The Anonymous Widower

Project To Develop 20+ MW Floating Offshore Wind Technology Kicks Off

This is the introductory paragraph.

A consortium of thirteen partners has launched the NextFloat project in Paris aimed at accelerating the rollout of the next generation of floating wind technology for a competitive, more scalable, and industrial deployment. 

As some of the thirteen partners are serious players in the development and deployment of floating wind, I would assume that they believe that 20+ MW turbines are more than a remote possibility.

I remember in the days of North Sea oil and gas, a senior project manager told me, that as cranes got larger, this meant that modules could get larger and project times got shorter.

As turbines get larger, I wouldn’t be surprised to see construction times for wind farms get shorter.

This will have various beneficial effects.

  • Expensive equipment like cranes and support ships, will not be hired for so long.
  • The wind farm will be commissioned and start to deliver electricity earlier.
  • The total wind turbine capacity installed in a year will increase.

Cashflows will be generally be more favourable all round.

December 2, 2022 Posted by | Energy | , , , , , | Leave a comment

Small Nuclear Power Plants To Replace Gas In Quest For Net Zero

The title of this post is the same as that of this article on The Times.

I was very much involved in the writing of project management software in the last three decades of the last century and if there’s one thing we’re generally good at in the UK, it’s complex project management.

Usually problems arise because of political or ignorant senior management meddling.

Our Energy Saviours

I believe our two energy saviours will be floating offshore wind and small nuclear reactors (SMRs) and both need good project management to be built successfully on production lines.

So I don’t see any reason, why we can’t build large numbers of floating offshore wind farms to supply our electricity.

They are also complimentary, in that the fleet of SMRs back up the wind.

Floating Wind First

Floating wind is likely to be developed at scale first, as certifying anything involving nuclear will take an inordinate time.

The electricity from floating wind farms will keep us going, but it is also starting to develop a nice line in exports.

This press release from Drax is entitled Britain Sending Europe Power Lifeline – Report, where this is the sub-title.

For the first time in over a decade, Britain became a net exporter of electricity to its European neighbours, making around £1.5bn for the economy in three months.

Note.

  1. The report was written by Imperial College.
  2. Two new interconnectors; Viking Link and NeuConnect between the UK and Europe are under construction.
  3. Several large wind farms are under construction and will be commissioned in 2023/24 and could add over 4 GW to UK electricity production.

Exports will only get better.

A Sprint For Wind

So we must have a sprint for wind, which will then provide the cash flow to allow the SMRs to roll in.

Or will that be too much for the ultra-greens, who would object to cash-flow from GWs of wind being used to fund SMRs?

November 26, 2022 Posted by | Energy | , , , , , , , | 1 Comment

SBRI: FOAK 2022 Optimising Railway Possessions

This project was one of the winners in the First Of A Kind 2022 competition run by Innovate UK.

In this document, this is said about the project.

Project No: 10038228

Project title: SBRI: FOAK 2022 Optimising Railway Possessions
Lead organisation: FRAZER-NASH CONSULTANCY LIMITED
Project grant: £236,226

Public description: One of the biggest challenges facing the railway industry is the complex process of planning and
possession management. The logistics of diverting, blocking, or closing sections of track can have
implications across the network. As the rail timetable becomes more congested, with increased
services, there is more potential for disruption and less obvious times for possession. Delays on
main-lines could result in huge fines, consequently delivering works and handing back possession
on-time is vital.

In 2020/21, NR spent £1.6bn on enhancements, £1.9bn on maintenance, and £3.2bn on renewals
(Office of Rail and Road, 2021). This translates into thousands of engineering works, most of these
require possessions to allow safe, traffic-free worksites for maintenance activities (e.g. remedial
works, inspections, maintenance and planned renewals).

Possessions result in both planned and unplanned disruption. Unplanned disruption can occur for
many reasons; machine faults, access issues, staff planning, or wrong engineering train
arrangement – all demonstrating the complexity of planning possessions.

