The Anonymous Widower

Queensland Establishes Minister For Hydrogen

The title of this post, is the same as that of this article on H2 View.

This sounds like a good idea and every civilised country should have one!

It’s also good to see Queensland up in front.

They must have got their act together, since I the day I left Alice Springs in Northern Territories for Mount Isa in Queensland, when I was flying round Australia in a Piper Arrow with C.

As Australian states all seemed to be in different time zones, I said to an Air Traffic Controller, “By the way, what time is it in Queensland?”

He quickly replied. “They’re thirty minutes ahead! And twenty-five years behind!”

November 20, 2020 Posted by | Hydrogen, Transport | , , | Leave a comment

Humber Highlighted As Prime Location For Sustainable Aviation Fuel Cluster

The title of this post, is the same as that of this article on Business Live.

Points to note from the article.

  • Development of a waste-to-aviation biofuel plant on Humberside could be a £219 million annual boost to the economy and create 1500 jobs.
  • There is a pipeline to Heathrow from the Humber.
  • Velocys is backed by British Airways and Shell, and the UK government.
  • Not bad for an Oxford University spin-off of an updated process that produced diesel for the Nazis and apartheid South Africa.
  • Other potential sustainable aviation fuel clusters have been identified including Teesside, the North West, South Wales, Hampshire, St Fergus and Grangemouth.

Velocys is a share to watch!

Other Thoughts

I feel the following could happen.

  • Velocys will make a large hole in the need for landfill capacity.
  • Other old chemical and refinery processes will be updated using new catalyst technology, from universities like Oxford.

But will British Airways be accused of rubbish flights in the tabloids?

 

October 13, 2020 Posted by | Energy, Transport | , , , , , , | Leave a comment

Ryanair Expects Boeing 737 Max Jet Clearance Soon

The title of this post, is the same as that of this article on the BBC.

This is the introductory paragraph.

Ryanair has said it expects the controversial Boeing 737 Max plane to be allowed to fly again in the US in the next month or so.

You won’t catch me booking a flight, with any airline, that flies any of these planes for at least thirty years.

I actually feel, that technology will overtake these planes long before that.

  • They are still made traditionally from aluminium, unlike the competing Airbus A320, which is made from composite, which offers weight and aerodynamic advantages.
  • There is no way, the 737 MAX could be converted to zero-carbon flying.
  • Zero-carbon aircraft will be flying by 2030.

I also think, that it when passengers have a choice, they will avoid the aircraft.

October 10, 2020 Posted by | Transport | , , , | Leave a comment

Flying A Hydrogen-Powered ZEROe

The ZEROe Turbofan and the ZEROe Turboprop, both have a large liquid hydrogen tank in the rear fuselage.

Will this affect the handling characteristics of the aircraft and make them difficult to fly?

The balance will probably be different as the weight of the tank with a full load of hydrogen could be significant. Think putting two bags of cement in the back of a typical hatchback car.

But all Airbuses should handle the different feel easily.

The three main flight control surfaces, by which pilots control the aircraft; ailerons, elevator and rudder are not actually controlled directly by the pilots, but by computers that are connected between the controls the pilot uses and the control surfaces themselves.

This means that control methods, which are unavailable on an aircraft with traditional controls, can be used to fly the aircraft.

So this means that any problems caused by the heavy weight in the rear of the fuselage can be solved.

 

 

September 25, 2020 Posted by | Computing, Hydrogen, Transport | , , , , , | Leave a comment

Creating Sustainable Aviation Fuels For A Net-Zero Future

The title of this post, is the same as that of this article on Airport Technology.

This is the introductory paragraph.

In June, UK Transport Minister Grant Shapps announced the creation of the Jet Zero Council, which aims to make zero-carbon transatlantic flights a reality within a generation. Dr Neville Hargreaves, vice president at sustainable fuels technology company Velocys and a member of the Jet Zero coalition, explains more.

This paragraph gives a timescale.

“People may think achieving net-zero emissions on long-haul flights, from London to New York on a Dreamliner say, is decades away – it isn’t,” he adds. “We can achieve this in the next five-ten years.”

II suspect, that if all goes well, Dr. Hargreaves is right.

Read the article to find out how Velocys intend to achieve this aim.

 

September 25, 2020 Posted by | Energy, Transport | , , , | Leave a comment

ZEROe – Towards The World’s First Zero-Emission Commercial Aircraft

The title of this post, is the same as that of this Press Release from Airbus.

This is the introductory paragraph.

At Airbus, we have the ambition to develop the world’s first zero-emission commercial aircraft by 2035. Hydrogen propulsion will help us to deliver on this ambition. Our ZEROe concept aircraft enable us to explore a variety of configurations and hydrogen technologies that will shape the development of our future zero-emission aircraft.

Overall, the Press Release discloses a lot and gives details of three different aircraft, which are shown in this Airbus infographic.

Discover the three zero-emission concept aircraft known as ZEROe in this infographic. These turbofan, turboprop, and blended-wing-body configurations are all hydrogen hybrid aircraft.

I have some thoughts that apply to all three concepts.

Hydrogen Hybrid Power

The Press Release says this about the propulsion systems for the three aircraft.

All three ZEROe concepts are hydrogen hybrid aircraft. They are powered by hydrogen combustion through modified gas-turbine engines. Liquid hydrogen is used as fuel for combustion with oxygen.

In addition, hydrogen fuel cells create electrical power that complements the gas turbine, resulting in a highly efficient hybrid-electric propulsion system. All of these technologies are complementary, and the benefits are additive.

There is a Wikipedia entry which is entitled Hydrogen Fuel, where this is said.

Once produced, hydrogen can be used in much the same way as natural gas – it can be delivered to fuel cells to generate electricity and heat, used in a combined cycle gas turbine to produce larger quantities of centrally produced electricity or burned to run a combustion engine; all methods producing no carbon or methane emissions.

It looks like the aircraft will be powered by engines that are not too different to the current engines in today’s aircraft.

This must be a big advantage, in that much of the research done to improve the current gas-turbine powered by aviation fuel will apply.

Liquid Hydrogen

It appears all three aircraft will use liquid hydrogen.

Liquid Hydrogen Storage

I believe the major uses for hydrogen will be aircraft, buses, cars, rail locomotives and multiple units and heavy trucks.

All will need efficient storage of the hydrogen.

Some applications, will use it in liquid form, as it is a more dense form, but it will need to be kept cold.

