The Anonymous Widower

Calculating Kinetic And Potential Energies

I used to be able to do this and convert the units, manually and easily, but now I use web calculators.

Kinetic Energy Calculation

I use this kinetic energy calculator from omni.

Suppose you have a nine-car Crossrail Class 345 train.

  • It will weigh 328.40 tonnes, according to my detective work in Weight And Dimensions Of A Class 345 Train.
  • There will be 1,500 passengers at 90 Kg. each or 135 tonnes.
  • So there is a total weight of  463.4 yonnes.
  • The train has a maximum speed of 90 mph.

Put this in the calculator and a full train going at maximum speed has a kinetic energy of 104.184 kWh.

The lithium-ion battery in a typical hybrid bus, like a New Routemaster has a capacity of 75 kWh.

So if a full Class 345 train, were to brake from maximum speed using regenerative braking, the energy generated by the traction motors could be stored in just two bus-sized batteries.

This stored energy can then be used to restart the train or power it iin an emergency.

Out of curiosity, these figures apply to an Inter City 125.

  • Locomotive weight – 2 x 70.25 tonnes
  • Carriage weight – 8 x 34 tonnes.
  • Train weight – 412.5 tonnes
  • Passengers – appromiximately 700 = 63 tonnes
  • Speed – 125 mph

This gives a kinetic energy of 206.22 kWh

And then there’s Eurostar’s original Class 373 trains.

  • Weight- 752 tonnes
  • Speed 300 kph

This gives a kinetic energy of 725 kWh.

If a 75 kWh battery were to be put in each of the twenty cars, this would be more than adequate to handle all the regenerative braking energy for the train.

There would probably be enough stored energy in the batteries for a train to extricate itself from the Channel Tunnel in the case of a complete power failure.

Potential Energy Calculation

I use this potential energy calcultor from omni.

Suppose you have the typical cartoon scene, where a ten tonne weight is dropped on a poor mouse from perhaps five metres.

The energy of the weight is just 0.136 kWh.

I’ve used kWhs for the answers as these are easily visualised. One kWh is the energy used by a one-bar electric fire in an hour.

February 9, 2018 Posted by | World | , , , | Leave a comment

Rail Engineer On Hydrogen Trains

This article on Rail Engineer is entitled Hydrail Comes Of Age.

It is a serious look at hydrogen-powered trains.

This is typical information-packed paragraph.

Instead of diesel engines, the iLint has underframe-mounted traction motors driven by a traction inverter. Also mounted on the underframe is a lithium-ion battery pack supplied by Akasol and an auxiliary converter to power the train’s systems. On the roof is a Hydrogenics HD200-AT power pack which packages six HyPMTM HD30 fuel cells, with common manifolds and controls, and X-STORE hydrogen tanks supplied by Hexagon xperion which store 89kg of hydrogen on each car at 350 bar. These lightweight tanks have a polymer inner liner, covered with carbon fibres soaked in resin and wrapped in fibreglass.

They have interesting things to say about the trains and the production and delivery of the hydrogen, which can be what they call green hydrogen produced by electricity generated by wind power.

This is said about supplying the hydrogen.

It takes 15 minutes to refuel the iLint, which holds 178kg of hydrogen supplied at a pressure 350 bar. It consumes this at the rate of 0.3kg per kilometre. Thus, Lower Saxony’s fleet of 14 trains, covering, say, 600 kilometres a day, will require 2.5 tonnes of hydrogen per day. If this was produced by electrolysis, a wind farm of 10MW generating capacity would be required to power the required electrolysis plant with suitable back up. This, and sufficient hydrogen storage, will be required to ensure resilience of supply.

These are the concluding paragraphs.

With all these benefits, a long-term future in which all DMUs have been replaced by HMUs is a realistic goal. However, the replacement, or retrofitting, of 3,000 DMUs and the provision of the required hydrogen infrastructure would be a costly investment taking many years.