Getting staff and equipment to worksites on time and minimising travelling distances are critical
efficiency requirements. The barriers to this are mutual road and rail points, staff numbers and
equipment types. Furthermore, engineering trains typically start in sidings which may be in remote
locations due to available sidings being occupied during large possession works. Consequently,
this cause issues in both timetabling and plans that ensure that engineering trains reach worksites
at the correct time and in the correct formation.

With increasing traffic and reducing availability of possessions this problem is likely to be further
exacerbated. Network Rail have identified a requirement to develop solutions for planning
procedures such that possession efficiency is increased, resulting in the delivery of infrastructure
maintenance work with minimal disruption and cost.

Combining Frazer-Nash’s deep experience in optimisation of railway challenges and eviFile’s
possession management solution, we will innovate to develop a product that will support rapid
planning and replanning of possessions through the application of optimisation and ML algorithms
to identify potential optimal plans. Using wide-ranging railway possessions data we will research
and adapt algorithms that will consider (for example) multiple scenarios, locations and types of
work, and optimise and efficiently manage resources to ensure minimal impact to infrastructure
traffic and capacity.

This will deliver possessions more efficiently, help plan work-activities during possessions more
precisely, manage infrastructure access more efficiently, allow tasks to be planned more efficiently,
and predict the impact of possessions on overall network performance more accurately.

My Thoughts And Conclusion

One of the biggest construction sites near me was the A45 dualling of the 1970s. It was a nightmare as there was no system managing possessions and frequently there were temporary traffic lights and diversions.

Things have got better since then and roadworks on main roads don’t cause as much delay as they used to.

The same improvement that good project management has had on the roads, now needs to be applied to the railways.

November 19, 2022 Posted by | Computing, Transport/Travel | | 4 Comments

BP To Open Offshore Wind Office In Germany, Starts Recruitment Drive

The title of this post, is the same as that of this article on offshoreWIND.biz.

This is the first paragraph, which adds a bit more information.

Global energy major bp plans to open an office in Hamburg, Germany dedicated to the development of offshore wind projects and is in the process of seeking employees for the new office.

These are other points from the article.

  • The topic of wind power is being promoted particularly in Hamburg.
  • BP said that the company has already achieved a number of milestones in the field of wind energy.
  • In cooperation with EnBW, bp is currently developing several wind farms in the Irish and Scottish Seas.
  • Similar plans already exist for the Netherlands.
  • The energy major would also like to supply charging stations for electric vehicles with green electricity.
  • In Germany, wind and solar energy should account for 80 per cent of electricity generation by 2030, compared to today’s 42 per cent.
  • Offshore wind energy is planned to grow seven times by 2045.

I believe that BP’s project expertise and management, backed by billions of German euros could be a complimentary dream team.

October 31, 2022 Posted by | Energy, Finance | , , , , , , | Leave a comment

The Salamander Project

The Salamander project may be a strange name for a proposed Scottish offshore wind farm, but that is what it is.

It is being developed by Ørsted and the Simply Blue Group.

There is a web site, which has this bold mission statement.

Helping To Unlock Scotland’s Floating Offshore Wind.

These paragraphs outline the project.

The Salamander project will utilise innovative and cutting-edge floating offshore wind technologies to produce zero-carbon electricity. The development aims to be a stepping stone to help Scotland and the UK to progress towards a net-zero future.

With a proposed 100 MW pre-commercial size project, the Salamander project which is located off Peterhead in the East coast of Scotland, is in an advanced planning stage. Salamander has a strong focus on supply chain development and will provide an opportunity for the local supply chain to gear up for commercial scale opportunities in Scotland, as well as de-risking floating wind technologies for the future commercial projects in Scotland and beyond. This will allow Scotland to maximise the financial benefit of its strong offshore wind resource and generate long term jobs for its local communities.

The project will contribute to the Scottish government’s target of 11 GW of installed offshore wind by 2030, as well as the UK government’s target of 5 GW of operational floating offshore wind by the same date.