As aviation will probably be the most demanding application, will it drive the storage technology?

Oxygen

This will be atmospheric oxygen, which is used by any combustion engine.

Fuel Cells

Will the fuel cells be used to provide power for the plane’s systems, rather than to power the aircraft?

Most airlines do this with an auxiliary power unit or APU, which is just a small gas-turbine engine with a generator. The A 320 family use one made by Pratt & Whitney, which is described on this page of their web site. It is the third one on the page and is called a APS3200. This is said about its function.

Pratt & Whitney APS3200 is the Airbus baseline APU of choice for the Airbus A320 family of aircraft. It is designed to meet performance and environmental requirements for modern day, single-aisle aircraft. The APU comprises a single-shaft, fixedspeed, high-pressure ratio core driving a load compressor that provides bleed air for cabin conditioning and main engine starting, concurrent with 90kVA of electrical power.

The APU is usually located in the tail.

In the ZEROe family will there be a fuel-cell powered compressor to provide bleed air for cabin airconditioning and main engine starting?

Slippery Aerodynamics

Airbus seem to be the masters of slippery aerodynamics, which will help make the planes very fuel efficient.

Lightweight Composite Structures

Like the latest Airbus airliners, these planes will be made from lightweight composite structures and I wouldn’t be surprised to see weight saving in other parts of the aircraft.

Carbon Emissions And Pollution

There will be no carbon dioxide produced, as where’s the carbon in the fuel?

But there could be small amounts of the oxides of nitrogen produced, by the combustion, as nitrogen will be present from the air.

Noise

As the aircraft are powered by gas-turbine engines, there will be some noise.

The Mathematics Of Hydrogen-Powered Aviation

The mathematics for these three aircraft must say, that the designs are feasible.

Otherwise Airbus wouldn’t have published a detailed Press Release, only for it to be torn to pieces.

Pressures Driving Aviation In The Next Ten Years

Aviation will change in the text ten years and it will be driven by various competing forces.

Environmental Issues

Pollution, Carbon Emissions and Noise will be the big environmental issues.

Hydrogen will go a long way to reducing the first two issues, but progress with noise will generally be made by better engineering.

COVID-19 And Future Pandemics

These could have a bigger effect, as to make flying safe in these troubled times, passengers will need to be given more space.

But I do wonder, if there is an administrative solution, backed up, by innovative engineering.

Could a very quick test for COVID-19, that would stop infected passengers boarding, coupled with high quality automatic cleaning and air purification, ensure that passengers didn’t get infected?

Entry Into Service

Airbus are quoting 2035 in the Press Release and this YouTube video.

Is that ambitious?

Thoughts On The Three Designs

My thoughts on the three designs, follow in the next three sections.

The ZEROe Turboprop

This is Airbus’s summary of the design for the ZEROe Turboprop.

Two hybrid hydrogen turboprop engines, which drive the six bladed propellers, provide thrust. The liquid hydrogen storage and distribution system is located behind the rear pressure bulkhead.

This screen capture taken from the video, shows the plane.

It certainly is a layout that has been used successfully, by many conventionally-powered aircraft in the past. The De Havilland Canada Dash 8 and ATR 72 are still in production.

The Turboprop Engines

If you look at the Lockheed-Martin C 130J Super Hercules, you will see it is powered by four Rolls-Royce AE 2100D3 turboprop engines, that drive 6-bladed Dowty R391 composite constant-speed fully-feathering reversible-pitch propellers.

These Rolls-Royce engines are a development of an Allison design, but they also form the heart of Rolls-Royce’s 2.5 MW Generator, that I wrote about in Our Sustainability Journey. The generator was developed for use in Airbus’s electric flight research program.

I wouldn’t be surprised to find the following.

  • , The propulsion system for this aircraft is under test with hydrogen at Derby and Toulouse.
  • Dowty are testing propellers suitable for the aircraft.
  • Serious research is ongoing to store enough liquid hydrogen in a small tank that fits the design.

Why develop something new, when Rolls-Royce, Dowty and Lockheed have done all the basic design and testing?

The Fuselage

This screen capture taken from the video, shows the front view of the plane.

From clues in the picture, I estimate that the fuselage diameter is around four metres. Which is not surprising, as the Airbus A320 has a height of 4.14 metres and a with of 3.95 metres.

So is the ZEROe Turboprop based on a shortened Airbus A 320 fuselage?

As the aircraft has a capacity of less than a hundred passengers and an Airbus A320 has six-abreast seating, could the aircraft have sixteen rows of seats.

With the seat pitch of an Airbus A 320, which is 81 centimetres, this means just under thirteen metres for the passengers.

The Technical Challenge

I don’t feel there are any great technical challenges in building this aircraft.

  • The engines appear to be conventional and could even have been more-or-less fully developed.
  • The fuselage could be a development of an existing design.
  • The wings and tail-plane are not large and given the company’s experience with large composite structures, they shouldn’t be too challenging.
  • The hydrogen storage and distributing system will have to be designed, but as hydrogen is being used in increasing numbers of applications, I doubt the expertise will be difficult to find.
  • The avionics and other important systems could probably be borrowed from other Airbus products.

Given that the much larger and more complicated Airbus A380 was launched in 2000 and first flew in 2005, I think that a prototype of this aircraft could fly around the middle of this decade.

The Market Segment

It may seem small at less than a hundred seats, but it does have a range of greater than a 1000 nautical miles or 1150 miles.

Consider.

  • It compares closely in passenger capacity, speed and range, with the De Havilland Canada Dash 8/400 and the ATR 72/600.
  • The ATR 72 is part produced by Airbus.
  • The aircraft is forty percent slower than an Airbus A 320.
  • It is a genuine zero-carbon aircraft.
  • It looks like it could be designed to have a Short-Takeoff-And Landing (STOL) capability.

On the other hand, a lot of busy routes, like London and Edinburgh and Berlin and Munich are less than or around 400 miles.

These short routes are being challenged aggressively by the rail industry, as over this sort of distance, which typically takes four hours by train, rail has enough advantages, that passengers may choose not to fly.

Examples of cities with a range of between 400 and 1000 miles from London include.

  • Berlin – 571 miles
  • Cork – 354 miles
  • Inverness – 445 miles
  • Lisbon – 991 miles
  • Madrid – 781 miles
  • Palma – 835 miles
  • Rome – 893 miles
  • Stockholm – 892 miles
  • Warsaw – 900 miles

This aircraft would appear to be sized as an aircraft, that can fly further than passengers are happy to travel by train. But because of its cruising speed, the routes, where it will be viable would probably be limited in duration.

