The Anonymous Widower

MagniX Electric Aircraft Engines Take To The Skies

The title of this post, is the same as that of this article on pv magazine Australia.

This is the introductory paragraph.

No emissions, low-cost regional flights with just eight other sanitised folk and a disinfected pilot… Yes, Covid-19 is warping our view of the future, but the successful electrically powered maiden flight last week of a Cessna Caravan aircraft, offers the potential for new models of travel supporting wider distribution of commerce in Australia.

The article goes on to discuss Roei Ganzarski’s vision of what zero-emission electrically-powered aviation could do.

Economics

This is a paragraph from the article.

Its successful half-hour, 160km test flight used less than US$6 worth of electricity, compared to a Cessna Caravan powered by conventional combustion engine which would have sucked up some US$300-400 worth of fuel. And Ganzarski points out that, as in electric vehicles, the motor requires very little maintenance compared to its gas-guzzling cousins.

That is impressive.

The Market

This is a sentence from the article.

MagniX says 45% of all airline flights cover less than 800 km, while 5% of flights are sub-160 km, and it’s likely that commercial electric flights powered by magniX motors will first be offered in the UK, US or Europe.

I didn’t believe that the proportion of short flights was so high.

I could see all flights below 160 km (100 miles) will be flown by electric aircraft and a large proportion of those below (800 km (500 miles) going in the same direction.

The Vision

This is a paragraph from the article.

You could have phenomenal factories or businesses in these places that can’t currently sell their goods or can’t receive goods because the 4.5 to 6-hour truck drive that happens maybe once a week is just operatively prohibitive. If you could have an aircraft do that in 20, 40, 60 minutes and do it with zero emissions at a really low cost, and suddenly you’re really connecting these communities…

As it was given in quotes, I would assume it was spoken by Roei Ganzarski.

What would that do for high-quality agricultural products and seafood produced on remote islands.

This statement is in the Wikipedia entry for Loganair.

Loganair is planning to introduce electric aircraft to the Orkney Islands by 2021 due to the short distance between the islands that would make such flights possible.

They seem to be following a parallel path, with their involvement in Project Fresson. But as that development of a Britten-Norman Islander, is not planned to fly until 2022, could Loganair be a possible launch customer for an electric Cessna Caravan?

  • Loganair have the ideal short routes.
  • The electric Caravan won’t be the most difficult aircraft to certify for flying with a Supplemental Type Certificate, as several other Caravan variants with a change of powerplant, are flown this way.
  • The environmental profile fits some of Loganair’s routes in Scotland.
  • According to Roei Ganzarski, the economics would be ideal for Loganair’s routes.
  • Roei Ganzarski gave a long sales promotion-style interview on the BBC. Who was he targetting?

But the biggest factor is that Roei Ganzarski appears to be a showman in the mould of those great Victorian engineer/entrepreneurs, who defined and built much of the world we admire. What better stage is there to showcase his electric aircraft, but the remote airports served by Loganair?

The Specification

The Wikipedia entry for the Cessna Caravan now has s section for the electric Caravan, where this is said.

The eCaravan is an electric aircraft modification of the 208B built by AeroTEC and magniX powered by a 750 hp (560 kW) motor and a 1 t (2,200 lb), 750V lithium-ion battery. Its 30 min first flight happened from Grant County International Airport in Moses Lake, Washington, on May 28, 2020, consuming $6 worth of electricity, needing 30-40 min of charging. The Magni500-powered variant can fly 100 mi (160 km) with 4-5 passengers while keeping reserve power, and aims for a certification by the end of 2021, hoping to operate 100-mile flights with a full load of nine passengers with better batteries.

The pv magazine Australia article says the flight was for 160 km (100 miles), so that would cover a lot of short routes.

Suppose with reserves, that the plane should have a one hour endurance. my experience of piloting aircraft leads me to estimate that the average power setting would be less than fifty percent of full power for a real flight, as cruise and descent, need a lot less power than climb.

This would mean, that the aircraft needs to take-off with around 280 kWh of fuel, which would be enough to power the motor at half-power for an hour.

In Sparking A Revolution, I comment on an article of the same name in Issue 898 of Rail Magazine, which talks about Hitachi’s plans for battery-electric trains.

This is an insert in the Rail Magazine article, which will apply to all applications with traction batteries. Including aviation!

This is said.

The costs of batteries are expected to halve in the next five years, before dropping further again by 2030.

Hitachi cites research by Bloomberg New Energy Finance (BNEF) which expects costs to fall from £135/kWh at the pack level today to £67/kWh in 2025 and £47/kWh in 2030.