Germany has already taken its first steps towards this goal.

For myself, I am not sceptical about the technology that creates electricity from pure hydrogen, but I think there are design issues with hydrogen-powered trains in the UK.

The German trains, which are built by Alsthom and should start test runs in 2018, take advantage of the space above the train in the loading gauge to place the tanks for the hydrogen.

Our smaller loading gauge would probably preclude this and the tanks might need to take up some of the passenger space.

But in my view, we have another much more serious problem.

Over the last twenty years, a large number of high quality trains like electric Desiros, Electrostars and Junipers, and diesel Turbostars have been delivered and are still running on the UK network.

It could be that these trains couldn’t be converted to hydrogen, without perhaps devoting a carriage to the hydrogen tank, the electricity generator and the battery needed to support the hydrogen power.

It is for this reason, that I believe that if we use hydrogen power, it should be used with traditional electrification and virtually unmodified trains.

A Typical Modern Electric Train

Well! Perhaps not yet, but my view of what a typical electric multiple unit, will look like in ten years is as follows.

  • Ability to work with 25 KVAC  overhead or 750 VDC third-rail electrification or onboard battery power.
  • Ability to switch power source automatically.
  • Batteries would handle regenerative braking.
  • Energy-efficient train design.
  • Good aerodynamics.
  • Most axles would be powered for fast acceleration and smooth braking.
  • Efficient interior design to maximise passenger numbers that can be carried in comfort.
  • A sophisticated computer with route and weather profiles, passenger numbers would optimise the train.

The battery would be sized, such that it gave a range, that was appropriate to the route.

In an article in the October 2017 Edition of Modern Railways, which is entitled Celling England By The Pound, Ian Walmsley says this in relation to trains running on the Uckfield Branch.

A modern EMU needs between 3 and 5 kWh per vehicle mile for this sort of service.

As I’m talking about a train that has taken energy efficiency to the ultimate, I think it would be reasonable to assume that 3 kWh per vehicle mile is attainable.

As I believe that most axles would be powered, I feel that it would be electrically efficient for a battery to be fitted into each car.

Suppose we had a five-car train with a 30 kWh battery in each car.

This would give a total installed battery capacity of 150 kWh. Divide by five and three and this gives a useful emergency range of ten miles.

These facts put the battery size into perspective.

  • , 30 kWh is the size of the larger battery available for a Nissan Leaf.
  • A New Routemaster bus has a battery of 75 kWh.

Where will improved battery technology take us in the next decade?

Use Of Hydrogen Power With 750 VDC Third-Rail Electrification

This extract from the Wikipedia entry for third-rail, explains the working of third-rail electrification.

The trains have metal contact blocks called shoes (or contact shoes or pickup shoes) which make contact with the conductor rail. The traction current is returned to the generating station through the running rails. The conductor rail is usually made of high conductivity steel, and the running rails are electrically connected using wire bonds or other devices, to minimize resistance in the electric circuit. Contact shoes can be positioned below, above, or beside the third rail, depending on the type of third rail used; these third rails are referred to as bottom-contact, top-contact, or side-contact, respectively.

If a line is powered by third-rail electrification, it needs to be fed with power every two miles or so, due to the losses incurred in electricity passing along the steel conductor rail.

I suspect that Network Rail and our world-leading rail manufacturers have done as much as they can to reduce electrical losses.

Or have they? Wikipedia says this.

One method for reducing current losses (and thus increase the spacing of feeder/sub stations, a major cost in third rail electrification) is to use a composite conductor rail of a hybrid aluminium/steel design. The aluminium is a better conductor of electricity, and a running face of stainless steel gives better wear.

Suppose instead of having continuous third-rail electrification, lengths of electrification with the following characteristic were to be installed.

  • Hybrid aluminium/steel rails.
  • Power is supplied at the middle.
  • Power is only supplied when a train is in contact with the rail.