But important routes to, from and between secondary locations, like those that used to be flown by FlyBe, would surely be naturals for this aircraft.

It looks to be an aircraft that could have a big future.

The ZEROe Turbofan

This is Airbus’s summary of the design.

Two hybrid hydrogen turbofan engines provide thrust. The liquid hydrogen storage and distribution system is located behind the rear pressure bulkhead.

This screen capture taken from the video, shows the plane.

ZEROeTurbofan

This screen capture taken from the video, shows the front view of the plane.

The aircraft doesn’t look very different different to an Airbus A320 and appears to be fairly conventional. It does appear to have the characteristic tall winglets of the A 320 neo.

The Turbofan Engines

These would be standard turbofan engines modified to run on hydrogen, fuelled from a liquid hydrogen tank behind the rear pressure bulkhead of the fuselage.

If you want to learn more about gas turbine engines and hydrogen, read this article on the General Electric web site, which is entitled The Hydrogen Generation: These Gas Turbines Can Run On The Most Abundant Element In the Universe,

Range And Performance

I will compare range, performance and capacity with the latest Airbus A 320.

ZEROe Turbofan

  • Range – 2300 miles
  • Cruising Speed – Mach 0.78
  • Capacity – < 200 passengers

Airbus A 320

  • Range – 3800 miles
  • Cruising Speed – Mach 0.82
  • Capacity – 190 passengers

There is not too much difference, except that the A 320 has a longer range.

The Cockpits Of The ZEROe Turboprop And The ZEROe Turbofan

This gallery puts the two cockpit images together.

Are they by any chance related?

Could the controls and avionics in both aircraft be the same?

A quick look says that like the Boeing 757 and 767, the two planes have a lot in common, which may enable a pilot trained on one aircraft to fly the other, with only minimal extra instruction.

And would it be a simple process to upgrade a pilot from an A 320 to a ZEROe Turbofan?

The Fuselages Of The ZEROe Turboprop And The ZEROe Turbofan

I estimated earlier that the fuselage of the Turboprop was based on the cross-section of the A320.

Looking at the pair of front views, I wouldn’t be surprised to find, that both aircraft are based on an updated A 320 fuselage design.

Passengers and flightcrew would certainly feel at home in the ZEROe Turbofan, if internally, it was the same size, layout and equipment as a standard A 320 or more likely an A 320 neo.

The Market Segment

These are my thoughts of the marketing objectives of the ZEROe Turbofan.

  • The cruising speed and the number of passengers are surprisingly close, so has this aircraft been designed as an A 320 or Boeing 737 replacement?
  •  I suspect too, that it has been designed to be used at any airport, that could handle an Airbus A 320 or Boeing 737.
  • It would be able to fly point-to-point flights between most pairs of European or North American cities.

It would certainly fit the zero-carbon shorter range airliner market!

In fact it would more than fit the market, it would define it!

The ZEROe Blended-Wing Body

This is Airbus’s summary of the design.

The exceptionally wide interior opens up multiple options for hydrogen storage and distribution. Here, the liquid hydrogen storage tanks are stored underneath the wings. Two hybrid hydrogen turbofan engines provide thrust.

This screen capture taken from the video, shows the plane.

This aircraft is proposed to have the same performance and capacity as the ZEROe Turbofan, which includes a 2000 nautical mile plus range.

The only other aircraft with a similar shape is the Northrop Grumman B-2 Spirit or Stealth Bomber. This is not a fast aircraft, but it is able to fly at an altitude of 50,000 ft, which compares to the 60,000 ft of Concorde and the 43,000 ft of an Airbus A 380.

I wonder, if the blended-wing body is designed to fly very high at around the 60,000 ft, which was Concorde territory.

It would only be doing 515 mph and would be well below the speed of sound.

So what is the point on going so high?

The air is very thin and there is a lot less drag.

It is also worth reading Wikipedia on the design of flying wings.

It might be possible to fly much further than 2000 nautical miles. After all Airbus did put in a plus sign!

Is this aircraft the long-distance aircraft of the three?

Extending The Range

I do wonder, if the engines in these aircraft could be capable of running on both hydrogen and aviation biofuel.

As the ZEROe Turboprop and the ZEROe Turbofan planes have empty wings, which in a conventional aircraft would hold fuel, could the space be used to hold aviation biofuel to extend the range?

Certification Of The Planes

The ZEROe Turboprop and ZEROe Turbofan are aircraft, where a lot of the design will already have been proven in previous aircraft, so will probably be much less onerous to approve, than the blended-wing body design.

Conclusion

It looks to me, that Airbus have designed three aircraft to cover the airline market.

I also feel that as the ZEROe Turboprop and ZEROe Turbofan, appear to have conventional airframes, that they could be delivered before 2035.

If I’m right, that the blended-wing body is a high flyer, it will be a ride to experience, travelling at that height all the way to New York.

September 22, 2020 Posted by | Hydrogen, Transport | , , , , , , , , , , , | 4 Comments

Beeching Reversal – South Fylde Line Passing Loop

This is one of the Beeching Reversal projects that the Government and Network Rail are proposing to reverse some of the Beeching cuts.

The Project

This project is described on this page on the web site of the Fylde MP; Mark Menzies, which is entitled Improving The South Fylde Rail Line.

The page lists that these improvements are needed.

Track And Stations

These improvements are listed for track and stations.

The bid involves laying around three miles of track between Lytham and St Annes stations, the creation of a new rail platform at Ansdell and Fairhaven Station, the installation of signalling along the line, and potential platform changes at Preston Station. There is scope for improvements to St Annes and Lytham Stations, should Network Rail decide it would rather include those stations within the passing loop – but that would be decided further along the process.

Services

The objective is to be able to run two trains per hour (tph) between Preston and Blackpool South stations.

Trains

Better trains are needed.

It certainly looks like the Pacers have already gone.

The Route

I shall describe the current route in this section.

Blackpool South Station

The Google Map shows Blackpool South station.

Note.

  1. Entrance to the station is from Waterloo Road, which runs East-West across the map.
  2. There are a pair of bus stops by the station entrance.
  3. There is a lot of car parking close to the station.
  4. I suspect that the single platform can hold a modern eighty-metre four-car train.
  5. This seventy-year-old has no difficulty waking to the football ground or the Blackpool trams from the station.