United Kingdom Research and Innovation (UKRI)  is also predicting that battery energy density will double in the next 15 years, from 700 Wh/l to 1,400 Wh/l in 2035, while power density (fast charging) is likely to increase four times in the same period from 3 kW/kg now to 12 kW/kg in 2035.

This page on the Clean Energy institute at the University of Washington is entitled Lithium-Ion Battery.

This is a sentence from the page.

Compared to the other high-quality rechargeable battery technologies (nickel-cadmium or nickel-metal-hydride), Li-ion batteries have a number of advantages. They have one of the highest energy densities of any battery technology today (100-265 Wh/kg or 250-670 Wh/L).

The highest figure of 670 Wh/l would appear to fit the Hitachi extract, where 700 Wh/l is quoted.

If I use the Wh/kg figure, it would appear that a one tonne battery could hold between 100 kWh and 265 kWh.

I suspect, that the higher figure would be enough to perform the 160 km. test flight, which I estimated could need 280 kWh.

But battery development in the next few years will be on the side of Roei Ganzarski’s vision.

Conclusion

Electric aircraft are not a politically correct mad idea, but a serious proposition to make the world a better place.

The article is a must-read!

June 1, 2020 Posted by | Transport | , , , , , | Leave a comment

H2OzBus Project: Deploying Hydrogen Fuel Cell Bus Fleets For Public Transport Across Australia

The title of the this post, is the same as that of this Press Release from ITM Power.

This is the introductory paragraph.

ITM Power, the energy storage and clean fuel company, is pleased to announce the formation of the H2OzBus Project (“the Project”) and the signing of a memorandum of understanding with strategic partners (“the Consortium”).  The Consortium comprises Transit Systems, part of the SeaLink Travel Group, Ballard Power Systems, BOC Limited, Palisade Investment Partners and ITM Power.  The Consortium partners have signed a memorandum of understanding as a further step in evaluating and demonstrating the concept of hydrogen fuel cell electric buses for use in public bus transport in Australia.

Some further points from the Press Release.

  • Initially, a hundred buses will be deployed.
  • The buses appear to be being built in Australia.
  • Ten locations are being considered for the buses.

It looks to be a very sensible project.

May 25, 2020 Posted by | Transport | , , , | 1 Comment

Australia’s New Community Solar, Solar-Storage, ‘Solar Hydro’ And Solar Hydrogen Projects

The title of this post is the same as that of this article on Energy Storage News.

This is the introductory paragraph.

In the past couple of weeks, national and state government organisations in Australia have announced various stages of consideration for solar projects with a range of advanced and innovative storage solutions attached.

The article then goes on to describe some projects.

RayGen’s PV Ultra System

This paragraph describes the PV Ultra system.

The fully dispatchable power plant would use RayGen’s own technology PV Ultra, which is a combination of photovoltaic (PV) solar generation with the more expensive and engineering-intensive concentrated solar technology using angled mirror towers (heliostats). The PV Ultra system would generate both electricity and heat.

It’s obviously using what Australia has a lot of; sun to advantage.

RayGen’s Innovative Thermal Storage

This paragraph outlines the principle of RayGen’s thermal method of storage.

This generation technology would in turn be co-located and connected to a ‘Thermal Hydro’ energy storage facility, with 17 hours of storage, which again is based on a technology RayGen is developing. Unlike pumped hydro energy storage which uses two reservoirs at different heights, relying on gravity to drive turbines, the Thermal Hydro plant would use a hot reservoir and a cold reservoir, linked together.

The principle of operation is described in this second paragraph.

The PV Ultra solution will therefore cool one reservoir using photovoltaic power and grid power when needed, while also heating the other reservoir using the heliostats. The difference in temperature would then generate electricity, via an Organic Rankine Cycle engine, a device which uses thermodynamic cycles to convert steam into mechanical energy and is widely used for biomass, waste incinerators and other existing generation types.

The article states that an Organic Rankine cycle engine has an efficiency of about seventy percent. I have linked to Wikipedia, which gives a good explanation of the Organic Rankine cycle, which is typically used in waste heat recovery and biomass power plants.

RayGen’s Flagship Project

RayGen’s flagship project will be rated at 4 MW, with a storage capacity of 50 MWh. It will be used to provide power in the West Murray region.

 

New South Wales Community Projects

The article then describes a group of community projects that are being set up in New South Wales.

This is the introductory paragraph

Elsewhere in Australia, the government of New South Wales approved grants earlier this month to assist the development of seven solar projects, all but one of which will include energy storage. Notably, five out of the seven will also be community distributed energy projects, including one standalone shared battery energy storage site.