All trains would need to have batteries to run between electrified sections.

The length and frequency of the electrified sections would vary.

  • If a section was centred on a station, then the length must be such, that a train accelerating away can use third-rail power to get to operating speed.
  • Sections could be installed on uphill parts of the line.
  • On long level sections of line without junctions, the electrified sections could be more widely spaced.
  • Battery power could be used to take trains through complicated junctions and crossovers, to cut costs and the difficulties of electrification.
  • Electrified section woulds generally be placed , where power was easy to provide.

So where does hydrogen-power come in?

Obtaining the power for the track will not always be easy, so some form of distributed power will be needed.

  • A small solar farm could be used.
  • A couple of wind turbines might be appropriate.
  • In some places, small-scale hydro-electric power could even be used.

Hydrogen power and especially green hydrogen power could be a viable alternative.

  • It would comprise a hydrogen tank, an electricity generator and a battery to store energy.
  • The tank could be buried for safety reasons.
  • The installation would be placed at trackside to allow easy replenishment by tanker-train.
  • It could also be used in conjunction with intermittent solar and wind power.

The tanker-train would have these characteristics.

  • It could be a converted electrical multiple unit like a four-car Class 319 train.
  • Both 750 VDC and 25 KVAC operating capability would be retained.
  • One car would have a large hydrogen tank.
  • A hydrogen-powered electricity generator would be fitted to allow running on non-electrified lines and give a go-anywhere capability.
  • A battery would probably be needed, to handle discontinuous electrification efficiently.
  • It might even have facilities for a workshop, so checks could be performed on the trackside power system

Modern digital signalling, which is being installed across the UK, may will certainly have a part to play in the operation of the trackside power systems.

The position of all trains will be accurately known, so the trackside power system would switch itself on, as the train approached, if it was a train that could use the power.

Use Of Hydrogen Power With 25 KVAC Overhead |Electrification

The big difference between installation of 25 KVAC overhead electrification and 750 VDC third-rail electrification, is that the the overhead installation is more complicated.

  • Installing the piling for the gantries seems to have a tremendous propensity to go wrong.
  • Documentation of what lies around tracks installed in the Victorian Age can be scant.
  • The Victorians used to like digging tunnels.
  • Bridges and other structures need to be raised to give clearance for the overhead wires.
  • There are also those, who don’t like the visual impact of overhead electrification.

On the plus side though, getting power to 25 KVAC overhead electrification often needs just a connection at one or both ends.

The electrification in the Crossrail tunnel for instance, is only fed with electricity from the ends.

So how could hydrogen help with overhead electrification?

Electrifying some routes like those through the Pennines are challenging to say the least.

  • Long tunnels are common.
  • There are stations like Hebden Bridge in remote locations, that are Listed Victorian gems.
  • There are also those, who object to the wires and gantries.
  • Some areas have severe weather in the winter that is capable of bringing down the wires.

In some ways, the Government’s decision not to electrify, but use bi-mode trains is not only a cost-saving one, but a prudent one too.

Bi-mode trains across the Pennines would have the advantage, that they could use short lengths of electrification to avoid the use of environmentally-unfriendly diesel.

I have read and lost an article, where Greater Anglia have said, that they would take advantage of short lengths of electrification with their new Class 755 trains.

Electrifying Tunnels

If there is one place, where Network Rail have not had any electrification problems, it is in tunnels, where Crossrail and the Severn Tunnel have been electrified without any major problems being reported.

Tunnels could be developed as islands of electrification, that allow the next generation of trains to run on electricity and charge their batteries.

But they would need to have a reliable power source.

As with third-rail electrification, wind and solar power, backed by hydrogen could be a reliable source of power.

Electrifying Stations With Third Rail

It should be noted, that the current generation of new trains like Aventra, Desiro Cities and Hitachi’s A-trains can all work on both 25 KVAC overhead or 750 VDC third-rail systems, when the appropriate methods of current collection are fitted.