With two tph and some updated facilities, this would be a very useful station.

I suspect there is even space to add a second platform in the future, if that were felt to be necessary.

Blackpool Pleasure Beach Station

This Google Map shows Blackpool Please Beach station and the nearby Pleasure Beach.

We shouldn’t underestimate the importance of this station. One beautiful late summer Saturday, I was going to see Ipswich play at Blackpool and out of curiosity I had explored the train to Colne station. In those days a decade ago, Colne and Blackpool South was one service and the train from Colne was full of families, by the time it got to Preston. A large proportion, left the train at the Pleasure Beach.

The conductor told me, that the crowds, I had witnessed weren’t untypical.

Squires Gate Station and Blackpool Airport

This Google Map shows Squires Gate station and the nearby Blackpool Airport.

Blackpool Airport after a troubled few years seems to be finding a niche market, with a few business, commercial, offshore and training flights.

But I believe that airports like Blackpool in the future can develop another large niche – electric aviation.

Getting to places like Ireland, Northern Ireland, the Isle of Man and Wales by a nineteen-seat electric airliner will need the following.

  • As short a flight as possible.
  • Close to the coast would help.
  • Good public transport links. Blackpool Airport has both tram and train.
  • Space for aircraft to be parked, whilst charging.
  • Plentiful supplies of renewable electricity. The over-300 MW Burbo Bank Wind Farm is not far away in Liverpool Bay and it will only be joined by more and larger wind farms.
  • Frequent public transport.

Blackpool Airport could tick all these boxes, with a thick green marker.

Some example direct distances from Blackpool include

  • Aberdeen – 238 miles
  • Amsterdam Schipol – 340 miles
  • Belfast City – 128 miles
  • Cardiff – 165 miles
  • Dublin – 134 miles
  • Edinburgh – 150 miles
  • Exeter – 211 miles
  • Geneva – 661 miles
  • Glasgow – 155 miles
  • London Gatwick – 220 miles
  • London Heathrow – 192 miles
  • London Southend – 219 miles
  • Newcastle – 89 miles
  • Paris Orly – 422 miles
  • Isle of Man Ronaldsway – 68 miles
  • Southampton – 208 miles

These distances fit nicely with the range of the nine-seater Eviation Alice electric aircraft, which is predicted to be 620 miles.

St. Annes-on-the-Sea Station

This Google Map shows St. Annes-on-the-Sea station.

Note.

  1. Blackpool is to the North-West and Preston is to the South-East
  2. St. Annes-on-the-Sea is one of those convenient single-platform stations, where you just walk in-and-out on the level.
  3. The passing loop would start on the Preston side of the bridge.

There would need to be no major infrastructure work at the station, although I would expect the facilities could do with a makeover.

Ansdell And Fairhaven Station

In Should The Blackpool South Branch Be Electrified?, I said this about improvements to Ansdell and Fairhaven station.

Ansdell and Fairhaven station is nearest to the course at Royal Lytham.

    • The Open Championship is a very important event on the golfing calendar.
    • Other important golfing events are also held on the course
    • Royal Lytham and St.Annes, last held the Open in 2012 and 2001. So it might come back to Royal Lytham in the mid-2020s.

Ansdell and Fairhaven station used to have two platforms, as described in Wikipedia.

The station was set out as an island platform with tracks on both faces until the singling of the line in the 1980s. Trains now only use the southern face. A disabled access ramp now covers the northern part of the station.

So could a rebuild of the station do the following?

    • Restore two platforms on an island at the station.
    • Put in full disabled access.
    • Create a passing loop.
    • Longer platforms might be a good idea.

This Google Map shows the station.

Note.

    1. The disabled ramp winding away.
    2. The platform is probably about a hundred metres long.
    3. It would appear that there is space at the far end to extend the platform.

I suspect that an ambitious architect with vision, could design a station that met all objectives.

It could be the best Championship Golf Course railway station in the world.

Lytham Station

This Google Map shows Lytham station.

Lytham station will be the Eastern end of the loop and it is likely, that the single-track will change to double at the Western end of the station.

As with St. Annes-on-the-Sea station, I suspect that a good makeover, will be all that will be needed.

Moss Side Station

This Google Map shows Moss Side station.

The only problem here is the level crossing, so do Network Rail want to remove it?

Kirkham And Wesham Station

This Google Map shows Kirkham and Wesham station.

There are three platforms, which from bottom to top on the map are.

  • Platform 1 – Trains to Blackpool South
  • Platform 2 – Trains to Blackpool North
  • Platform 3 – Trains to Preston

All platforms seem to be being electrified in these  pictures. that I took during construction.

Note.

  1. It can’t be described as a station, built down to a small budget.
  2. In the captions to the pictures, I’ve numbered the platforms from left to right.
  3. The last picture looks down Platform 1 and there is an electrification gantry at the Preston end.

Could this comprehensive electrification be so that trains to Blackpool North can use both Platforms 1 and 2?

  • This would allow overtaking of say a local train by a London express.
  • Trains could also be turned back in Platform 1, before the end of its journey, if there was a problem.
  • The electrification is also substantial enough for the longest Class 390 trains.
  • It could even accommodate a classic compatible High Speed Two train.

So does the last point, mean that Blackpool North station is a possible High Speed Two destination? Provided, the platforms at Blackpool North station are long enough, I think it does!

This Google Map shows Kirkham West Junction, where trains to Blackpool North and Blackpool South stations diverge.

Note.

  1. The electrification gantries and their shadows can be seen.
  2. Preston is to the South-East and the route is fully-electrified.
  3. Blackpool North is to the North-West and the route is fully-electrified.
  4. Blackpool South is to the West. The double-track becomes single before Moss Side station.

This picture shows the route going off to Blackpool South.

I took the picture from a train going to Blackpool North station.

So why are wires being run along the first few hundred metres of the Blackpool South Branch?

The Timetable

Currently, trains take the following times to do these journey legs.

  • Run between Ansdell and Fairhaven and Blackpool South stations – 12 minutes
  • Turnback at Blackpool South station – 3 minutes
  • Run between Blackpool South and Ansdell and Fairhaven stations – 11 minutes

As the trains will be running every thirty minutes and the three legs total twenty-six minutes, that means there’s four minutes float.

So hopefully, it should be easily stainable, by an experienced rail timetable creator.

The Trains

I have remarked that I find the electrification at Kirkham & Wesham station, both comprehensive and slightly unusual.