Some points from the article include.

  • The total solar power is rated at 17.2 MW.
  • The energy storage is rated at 39.2 MWh
  • One site is co-located with hydrogen electrolysis and storage,

New South Wales has certainly launched an ambitious plan.

Conclusion

I like RayGen’s system and the New South Wales initiative.

I also think, that both projects could find applications in some of the hotter places in the world.

Could solar power systems like these solve power supply problems in Africa, India and other sun-rich places>

 

 

March 26, 2020 Posted by | Energy, Energy Storage, Hydrogen | , , | Leave a comment

The Power Of Battery Storage

This article on Fastmarkets is entitled Neoen To Expand Li-ion Battery Capacity at Hornsdale Plant.

This is the introductory paragraph.

Australia’s Hornsdale Power Reserve, the world’s biggest lithium-ion battery plant, is set to expand capacity by 50% to 150 megawatts, according to Neoen SA, the French power producer that owns and operates the site.

If you read the article and the Wikipedia entry for Hornsdale Power Reserve (HPR), you’ll see why it is being expanded.

This paragraph is from Wikipedia.

After six months of operation, the Hornsdale Power Reserve was responsible for 55% of frequency control and ancillary services in South Australia.[11] By the end of 2018, it was estimated that the Power Reserved had saved A$40 million in costs, most in eliminating the need for a 35 MW Frequency Control Ancillary Service.

Somewhat surprisingly, the power is mainly generated by the associated Hornsdale Wind Farm.

These are some statistics and facts of the installation at Hornsale.

  • There are 99 wind turbines with a total generation capacity of 315 megawatts.
  • HPR is promoted as the largest lithium-ion battery in the world.
  • HPR can store 129 MWh of electricity.
  • HPR can discharge 100 MW into the grid.
  • The main use of HPR is to provide stability to the grid.

HPR also has a nice little earner, in storing energy, when the spot price is low and selling it when it is higher.

It certainly explains why investors are putting their money in energy storage.

Wikipedia lists four energy storage projects using batteries in the UK, mainly of an experimental nature in Lilroot, Kirkwall, Leighton Buzzard and six related sites in Northern |England.  One site of the six  has a capacity of 5 MWh, making it one of the largest in Europe.

But then we have the massive Dinorwig power station or Electric Mountain, which  can supply ,1,728-MW and has a total storage capacity of 9.1 GWh

Consider.

  • Electric Mountain has seventy times the capacity of Hornsdale Power Reserve.
  • Electric Mountain cost £425 million in 1984, which would be a cost of £13.5 billion today.
  • Another Electric Mountain would cost about £1.6 billion per GWh of energy storage.
  • Hornsdale Power Reserve cost $ 50 million or about £26 million.
  • Hornsdale Power Reserve would cost about £0.2 billion per GWh of energy storage.

So it would appear that large batteries are better value for money than large pumped storage systems like Electric Mountain.

But it’s not as simple as that!

  • There aren’t many places, as suitable as North Wales for large pumped storage systems.
  • Omce built, it appears pumped storage system can have a long life. Electric Mountain is thirty-five years old and with updating, I wouldsn’t be surprised to see Electric Mountain in operation at the end of this century.
  • Battery sites can be relatively small, so can be placed perhaps in corners of industrial premises or housing developments.
  • Battery sites can be built close to where power is needed, but pumped storage can only be built where geography allows.
  • Pumped strage systems can need long and expensive connections to the grid.
  • I think that the UK will not build another Electric Mountain, but will build several gigawatt-sized energy storage facilities.
  • Is there enough lithium and other elements for all these batteries?
  • Electric Mountain is well-placed in Snowdonia for some wind farms, but many are in the North Sea on the other side of the country.

In my view what is needed is a series of half-gigawatt storage facilities, spread all over the country.

Highview Power looks to be promising and I wrote about it in British Start-Up Beats World To Holy Grail Of Cheap Energy Storage For Wind And Solar.

But there will be lots of other good ideas!

 

November 20, 2019 Posted by | Energy, Energy Storage | , , , , , , , , | Leave a comment

Rugby Is A Team Game And So Is Formula One!

On Saturday morning, the Japanese rugby team, showed how teamwork is important, as they hardly seemed to make a mistake.

The Welsh and the Australians, both played their parts in an excellent match.

And then we had the Russian Grand Prix at lunchtime!

Mercedes got the teamwork like clockwork and they won.

As to Ferrari, the two drivers felt out with each other and Vettel didn’t obey team orders.

I have watched Formula One for many years, and every so often Ferrari seem to lose the plot!