Network Rail have shown recently over Christmas, where they installed several short lengths of new third-rail electrification South of London, that installing third-rail electrification, is not a challenging process, provided you can find the power.

If the power supply to the third-rail is intelligent and is only switched on, when a train is on top, the railway will be no more a safety risk, than a route run by diesel.

The picture shows the Grade II Listed Hebden Bridge station.

Third-rail electrification with an independent reliable power supply could be a way of speeding hybrid trains on their way.

Power Supply In Remote Places

Communications are essential to the modern railway.

Trains and train operators need to be able to have good radio connections to signalling and control systems.

Passengers want to access wi-fi and 4G mobile phone networks.

More base stations for communication networks will be needed in remote locations.

Wind, solar and hydrogen will all play their part.

I believe in the future, that remote routes in places like Wales, Scotland and parts of England, will see increasing numbers of trains and consequently passengers., many of whom will be walking in the countryside.

Could this lead to upgrading of remote stations and the need for reliable independent power supplies?

Conclusion

I am very much coming to the conclusion, that because of the small UK loading gauge, hydrogen-powered trains would only have limited applications in the UK. Unless the train manufacturers come up with a really special design.

But using hydrogen as an environmentally-friendly power source for UK railways to power electrification, perhaps in combination with wind and solar is a definite possibility!

.

 

 

 

 

 

 

January 7, 2018 Posted by | Travel, Uncategorized | , , , , , | 4 Comments

This Is What I Call A MOAB

Jamestown is a small Australian town of a few over fourteen hundred souls, probably home to several million flies and some of the most venomous spiders and snakes known to man.

I have never visited the town, but I must have flown nearly over it, when I flew a Piper AQrrow around Australia with C.

Just to the North of the town is the Hornsdale Wind Farm, which consists of 99 wind turbines with a generating capacity of 315 MW.

But this is not what brought the wind farm to my attention in an article in today’s Times under a headline of Biggest Ever Battery Plugs City’s Energy Gap.

This is said.

The battery array was built after a high-stakes bet by Elon Musk, 46, the US technology billionaire behind Tesla electric cars, that he could meet a 100-day building deadline or he would give the system away.

Wikipedia has a section on this battery.

This is said.

South Australia received 90 proposals and considered 5 projects. Tesla, Inc. is building the world’s most powerful lithium ion battery adjacent to the wind farm. It has two sections; a 70 MW running for 10 minutes, and a 30 MW with a 3 hour capacity. Samsung 21700-size cells are used.

It will be operated by Tesla and provide a total of 129 megawatt-hours (460 GJ) of storage capable of discharge at 100 megawatts (130,000 hp) into the power grid. This will help prevent load-shedding blackouts and provide stability to the grid (grid services) while other generators can be started in the event of sudden drops in wind or other network issues. It is intended to be built in 100 days counting from 29 September 2017, when a grid connection agreement was signed with Electranet, and some units were operational. The battery construction was completed and testing began on 25 November 2017. It is owned by Neoen and Tesla, with the government having the ability to call on the stored power under certain circumstances.

It certainly seems to be the Mother-Of-All-Batteries! Hence MOAB!

The Times is reporting that the battery system has cost £30 million.

This works out at about £233,000 to store each Megawatt-Hour stored.

When you consider that we have five offshore that are bigger than the Hornsdale Wind Farm, surely it is only a matter of time before we add a battery to one.

These MOABs are an intriguing concept!

 

November 27, 2017 Posted by | World | , , , , | Leave a comment

The Joy Of Physics

On the One Show on BBC television, yesterday there was a report about a man called Ian Tansley, who has invented a vaccine fridge for use in places like Africa, where the electricity is not reliable.

This Wikipedia entry for Sure Chill Technology describes the technology and this report on the BBC, describes how the invention has been backed by the Bill and Melinda Gates Foundation.