Could The Electrification Have Been Designed For Battery Electric Trains To Blackpool South Station?

But there is one very plausible reason for the electrification layout – The Blackpool South Branch has been designed, so that services on the branch can be rum using battery trains.

  • The distance between Kirkham & Wesham and Blackpool South stations is just over eleven miles.
  • So for a round trip a range of perhaps twenty-five miles on battery power would suffice.
  • There would also be a need for a few minutes of hotel power, whilst waiting at Blackpool South station.

These power needs are well within the capabilities of the average battery train.

  • Trains could be charged on the nine minute run  between Preston and Kirkham & Wesham stations.
  • Changeover between electrification and battery power would take place in Kirkham & Wesham station.

An ideal train would surely be CAF’s four-car battery electric version of the Class 331 train, which I wrote about in Northern’s Battery Plans.

  • According to an article in the March 2020 Edition of Modern Railways, with the same name, these trains will be working between Manchester Airport and Windermere.
  • Class 331 trains without batteries will be running to and from Blackpool North station.
  • Four-car trains are probably the right size for the route.

There would also probably be no need for a charging station at Blackpool South station, if trains could leave Kirkham & Wesham station with a full battery.

Where Would The Trains Terminate In The East?

These would be the obvious choices.

  • Blackburn – Where there is a convenient bay platform.
  • Colne – Where they used to terminate!
  • Liverpool – Merseyrail has the trains and Liverpool has lots of punters and the imagination.
  • Preston – Where they do now!
  • Skipton – If the Skipton-Colne Link is built!

My money would be on Skipton, using a new Skipton-Colne Link, for the following reasons.

  • Politicians of all colours and roses are in favour.
  • Skipton has an electrified route to Leeds.
  • Skipton-Colne would be a valuable by-pass route during the building of Northern Powerhouse Rail.
  • Battery-powered trains would be ideal for Skipton-Colne.

Would A Battery Electric Train Be Feasible Between Blackpool South And Liverpool?

Consider.

  • An all-stations service would complement the fast service between Liverpool Lime Street and Blackpool North stations via St. Helens, Wigan North Western and Preston.
  • The service could either go between Liverpool and Preston via Ormskirk or Southport and a reinstated Burscough Chord.
  • The Ormskirk route is 15 miles of unelectrified line and the Southport route is just four miles further.
  • A service via Southport would need to reverse at Southport station.
  • The service would be run using dual-voltage Class 777 trains fitted with batteries.
  • 25 KVAC overhead electrification, is already  installed between Preston and Kirkham & Wesham stations,
  • Using existing electrification, trains would leave Kirkham & Wesham, Ormskirk, Preston and Southport stations with full batteries.
  • A coastal service between Blackpool and Liverpool would surely attract visitors.
  • Liverpool and Blackpool are the two biggest urban areas on the coast.
  • There are several golf courses on the route, including three courses that have held the Open; Royal Birkdale, Royal Liverpool and Royal Lytham & St. Annes.

It may be a bit fanciful. But.

  • Merseyrail will have the trains.
  • Liverpool has the potential passengers.
  • I believe the route could handle a two tph service.
  • In Reopen Midge Hall Station, I showed that it was possible to run a two tph service between Liverpool and Preston, with one tph via each of Ormskirk and Southport.

Liverpool also has bags of ambition and imagination.

Would A Battery Electric Train Handle Preston And Skipton?

I estimate that this route is forty-one miles, with a stiff rise from Rose Grove to Colne station.

So would a battery electric train be able to handle this distance?

Hitachi are talking 56 miles for their Regional Battery Train, so I suspect CAF would want and need to be competitive with a similar specification.

Perhaps the logical service would be to run between Leeds and Blackpool South.

  • The service would go via Preston, Blackburn, Burnley Central, Colne and Skipton.
  • Leeds and Skipton is electrified.
  • Preston and Kirkham & Wesham is electrified.
  • No extra chargers for trains would be needed.

The only new infrastructure needed would be the Skipton and Colne Link.

Electrification Between Preston And Blackburn

Consider.

  • In Colne – Skipton Reopening Moves Closer, I talked about the proposed Huncoat Rail Fright Terminal, that could be built North of Blackburn on the East Lancashire Line.
  • Blackburn is a major hub for passenger services.
  • An electrified Blackburn would allow Manchester and Clitheroe to be run by battery electric trains. Clitheroe is ten miles and Bolton is thirteen.
  • An electrified Blackburn would allow Blackburn and Manchester Victoria via the Todmorden Curve to be run by battery electric trains. The whole route is 39.5 miles.
  • It may be possible for battery electric trains to reach Leeds via Hebden Bridge, as it is only fifty miles away, which is within Hitachi’s range.
  • As the Blackburn area grows, there will be more pressure for a daily London service.
  • Some think, the Calderdale route should be electrified.
  • Preston and Blackburn stations are just twelves miles apart.
  • There is a multiple unit depot at Blackburn.
  • I also feel that battery electric trains fanning out from Blackburn, wouldn’t do the town’s image any harm.

For all these reasons, I wouldn’t be surprised to see a short stretch of electrification added between Preston and Blackburn.

Conclusion

I like this proposal and it could be a big asset to trains across the Pennines.

 

 

 

 

 

 

 

 

July 27, 2020 Posted by | Energy, Energy Storage, Sport, Transport | , , , , , , , , , , , , , , , , | 7 Comments

Our Sustainability Journey

The title of this post, is the same as that of this press release on the Rolls-Royce web site.

It is sub-titled.

Paul Stein’s Thoughts On Sustainability And Electrification

Paul Stein is Rolls-Royce’s Chief Technology Officer, so what he says is important.

This press release was the source of the information behind Distributed Propulsion ‘Maybe The Only Means’ For Small Electric Flight Progress, which I wrote about Rolls-Royce’s beer keg-sized 2.5 MW generator.

This is the third paragraph.

We’ve taken great steps at Rolls-Royce with our three-pillar sustainability approach of developing the gas turbine to even greater efficiency, supporting the introduction of Sustainable Aviation Fuel and creating new, disruptive technologies such as electrification.

These are definitely, the three pillars of wisdom, when it comes to sustainable aviation.

E-Fan X

This paragraph is Paul Stein’s view of the E-Fan X.