 

September 29, 2019 Posted by | Sport | , , , , | 1 Comment

The Shape Of Solar Farms To Come

This article on Renew Energy is entitled Gannawarra Battery-Integrated Solar Farm – Australia’s Largest – Officially Opened.

These are the first two paragraphs.

The Gannawarra solar and energy storage project near Kerang in western Victoria has had its official launch on Friday, to mark the largest pairing of a solar farm and a grid-scale battery system in Australia.

State energy minister Lily D’Ambrosio officially anointed the landmark project, which has combined 60MW of PV panels and a 25MW/50MWh battery system – Tesla’s second-biggest battery in the country so far.

Form the video in the areticle, it appears that there are 120 hectares of solar panels and the farm provides enough electricity for 25,000 homes.

It is an interesting concept and I’m sure it will be repeated around the world.

Ausralia has lots of sun, but there is no reason, why a similar system can’t be developed with tidal, wave or wind power.

June 18, 2019 Posted by | Energy, Energy Storage | , , , , | Leave a comment

World’s First Solar-Powered Train

This video was pointed out by an eFriend.

The discussion is interesting in the video and gives quite a few technical details.

Byron Bay Railroad would be a place I’d like to visit, but Australia is too far to go to see a technological development. Hamburg was another thing!

April 24, 2019 Posted by | Transport | , , | Leave a comment

SA Zinc Mine To Be Converted To Compressed Air Energy Storage Facility

The title of this post, is the same as that of this article on Energy News Biulletin.

This is the first paragraph.

The Australian Renewable Energy Agency has announced a $6 million spend for company Hydrostar Australia to progress the nation’s first energy storage project using compressed air, with another $3 million provided by the South Australian government’s renewable energy fund.

There are other articles about energy storage in Australia, but then I suppose the country, can create lots of solar energy during the day and storing some of it is important.Using compressed air to store energy underground, seems increasing to be mentioned in the media.

 

 

February 13, 2019 Posted by | World | , , | 2 Comments

South Australia Launches AU$50 Million Fund For Grid-Scale Energy Storage

The title of this post is the same as that of this article on Energy Storage News.

This is the first paragraph.

In order to address intermittency in its grid, the South Australian Government has introduced a AU$50 million (US$36 million) Grid Scale Storage Fund (GSSF) to help accelerate the deployment of new large energy storage projects, including pumped hydro, hydrogen, gas storage, solar thermal, bioenergy and battery storage.

It is a must-read article, which shows the way progressive governments are thinking.

 

November 25, 2018 Posted by | Energy Storage, World | , | Leave a comment

This Is What I Call A MOAB

Jamestown is a small Australian town of a few over fourteen hundred souls, probably home to several million flies and some of the most venomous spiders and snakes known to man.

I have never visited the town, but I must have flown nearly over it, when I flew a Piper Arrow around Australia with C.

Just to the North of the town is the Hornsdale Wind Farm, which consists of 99 wind turbines with a generating capacity of 315 MW.

But this is not what brought the wind farm to my attention in an article in today’s Times under a headline of Biggest Ever Battery Plugs City’s Energy Gap.

This is said.

The battery array was built after a high-stakes bet by Elon Musk, 46, the US technology billionaire behind Tesla electric cars, that he could meet a 100-day building deadline or he would give the system away.

Wikipedia has a section on this battery.

This is said.

South Australia received 90 proposals and considered 5 projects. Tesla, Inc. is building the world’s most powerful lithium ion battery adjacent to the wind farm. It has two sections; a 70 MW running for 10 minutes, and a 30 MW with a 3 hour capacity. Samsung 21700-size cells are used.

It will be operated by Tesla and provide a total of 129 megawatt-hours (460 GJ) of storage capable of discharge at 100 megawatts (130,000 hp) into the power grid. This will help prevent load-shedding blackouts and provide stability to the grid (grid services) while other generators can be started in the event of sudden drops in wind or other network issues. It is intended to be built in 100 days counting from 29 September 2017, when a grid connection agreement was signed with Electranet, and some units were operational. The battery construction was completed and testing began on 25 November 2017. It is owned by Neoen and Tesla, with the government having the ability to call on the stored power under certain circumstances.

It certainly seems to be the Mother-Of-All-Batteries! Hence MOAB!

The Times is reporting that the battery system has cost £30 million.

This works out at about £233,000 to store each Megawatt-Hour stored.

When you consider that we have five offshore that are bigger than the Hornsdale Wind Farm, surely it is only a matter of time before we add a battery to one.

These MOABs are an intriguing concept!

 

November 27, 2017 Posted by | Energy, Energy Storage, World | , , | Leave a comment