Physics to many is a dull subject at school, but to me, it’s the key to so many interesting inventions and ideas that will shape our lives in a better way.

October 24, 2017 Posted by | Health, World | , , , | Leave a comment

Is A Cap On Energy Prices A Good Idea?

All political parties including the Motherhood and Apple Pie Tendency think this is a good idea, but I’m not sure.

I changed to OVO Energy, one of the smaller companies a couple of years ago, so I looked up on a comparison site to see if I could make a big saving by changing supplier.

Sixty-three suppliers would give me a saving of up to four pounds a month.

As my solar panels haven’t been installed for a year and I don’t know the full affect on my bill yet and I would be changing with solar panels, I shall not be changing my supplier now.

But the interesting figure is that sixty-three different deals were offered. That says to me that competition is working in the energy field.

An Ideal Energy Market

Most consumers would prefer a fixed low price.

But surely, that is impossible as there has to be an equilibrium between the price energy companies pay for their energy and the price they charge consumers.

What happens if there is a global crisis and energy prices are universally high?

The other problem with a low energy price, is that doesn’t encourage consumers to save energy.

The UK’s Energy System

The energy system and market is a constantly changing dynamic system and since energy privatisation in the UK, there have been massive changes to the generation, supply and use of electricity.

  • A nnetwork of interconnectors is starting to stretch over Western Europe to allow interchange of electricity.
  • Wind and solar power generation are increasing dramatically.
  • Coal is dead for generating electricity.
  • Consumers have invested in low-energy appliances.

There will be more developments in the next few years.

  • A planned interconnector to Iceland could be a game changer.
  • Solar panels and energy storage will increasingly be fitted to homes.
  • Millions of electric cars will be sold.
  • Some high-priced nuclear energy will come on stream.

All of these developments have and will continue to move the energy price up and down.

As a Control Engineer, I know that the best way to get a dynamic system like this to a stable point acceptable to all parties, is to apply as few restrictions as possible.

An energy price cap will impose a condition, that will distort the equilibrium and it might not be in the way that politicians want.

Politicians would be better to concentrate on actions that helped the current system find an equilibrium acceptable to all.

  • Make it as easy as possible for consumers to change energy supplier.
  • Avoid backing high-priced energy generation like Hinckley Point C.
  • Promote lower-cost generation and energy storage systems.
  • Fund energy research at universities.
  • Build more interconnectors.

But above all they should not distort the market.

As an aside here, I don’t object to Nicola Sturgeon setting up a tax-payer funded energy company in Scotland. In a free market, it will only promote more competition and possibly lower prices.

But it might lose Scotland a lot of money!

October 12, 2017 Posted by | World | , | 3 Comments

OVO Offers Solar Panels And A Battery

There are a couple of reports on the Internet, that the smaller energy supplier; Ovo Energy, is now offering deals on solar panels and a battery.

I have been thinking of adding a battery for some time, but I don’t think the time is quite right yet, as the price of batteries is becoming more affordable.

However, I do think that Ovo’s move is the first of many we will see in the next few months and years.

This march towards solar and batteries could have various consequences for the UK.

  • Many house builders will add solar panels and a battery to new houses.
  • Domestic electricity needs will reduce.
  • Solar panels and batteries may have some interesting effects on the property market.

Battery owners could also charge up overnight on low-price electricity, so the daily operation could be something like.

  • Overnight the battery is charged on low-price electricity.
  • Morning ablutions and breakfast, thus uses low-price electricity.
  • Hopefully, the sun charges the battery during the day.
  • Evening electricity would in part be what has been stored during the day.

One overall effect of the battery is to smooth the energy needs of a property.

So as the proportion of houses with batteries increases, the National Grid will see a reduction in the spikes of electricity demand, as evetybody makes a cup of tea in the advert breaks.

But the biggest effect will be on how the UK would generate its electricity.

