
  • At an average speed of 70 mph, the train would take 49 minutes and save 18 minutes.

As the fastest London Kings Cross and Peterborough time is 46 minutes, this would mean that with an average speed of 60 mph, a time between London Kings Cross of one hour and forty-three minutes could be possible.

  • There could be additional time savings by only stopping at Peterborough, Spalding and Sleaford.
  • The Werrington Dive Under looks to be built for speed and could save time.
  • If the 50 mph limit through Spalding is down to noise, battery electric trains like a Hitachi Intercity Tri-Mode Battery Train might be able to go through Spalding faster.
  • Could some track improvements save time between Peterborough and Lincoln?

As the fastest journeys via Newark to Lincoln take one hour and fifty-six minutes, it looks to me, that LNER might be able to save time by going via Spalding and Sleaford after the Werrington Dive Under opens.

London And Skegness

If there were a fast London train from Sleaford, it will take under an hour and thirty minutes between London Kings Cross and Sleaford.

  • Currently, the connecting train between Skegness and Sleaford takes an hour for the forty miles.
  • The service is currently run by Class 158 trains.
  • With some 100 mph trains on the Skegness and Sleaford service, it might be possible to travel between London and Skegness in two hours and fifteen minutes with a change at Sleaford.

There would appear to be possibilities to improve the service between London and Skegness.

Lincoln And Cambridge

I used to play real tennis at Cambridge with a guy, who was a Cambridge expansionist.

He believed that Cambridge needed more space and that it should strongly rcpand high-tech research, development and manufacturing all the way across the fens to Peterborough and beyond.

I listened to his vision with interest and one thing it needed is a four trains per hour express metro between Cambridge and Peterborough.

  • Ely and Peterborough should be electrified for both passenger and freight trains.
  • March and Spalding should be reopened.
  • Cambridge has the space for new services from the North.

Extending the Lincoln and Peterborough service to Cambridge could be a good start.

Conclusion

The Werrington Dive Under will certainly improve services on the East Coast Main Line.

I also feel, that it could considerably improve rail services between London and South Lincolnshire.

It certainly looks, like Network Rail have designed the Werrington Dive Under to handle more traffic than currently uses the route.

Towns like Boston, Skegness, Sleaford and Spalding aren’t going to complain.

 

 

 

 

 

January 11, 2021 Posted by | Transport | , , , , , , , , | Leave a comment

Engineers Go Microbial To Store Energy, Sequester CO2

The title of this post, is the same as that of this article on the Cornell Chronicle.

This is the first two paragraphs.

By borrowing nature’s blueprints for photosynthesis, Cornell bioengineers have found a way to efficiently absorb and store large-scale, low-cost renewable energy from the sun – while sequestering atmospheric carbon dioxide to use later as a biofuel.

The key: Let bioengineered microbes do all the work.

This is slave labour, that even the most ardent of Human and Animal Rights activists would approve.

This is technology to watch!

December 15, 2020 Posted by | Energy, Energy Storage | , , , , | Leave a comment

H2U Eyre Peninsula Gateway Hydrogen Project Begins Largest Green Ammonia Plant

The title of this post, is the same as that of this article on Hydrogen Fuel News.

  • South Australia will be creating the largest green ammonia plant in the world.
  • It will make 40,000 tonnes of green ammonia every year.
  • The plant will be powered totally by renewable energy.
  • At its heart will be a 75 MW hydrogen electrolyser.

This paragraph sums up the main objective of the plant.

According to Dr. Attilio Pigneri, H2U CEO, the project will play an important role in the ongoing development of the emerging green hydrogen and green ammonia markets.

It appears a lot of the green ammonia will be exported to Japan.

What Is Green Ammonia?

It is just ammonia produced by renewable energy. This is the first paragraph of the Wikipedia entry for ammonia.

Ammonia is a compound of nitrogen and hydrogen with the formula NH3. A stable binary hydride, and the simplest pnictogen hydride, ammonia is a colourless gas with a characteristic pungent smell. It is a common nitrogenous waste, particularly among aquatic organisms, and it contributes significantly to the nutritional needs of terrestrial organisms by serving as a precursor to food and fertilizers. Ammonia, either directly or indirectly, is also a building block for the synthesis of many pharmaceutical products and is used in many commercial cleaning products. It is mainly collected by downward displacement of both air and water.

It is a very useful chemical compound and it is now being developed as a zero-carbon fuel, as I wrote in The Foul-Smelling Fuel That Could Power Big Ships.

It can also be used as a refrigerant.

One of the most amazing pieces of engineering, I ever saw was a very old barn, where a farmer stored vast tonnages of apples. It was kept cool, by a refrigeration plant certainly built before the Second World War or possibly even the First, which used ammonia as the refrigerant.

Now that’s what I call engineering!

 

November 11, 2020 Posted by | Energy, Hydrogen | , , , , | 1 Comment