There is also a video, which is very much a must-watch.

Floating offshore wind is a relatively new technology and will become the major generator of the world’s electricity within the next decade.

Note this phrase in the first paragraph.

The development aims to be a stepping stone to help Scotland and the UK to progress towards a net-zero future.

This philosophy is shared with other projects.

In DP Energy And Offshore Wind Farms In Ireland, I said this.

They are also developing the Gwynt Glas offshore wind farm in the UK sector of the Celtic Sea.

  • In January 2022, EDF Renewables and DP Energy announced a Joint Venture partnership to combine their knowledge and
    expertise, in order to participate in the leasing round to secure seabed rights to develop up to 1GW of FLOW in the Celtic Sea.
  • The wind farm is located between Pembroke and Cornwall.

The addition of Gwynt Glas will increase the total of floating offshore wind in the UK section of the Celtic Sea.

  • Blue Gem Wind – Erebus – 100 MW Demonstration project  – 27 miles offshore
  • Blue Gem Wind – Valorus – 300 MW Early-Commercial project – 31 miles offshore
  • Falck Renewables and BlueFloat Energy – Petroc – 300 MW project – 37 miles offshore
  • Falck Renewables and BlueFloat Energy – Llywelyn – 300 MW project – 40 miles offshore
  • Llŷr Wind – 100 MW Project – 25 miles offshore
  • Llŷr Wind – 100 MW Project – 25 miles offshore
  • Gwynt Glas – 1000 MW Project – 50 miles offshore

This makes a total of 2.2 GW, with investors from several countries.

It does seem that the Celtic Sea is becoming the next area of offshore wind around the British Isles to be developed.

These Celtic Sea wind farms include Erebus, which like Salamander is a 100 MW demonstration project.

Salamander And Erebus Compared

Consider.

  • Both are 100 MW floating wind demonstration projects.
  • Salamander and Erebus are 27 and 21 miles offshore respectively.
  • Salamander and Erebus are close to the deepwater ports of Peterhead and Milford Haven.
  • Both are described as stepping-stone projects.
  • Both projects talk about developing supply chains.
  • The developers of Salamander and Erebus include Ørsted and EDF Renewables respectively, who are both big beasts of the offshore wind industry.

Both wind farms are in areas, where the UK, Scottish and Welsh governments want to develop massive offshore wind farms, that will eventually total over 50 GW. I believe that Salamander and Erebus will indicate any problems, that will be likely to occur in the building of these massive offshore floating wind farms.

It is a very sensible plan and could lead to an energy rich future for the UK.

How Long Will It Take To Assemble A Floating Wind Turbine?

Each floating wind turbine requires these major components.

  • A wind turbine, which in the Kincardine Wind Farm have a capacity of 9.5 MW, is obviously needed. Some proposed floating offshore wind farm are talking of turbines between 14 and 16 MW. These turbines will be very similar to onshore turbines.
  • A float, usually made out of steel or possibly concrete. Various designs have been built or proposed. The Wikipedia entry for floating wind turbine gives several examples.
  • The anchoring system to keep the float with its turbine in the desired position.
  • The electrical system to connect the wind turbine to the offshore substation, which could also be floating.

Note that the designs for the float, anchoring and electrical systems will rely heavily on technology proven in the offshore oil and gas industry.

Principle Power are the designer of the WindFloat, which is one of the first floats to be used in floating offshore wind.

Their home page has a continuous full-screen video, that shows a WindFloat being assembled and towed out.

The video shows.

  • The completed float being floated alongside a dock, which obviously has an appropriate water depth.
  • The dock has a large crane.
  • The turbine tower and then the blades being lifted into position and securely fixed.
  • Finally, a tug tows the completed turbine/float assembly to its position in the wind farm.

This would appear to be an assembly operation, that could flow just like the production in any world-class vehicle factory.

  • There would need to be just-in-time delivery of all components.
  • The weather would need to be cooperative.
  • Lighting might be needed to work in poorer light levels.
  • This method of assembly would be turbine and float agnostic.
  • Multiple shift working could be employed.