I am not against nuclear power for any technical or environmental reasons, but I do think that the cost of new nuclear power stations like Hinckley Point C are not good value for money compared with other methods of generation. On the other hand, if we are going to have much smoother electricity needs, then we do need the nuclear power station’s ability to produce a steady baseload of power.

I am against inappropriate on-shore wind in many locations, but I am not against off-shore wind or perhaps a few large turbines in an industrial estate.

I feel that solar, batteries and off-shore wind could give the UK very affordable electricity, but they need to be backed by some form of baseload power stations, which at the moment can only be nuclear.

Conclusion

Following my logic, I believe, that as more batteries are installed in the UK, the following will happen.

  • Those who install a battery will save money whether they have solar panels or not!
  • Batteries will be allowed to be charged on low-cost overnight electricity.
  • As more batteries are installed in the UK, the UK power needs will be smoother.
  • Overnight off-shore wind could be used to charge all these batteries.

This leads me to the conclusion, that the Government should create incentives for homes to install batteries, which would be charged with low-cost overnight electricity or solar panels.

October 7, 2017 Posted by | World | , , , , , | 1 Comment

Checking My Electricity Direct Debit

With the news this morning, that there is going to be a price cap on energy tariffs, I thought I’d look at mine.

I was paying £114 a month, but my supplier; OVO were recommended that I pay just £89.

The difference, is probably explained, as this has just been the first summer, when my solar panels have been installed.

So their charge calculating algorithm has only just caught up and I am now saving money.

Do you trust, your energy supplier to give you a an accurate estimate about what you should pay?

Interestingly, this morning, I’ve just found this web page detailing a link-up between OVO and Nissan concening the charging of electric cars.

The electricity market is changing very much for the better.

October 5, 2017 Posted by | World | , | Leave a comment

BBC Click On Batteries

This weekend’s Click on the BBC is a cracker and it’s all about batteries.

Electric Mountain

It starts with pictures of the UK’s largest battery at Dinorwig Power Station or Electric Mountain, as it is colloquially known.

The pumped storage power station was completed in 1984 and with a peak generating capacity  of 1.6 GW, it was built to satisfy short term demand, such as when people make a cup of tea in advert breaks in television programs. Under Purpose of the Wikipedia entry for Dinorwig Power Station, there is a very good summary of what the station does.

To build Dinorwig was a wonderful piece of foresight by the CEGB, over forty years ago.

Would environmentalists allow Dinorwig Power Station to be built these days?

That is a difficult question to answer!

On the one hand it is a massive development in an outstanding area of natural beauty and on the other Dinorwig and intermittent power sources like solar and wind power, is a marriage made in heaven by quality engineering.

As solar and wind power increase we will need more electric mountains and other ways of storing considerable amounts of electricity.

Close to Electric Mountain, another much smaller pumped storage power station of 100 MW capacity is being proposed in disued slate quarries at Glyn Rhonwy. This article on UK Hillwalking, is entitled Opinion: Glyn Rhonwy Hydro is Causing a Stir.

The article was written in 2015 and it looks like Planning Permission for the new pumped storage power station at Glyn Rhonwy has now been given.

The UK’s particular problem with pumped storage power stations, is mainly one of geography, in that we lack mountains.

However Electric Mountain is in the top ten pumped storage power stations on this list in Wikipedia.

I doubt in today’s economy, Electric Mountain would be built, despite the fact that it is probably needed more than ever with all those intermittent forms of electricity generation.

The Future Of Pumped Storage Technology

But if you read Wikipedia on pumped-storage technology, there are some interesting and downright wacky technologies proposed.

I particular like the idea of underwater storage, which if paired with offshore wind farms could be the power of the future. That idea is a German project called StEnSea.

Better Batteries

Click also talks about work at the Warwick Manufacturing Group about increasing the capacity of existing lithium-ion batteries for transport use by improved design of the battery package. Seventy to eighty percent increases in capacity were mentioned, by a guy who looked serious.