One of the great endeavours in the latter category has been our E-Fan X programme in partnership with Airbus. From our side, this has involved creating a hybrid-electric power generation system at a scale never previously seen in our industry, comprised of an embedded AE2100 gas turbine driving a 2.5MW generator and 3000V power electronics and an electric propulsion unit. What has been particularly encouraging has been the amount of industry interest and support for this programme, and I know everyone at Rolls-Royce and Airbus has been truly grateful for that.

He states that the E-Fan  has now concluded, but a several valuable lessons have been learned.

2.5 MW Generator

He describes the generator like this.

Amongst the many great achievements from E-Fan X has been the generator – about the same size as a beer keg – but producing a staggering 2.5 MW. That’s enough power to supply 2,500 homes and fully represents the pioneering spirit on this project.

The press release discloses that the heart of this staggering generator is a Rolls-Royce AE2100 gas turbine, which powers the latest version of the legendary Lockheed Hercules; the C-130J Super Hercules.

Wikipedia gives this data for the AE2100D2 version of the engine.

  • Length – three metres
  • Diameter – 0.73 metres
  • Weight – 783 kilograms
  • Maximum Power Output – 3458 kW
  • Fuel Consumption – 0.25/kW/h

It looks like in the E-Fan X application, the engine is not at full power.

Use With Aviation Biofuel

Aviation Biofuel is described like this in the first sentences of its Wikipedia entry.

Aviation biofuel is a biofuel used for aircraft. It is considered by some to be the primary means by which the aviation industry can reduce its carbon footprint. After a multi-year technical review from aircraft makers, engine manufacturers and oil companies, biofuels were approved for commercial use in July 2011.

But it doesn’t necessarily mean growing large amounts of crops and converting it to the fuel. Altalto, who are backed by British Airways, Shell, Oxford University and the British Government are building a plant at Immingham to convert household and industrial waste into aviation biofuel.

I would expect that Rolls-Royce have made sure that the generator will work with aviation biofuel.

A Memory Of Emergency Power Generation

About twenty-five years, there was a major power failure after a thunder storm, where I lived in Suffolk and C and myself went to bed in the dark. We awoke to full power in the morning, after a good night’s sleep with no disturbance.

Imagine my surprise, when I let the dogs out to find parked in the field in front of the house, a very large articulated truck.

I was greeted by an engineer, who asked if I minded, his generator in my field. I seem to remember my response was to offer him a cup of tea, which he refused, as he said he had everything he needed in the truck.

It turned out that the main sub-station for the area had received a direct lightning strike and had been destroyed. So to supply power to all the nearby villages, as my farm was at the end of the supply, it was the most convenient place to plug in a transportable gas-turbine generator. The generator was in the field for about ten days and the whole operation impressed me with its professionalism.

But with this new 2.5 MW generator from Rolls-Royce, there would only need to be a small 3.5 tonne four-wheeled truck, to include the generator, fuel and living quarters for the engineer

We have made a lot of progress in twenty-five years.

A Modern Railway Locomotive

The power of this new Class 68 diesel locomotive, that was built in Spain, by Swiss company Stadler is a very healthy 2,800 kW.

Consider these facts about a Class 68 locomotive.

  • Thirty-four of these locomotives have been produced for the UK.
  • They are powered by a Caterpillar C175-16 engine, which weighs thirteen tonnes.
  • The transmission of these locomotives is electric, which means that the diesel engine drives a generator and the train is driven by electric traction motors.
  • The locomotive is equally at home hauling intermodal freight trains and passenger trains for Chiltern Railways or TransPennine Express.
  • According to Wikipedia, Class 68 locomotives comply with Stage III A of the European emission standards but not Stage III B. But that is much better than most of our noisy, smelly and polluting diesel locomotives.

Class 68 locomotives are members of the UKLight family of locomotives, which contains, these two other locomotives.

  • Already in service is the Class 88 locomotive, which is a bi-mode locomotive, which is capable of running on electrification or the on-board 0.7 MW diesel engine.
  • Under development is the Class 93 locomotive, which is a tri-mode 110 mph locomotive, which is capable of running on electrification, the on-board 0.7 MW diesel engine or battery power.

Stadler seem to be able to mix-and-match various power sources to provide versatile and highly-desirable locomotives.

I feel it would be feasible to design a railway locomotive with the following power sources.

  • 25 KVAC  overhead or 750 VDC third-rail electrification, providing up to perhaps the four MW of a Class 88 locomotive.
  • A Rolls-Royce gas-turbine generator running on aviation biofuel, providing up to perhaps three MW.
  • Batteries up to a weight of perhaps ten tonnes.

I am sure that it could handle many of the routes still run with diesel locomotives in the UK.

  • It would handle all locomotive-hauled passenger services and would be electric-only in stations.
  • It certainly solves the problem of hauling long intermodal freight trains between Felixstowe and the Midlands and the North.
  • To handle the heaviest stone and aggregate trains, it might need a more powerful generator, but I’m sure Rolls-Royce would oblige.

In Thoughts On A Battery/Electric Replacement For A Class 66 Locomotive, I gave a list of routes, that would need to be handled by a battery electric locomotive.

  • Didcot and Birmingham – Around two-and-a-half hours
  • Didcot and Coventry – Just under two hours
  • Felixstowe and Ipswich – Around an hour
  • Haughley Junction and Peterborough – Around two hours
  • Southampton and Reading – Around one-and-a-half hours
  • Werrington Junction and Doncaster via Lincoln – Around two hours
  • Werrington Junction and Nuneaton – Just under two hours

Will Rolls-Royce’s generator be able to supply 2.5 MW for up to four hours?

This would need two-and-a-half tonnes of aviation biofuel, which would be around 3,200 litres, which could be carried in the 5,000 litre tank of a Class 68 locomotive.

It certainly seems feasible to replace diesel locomotives with gas-turbine locomotives running on aviation biofuel, to reduce net carbon emissions and reduce noise and pollution.

But this is not just a UK problem and many countries, who rely on diesel-hauled rail freight, would look seriously at such a locomotive.

Underfloor Mounting In Passenger Trains

These pictures show the space underneath a Hitachi Class 800 train.

The red cap visible in some pictures is the filler for the oil or diesel for the MTU 12V 1600 R 80L diesel engine used to power the trains away from electrification.

This diesel engine has this specification.

  • It produces 560 kW of power.
  • It weighs around six tonnes.
  • Its is about 4 x 2.5 x 1 metres in size.

The diesel engine produces about a fifth of the power as the gas-turbine generator, which is also smaller and very much lighter in weight.

It should also be noted, that a nine-car Class 800 train has five of these MTU diesel engines.