My project management involvement tells me, that it would not be unreasonable to assemble, at least one complete turbine and its float and accessories in a working day.

I can do a small calculation.

The average size of turbine is 15 MW.

One turbine is assembled per day.

There are 300 working days possible in a year with multiple shift working, ignoring Bank Holidays and bad weather.

Just one site could produce 4.5 GW of floating wind turbines per year.

How Many Production Sites Could There Be?

These are surely the best possibilities.

  • Barrow
  • Belfast
  • Clyde
  • Devon/Cornwall
  • Forth Estuary
  • Great Yarmouth
  • Haven Ports
  • Holyhead
  • Humber
  • Liverpool
  • Milford Haven
  • Peterhead
  • Southampton Water
  • South Wales
  • Teesside
  • Thames Estuary

I have named sixteen areas, that could be suitable for the assembly of floating wind turbines.

So let’s assume that eight will be developed. That could mean as much as 36 GW of capacity per year.

The Energy Density Of Floating Wind Farms

In ScotWind Offshore Wind Leasing Delivers Major Boost To Scotland’s Net Zero Aspirations, I summarised the latest round of Scotwind offshore wind leases.

  • Six new fixed foundation wind farms will give a capacity of 9.7 GW in 3042 km² or about 3.2 MW per km².
  • Ten new floating wind farms will give a capacity of 14.6 GW in 4193 km² or about 3.5 MW per km².

Returning to the earlier calculation, which says we could have the ability to create 36 GW of wind turbines per year, with 15 MW turbines, this means with a generating density of 3.5 MW per km², the 36 GW would take up around a hundred kilometre square of sea.

Conclusion

We will become Europe’s powerhouse.

October 15, 2022 Posted by | Energy | , , , , , , , | 1 Comment

Accelerating The Delivery Of Offshore Wind Farms

It is one of Kwasi Kwarteng’s ambitions to accelerate the delivery of offshore wind farms.

In The Growth Plan 2022, these groups of wind farms are mentioned.

  • Remaining Round 3 Projects
  • Round 4 Projects
  • Extension Projects
  • Scotwind Projects
  • INTOG Projects
  • Floating Wind Commercialisation Projects
  • Celtic Sea Projects

My thinking in this post, will probably apply to all of these groups.

These are my thoughts.

Accelerating Delivery Of A Wind Farm

This will have these positive effects.

  • Electricity will be delivered earlier.
  • Customers will have a more secure supply of electricity.
  • The wind farm owner will start to be paid for their electricity.
  • The Crown Estate will start to be paid for their leases. Although, these might start at signing.
  • National Grid will be paid for the transmission of the electricity.
  • An energy storage company could be paid for storing surplus electricity.
  • Construction teams and engineers can move on to the next project.
  • Expensive construction hardware like ship-mounted cranes will no longer be needed.
  • I also suspect that the government will raise some taxes from the various companies involved.

It looks like it’ll be winners all round.

How Will Delivery Be Accelerated?

These are some thoughts.

Overall Project Time

In How Long Does It Take To Build An Offshore Wind Farm?, I came to these conclusions.

  • It will take six years or less from planning consent to commissioning.
  • It will take two years or less from the start of construction to commissioning.

I suspect that as we have been building offshore wind farms for some years, that it will be very difficult to reduce these times significantly.

But as some wind farms take quite a few years to progress from the initial proposal to planning consent, I suspect that improvements to the planning process may speed up the overall construction time of a wind farm.

Project And Resource Management

Good project and resource management will always help.

Better Design And Construction Methods

I always remember in the early days of North Sea Oil, being told by a very experienced project manager that construction of production platforms was accelerated by the availability of larger and more powerful cranes.

Are we approaching the design of the ultimate wind farm? I doubt it, as in the last few months, I’ve seen two very radical new designs.

In Hexicon Wins UK’s First Ever CfD Auction For Floating Offshore Wind, I show this image of one of their TwinHub turbine installations being towed into place.