I would reckon that within five years, that electric vehicle range will have doubled, just by increments in chemistry, design and manufacture.

Batteries will also be a lot more affordable.

Intelligent Charging

Warwick Manufacturing Group are also working on research to create an intelligent charging algorithm, as a bad charging regime can reduce battery life and performance.

I rate this as significant, as anything that can improve performance and reduce cost is certainly needed in battery-powered transport.

The program reclons it would improve battery performance by ten percent in cars.

Surely, this would be most applicable to buses or trains, running on a regular route, as predicting energy use would be much easier, especially if the number of passengers were known.

In Technology Doesn’t Have To Be Complex, I discussed how Bombardier were using the suspension to give a good estimate of the weight of passengers on a Class 378 train. I suspect that bus and train manufacturers can use similar techniques to give an estimate.

So a bus or train on a particular route could build a loading profile, which would be able to calculate, when was the optimum time for the battery to be charged.

As an example, the 21 bus, that can be used from Bank station to my house, is serviced by hybrid new Routemasters. It has a very variable passenger load and sometimes after Old Street, it can be surprisingly empty.

Intelligent charging must surely offer advantages on a bus route like this, in terms of battery life and the use of the onboard diesel engine.

But is on trains, where intelligent charging can be of most use.

I believe that modern trains like Aventras and Hitachi’s Class 800 trains are designed to use batteries to handle regenerative braking.

If you take a Class 345 train running on Crossrail, the battery philosophy might be something like this.

  • Enough energy is stored in the battery at all times, so that the train can be moved to a safe place for passenger evacuation in case of a complete power failure.
  • Enough spare capacity is left in the battery, so that at the next stop, the regnerative braking energy can be stored on the train.
  • Battery power would be used where appropriate to reduce energy consumption.
  • The control algorithm would take inputs from route profile and passenger loading.

It may sound complicated, but philosophies like this have been used on aircraft for around forty years.

Reusing Vehicle Batteries In Homes

Click also had detailed coverage about how vehicles batteries could be remanufactured and used in homes. Especially, when solar panels are fitted.

Other Batteries

On the on-line version, the program goes on to look at alternative new ideas for batteries.

Inside Electric Mountain

The on-line version, also gives a tour of Electric Mountain.

Conclusion

The future’s electric, with batteries.

 

 

 

 

October 1, 2017 Posted by | Travel, World | , , , | Leave a comment

Why People Don’t Change To Cheaper And Smaller Energy Suppliers

This news item on the Money Saving Expert web site is entitled Energy users don’t switch because they haven’t heard of cheapest firms, MSE poll finds.

If you’re thinking of changing read it and you might learn something to guide you to a more affordable supplier.

I swapped to OVO Energy a couple of years ago, and I’ve had no serious issues and they now have allowed me to connect my solar panels to the electrocity network.

The only problem, I had with swapping was getting nPower to pay me the money they owed.

September 8, 2017 Posted by | World | , | Leave a comment

Major District Heating Scheme to Connect £6bn Meridian Water Development

The title of this post is the same as a press release from Vital Energi.

This is the first three paragraphs.

London’s latest £85m district heating infrastructure is taking shape in Enfield and will be delivered by Vital Energi on behalf of energetik, the energy company owned by Enfield Council.

The new district heating network will accommodate up to 30,000 homes and businesses, including the £6bn Meridian Water development. energetik want to revolutionise the local energy market and improve the reputation of district heating, in a currently unregulated market, to ensure customers receive a quality service.

Vital Energi will design, build, operate and maintain the main energy centre for Meridian Water and install the district heating network over the next 12 years, under a contract worth £15m. This heat network is part of an integrated energy and regeneration strategy in Enfield that will interconnect with energetik’s other networks at Arnos Grove and Ponders End.

The Meridian Water development is certainly going about things in an impressive way.

August 23, 2017 Posted by | World | , | 1 Comment