At a first glance, it would appear Hitachi could find one of Rolls-Royce’s gas-turbine generators very useful.

  • It might even enable self-powered high speed trains to run on lines without electrification at speeds well in excess of 140 mph.
  • I can certainly see, High Speed Two’s classic-compatible trains having one or possibly two of these generators, so they can extend services on lines without electrification.

We shouldn’t forget that one version of British Rail’s Advanced Passenger Train was to be gas-turbine powered.

A Class 43 Diesel Power-Car

Rolls-Royce would need a test-bed for a trial rail application of their 2.5 MW generator and there is probably no better trial vehicle, than one of the numerous Class 43 power-cars waiting to be scrapped. They could probably obtain a complete InterCity 125, if they wanted one for a realistic weight, test equipment and a second power-car for comparison and rescue.

But seriously, if we are going to remove diesel from UK railways by 2040, a solution needs to be found for the GWR Castles, ScotRail’s Inter7Citys and NetworkRail’s New Measurement Train.

One of the great advantages of these staggering (Rolls-Royce’s Chief Technology Officer’s word, not mine!) generators is that they are controlled by Full Authority Digital Engine Control or FADEC.

FADEC will give the pilots in a Hercules or other aircraft, all the precise control they need and I doubt Rolls-Royce will leave FADEC out of their gas turbine generator, as it would give the operator or driver extremely precise control.

A driver of a GWR Castle equipped with two gas-turbine power-cars, would be able to do the following.

  • Adjust the power to the load and terrain, with much more accuracy, than at present.
  • Shut the engines down and start them quickly, when passing through sensitive areas.
  • Cut carbon-dioxide emissions, by simply using a minimum amount of fuel.

I would put a battery in the back of the Class 43, to provide hotel power for the passenger coaches.

Running current MTU engines in the Class 43s, on biodiesel is surely a possibility, but that not an elegant engineering solution. It also doesn’t cut carbon emissions.

As there are still over a hundred Class 43s in service, it could even be a substantial order.

It should also be noted, that more-efficient and less-polluting MTU engines were fitted in Class 43s from 2005, so as MTU is now part of Rolls-Royce, I suspect that Rolls-Royce have access to all the drawings and engineers notes, if not the engineers themselves

But it would be more about publicity for future sales around the world, with headlines like.

Iconic UK Diesel Passenger Trains To Receive Green Roll-Royce Jet Power!

COVID-19 has given Rolls-Royce’s aviation business a real hammering, so perhaps they can open up a new revenue stream by replacing the engines of diesel locomotives,

A Class 55 Locomotive

Why Not?

A Class 55 locomotive is diesel electric and there are thousands of diesel locomotives in the world, built to similar basic designs, that need a more-efficient and more environmentally-friendly replacement for a dirty, smelly, noisy and polluting diesel power-plant.

Marine Applications

The Wikipedia entry for the Cat C175, says this.

The Cat C175 is often used in locomotives and passenger-class ships.

I suspect there will be marine applications for the gas-turbine generator.

Conclusion

I’m very certain that Rolls-Royce’s pocket power station has a big future.

Who said that dynamite comes in small parcels?

 

 

July 19, 2020 Posted by | Energy, Transport | , , , , , , , , , , , | 8 Comments

Birmingham Airport Connectivity

On the Midlands Connect web site, they have a page, which is entitled Birmingham Airport Connectivity.

This is the introductory paragraph.

By using capacity released by HS2 and investing in new track south of Birmingham Airport, we can improve connections from the south of England, East Midlands, Yorkshire and the North East.

The page contains this helpful map.

It looks like Midlands Connect are thinking about improving the Reading and Newcastle service.

Points made on the page and related articles, like this one on Rail News  include.

  • Birmingham Airport has plans to increase passenger numbers to 18 million by 2033.
  • Coventry and Leamington Spa via Kenilworth will be double-tracked.
  • High Speed Two will release capacity in the area.
  • It will open up rail capacity between Birmingham and Solihull.
  • There will be a new service between Birmingham Moor Street and Oxford via Solihull and Warwick Parkway.
  • It will improve local connections to Birmingham Airport.
  • Birmingham and Reading services will be increased to two trains per hour (tph)
  • The Government is being asked to chip in £20 million.

These are my thoughts.

Birmingham Airport

Birmingham Airport can become a true Heart of England Airport.

I feel that the future of aviation will be very different to the past.

  • COVID-19 and the future pandemics, that we will endure from the East and the Americas, will mean that flying will be a very different experience with hygiene and social distancing to the fore.
  • Smaller aircraft, for flights up to 500 miles, will be odd-looking zero-carbon machines with exotic power systems.
  • Larger aircraft will be energy efficient planes powered by aviation biofuels produced from household and industrial waste, and biomass.
  • Boeing 747s and Airbus A380s will only be talked about in tales from older people to the young.
  • Airports will be important rail hubs to more than just the local area.

Wikipedia also says this about expansion of Birmingham Airport.

Plans for a second runway (a third when demand requires) on the other side of the M42 and a new terminal complex and business park have been published, and they could help to create around 250,000 jobs. It has been estimated that if these plans went ahead, the airport could handle around 70,000,000 passengers annually, and around 500,000 aircraft movements.

This Google Map shows the Airport.

Note the M42 motorway passing North-South to the East of the Airport.

Could Birmingham Airport develop towards Birmingham Interchange and High Speed Two?

It is worth looking at the distance to other airports.

  • Aberdeen – 328 miles
  • Amsterdam – 280 miles
  • Dublin – 199 miles
  • Frankfurt – 478 miles
  • Geneva – 558 miles
  • Paris – 304 miles

All could be within range of an electric aircraft like the under-development Eviation Alice.

I believe that large airports will develop low-noise zero-carbon secondary runways.

Birmingham Airport is well-situated to take advantage.

Adding A Second Track Between Leamington Spa And Coventry

This section of track is about ten miles long, with probably under half only single-track.

This Google Map shows the single-track through the new Kenilworth station.

And these are pictures I took soon after the station opened.

It is certainly one of the best of the current crop of new small stations.

I don’t think that adding a second track will be the most challenging of projects.

It should be noted that the Leamington Spa and Nuneaton service could be a candidate for a battery electric train.

  • The route is twenty miles long
  • Nuneaton and Coventry stations are fully electrified.
  • There might be possibilities to extend this service at either or both ends.
  • Nuneaton and Leicester are nineteen miles apart and a new Nuneaton Parkway station is proposed for the route. I wrote about this station in New Railway Station Between Hinckley And Nuneaton Receives Backing.
  • Leamington Spa and Stratford-upon-Avon are fifteen miles apart and would need a reverse at Leamington Spa.

A battery electric train might give a faster and more passenger-friendly service, if the passenger numbers and forecasts would support an extended service.

A Birmingham Moor Street And Oxford Service

This Google Map shows Birmingham Moor Street station.

Note.

  1. The two Northern through platforms on the Snow Hill Lines, that continue under Birmingham to Birmingham Snow Hill station.
  2. At least two, but possibly three bay platforms, that can take Chiltern Railway’s longest trains.
  3. There is more space for possibly another two bay platforms to be reinstated or built.

Birmingham Moor Street station will also be a short walk from High Speed Two’s Birmingham Curzon Street station.

This Google Map shows Oxford station.

Note.

  1. Birmingham Moor Street station is to the North via Banbury and Warwick Parkway stations.
  2. The two long through platforms capable of taking a nine-car train.
  3. There are two bay platforms to the East of the two through platforms, at the Northern end of the station.
  4. The bay platforms handle Chiltern’s services from London Marylebone and could also handle the proposed service to Birmingham Moor Street.

Consider this about the proposed Birmingham Moor Street and Oxford service.

  • The service could stop at Solihull, Warwick Parkway, Warwick, Leamington Spar and Banbury, as was thought necessary.
  • I estimate that Birmingham Moor Street and Oxford are 66 miles apart and that a 100 mph train would take around 66 minutes.
  • Birmingham Moor Street and Banbury are 43 miles apart.
  • Oxford and Banbury are 23 miles apart.

With these timings and a few minutes to reverse at each end of the route, I would estimate that a 2.5 hour round trip would be possible.

But, I also think, that with charging facilities or short lengths of electrification at Birmingham Moor Street, Banbury and Oxford stations, this service could be run by battery electric trains.

  • A three hour round trip should be possible.
  • Three trains would be needed to provide an hourly service.
  • Oxford, Banbury, Leamington Spa and Warwick would have a direct connection to High Speed Two.

It should also be noted

  • Birmingham Moor Street and Stratford-upon-Avon stations are only 25 miles apart and the journey rakes 46 minutes
  • Banbury and Stratford-upon-Avon are 35 miles apart. and the journey takes 57 minutes.
  • Leamington Spa and Nuneaton are 20 miles apart and the journey takes 36 minutes.

There would appear to be tremendous potential for battery electric services between Birmingham and Oxford.

How many tourists would a Birmingham and Oxford service via Stratford-upon-Avon attract?

Improving The Reading And Newcastle Service

Currently, this is a one tph service between Reading and Newcastle stations.

  • It is run by CrossCountry.
  • Intermediate stops include Oxford, Banbury, Leamington Spa, Birmingham New Street, Derby, Sheffield, Doncaster, York, Darlington and Durham.
  • It appears that the full journey takes four-and-a-half hours.

It looks like to run a two tph service would need as many as twenty trains.

There is an alternative route after High Speed Two opens.

  • High Speed Two – Newcastle and Birmingham Curzon Street – 118 minutes
  • Walk – Curzon Street and New Street – 10 minutes
  • CrossCountry – Birmingham New Street and Reading – 90 minutes

This saves about forty-five minutes.

You could even do a double change.

  • High Speed Two – Newcastle and East Midlands Hub – 96 minutes
  • High Speed Two – East Midlands Hub and Birmingham Interchange – 17 minutes
  • Walk – Birmingham Interchange and Birmingham International – 10 minutes
  • CrossCountry – Birmingham International and Reading – 78 minutes

This gives a time of around three hours and twenty minutes.

High Speed Two certainly saves time.

But look at this map clipped from the High Speed Two web site.

Note.

  1. The blue dot shows the location of Curzon Street station.
    The West Coast Main Line running into New Street station, is just to the South of Curzon Street station.
    New Street station can be picked out to the West of Curzon Street station.

This Google Map shows a close-up of the current Curzon Street station site.

The same pattern of rail lines going past the Curzon Street site into New Street station can be picked out.

Surely, a connection could be made to allow trains from a couple of platforms in Curzon Street station to terminate trains from the West Coast Main Line.

To improve services between Newcastle and Reading, trains would do the following.

  • Run on the current East Coast Main Line infrastructure between Newcastle and York. Station stops could be Durham, Darlington and York.
  • Switch to new High Speed Two infrastructure South of York.
  • Run on High Speed Two infrastructure to Birmingham Curzon Street station. Station stops could be Sheffield, Chesterfield and East Midlands Hub.
  • The train would reverse at Birmingham Curzon Street station.
  • Switch to the West Coast Main Line outside Birmingham Curzon Street station.
  • Run on the West Coast Main Line to Birmingham International station.
  • Take the route currently used by CrossCountry between Birmingham International and Reading. Station stops could be Leamington Spa, Warwick Parkway, Banbury and Oxford stations.

Timings would be as follows.

  • Newcastle and Birmingham Curzon Street – 118 minutes – From High Speed Two web site.
  • Birmingham Curzon Street and Reading – 90 minutes – Current CrossCountry timing.

Note.

  1. This saves about an hour over the current CrossCountry timings.
  2. It could use classic-compatible High Speed Two trains.
  3. Between Birmingham Curzon Street and Newcastle, it follows the same route as one of the current proposed High Speed Two services.
  4. The service could be extended to Edinburgh from Newcastle.
  5. The service could be extended to Southampton from Reading
  6. As there are only twelve tph planned to be running on the Eastern leg of High Speed Two, against a total capacity of eighteen tph, it should be possible to accommodate the extra service or services.

This would surely be a very useful High Speed Two service.

Conclusion

It is a comprehensive package of measures, some of which could have a high cost benefit ratio.

 

 

 

 

July 17, 2020 Posted by | Transport | , , , , , , , , , , , , , , , , | 7 Comments

Pakistan International Airlines Grounds Third Of Pilots After Crash That Killed 98 People

The title of this post, is the same as that of this article in The Times.

This paragraph chilled me.

Pilots without adequate experience and technical knowledge obtained their qualifications by paying others to take their examinations, officials said.

I don’t think Pakistan International Airlines will be high on my list of preferred airlines.

June 26, 2020 Posted by | Transport | , , | 1 Comment