The TwinHub home page has a title of The First Floating Offshore Wind Project in The Celtic Sea.

This is the description on the page.

The TwinHub offshore wind demonstration project intends to prove how Hexicon’s innovative design with two turbines on one floating foundation can further reduce the Levelized Cost of Energy (also referred to as LCoE) before large scale commercialisation. The TwinHub project is a stepping stone to help kick-start floating wind in the Celtic Sea, an area identified as a hotspot for floating wind by the UK Government. It will pave the path for larger and larger projects to help support The Crown Estates’ ambitious target of 4GW of floating wind in the Celtic Sea.

Scroll the page down and there is a fascinating short video of a pair of wind turbines in operation.

  • It appears that when there is no wind, it automatically goes into a safe parked mode.
  • As the wind rises, one turbine starts up.
  • The second turbine starts up and the float turns so they face the wind.

It appears to be a classic example of disruptive innovation.

I have a feeling that this type of installation might have generation, assembly and cost advantages over a single turbine mounted on a single float.

RCAM Technologies are also creating interesting designs for mounting turbines and energy storage using 3D-printed concrete.

What Ts The UK Government Doing To Accelerate Projects?

This article on offshoreWIND.biz, was published in late September 2022 and is entitled BREAKING: UK Puts Massive Amount Of New Offshore Wind Capacity On Fast Track and this is the first paragraph.

The UK will speed up planning and development consent processes for projects from the recently completed, currently ongoing, and upcoming (floating) offshore wind leasing rounds to bring new energy capacity online faster and facilitate economic growth and job creation.

The article is based on what Kwasi Kwateng said on the 23rd of September about speeding up projects in the 2022 Growth Plan.

A Quick Summary Of Our Wind Energy

The article has this paragraph, which summarises our wind energy.

For the UK, which currently has around 14 GW of offshore wind capacity in operation and 8 GW under construction, the projects from the listed auction rounds could bring well beyond the targeted capacity for 2030, which was recently raised to 50 GW.

I can see the target being raised again to at least 60 GW.

 

September 30, 2022 Posted by | Design, Energy | , , , , , , , , , , , , , , | Leave a comment

An Update To Will We Run Out Of Power This Winter?

My Methods

Project Timescales For Wind Farms

In How Long Does It Take To Build An Offshore Wind Farm?, I came to these conclusions.

  • It will take six years or less from planning consent to commissioning.
  • It will take two years or less from the start of construction to commissioning.

I shall use these timescales, as any accelerations by the government, will only reduce them.

Dates

If a date is something like 2024/25, I will use the latest date. i.e. 2025 in this example.

The Update

In Will We Run Out Of Power This Winter?, which I wrote in July this year, I did a calculation of how much renewable energy would come on stream in the next few years.

I summarised the amount of new renewable energy coming on stream like this.

  • 2022 – 3200 MW
  • 2023 – 1500 MW
  • 3024 – 2400 MW
  • 2025 – 6576 MW
  • 2026 – 1705 MW
  • 2027 – 7061 GW

This totals to 22442 MW.

But I had made two omissions.

  • Hornsea 3 wind farm will add 2582 MW in 2026/27.
  • Hinckley Point C nuclear power station will add 3260 MW in 2027.

Ørsted have also brought forward the completion date of the Sofia wind farm to 2023, which moves 1400 GW from 2024 to 2023.

The new renewables summary figures have now changed to.

  • 2022 – 3200 MW
  • 2023 – 2925 MW
  • 3024 – 1326 MW
  • 2025 – 6576 MW
  • 2026 – 1705 MW
  • 2027 – 13173 MW

This totals to 28554 MW.

Note.

  1. The early delivery of the Sofia wind farm has increased the amount of wind farms coming onstream next year, which will help the Winter of 2023/2024.
  2. It will also help the Liz Truss/Kwasi Kwarteng government at the next election, that should take place in early 2025.
  3. Hornsea 3 and Hinckley Point C make 2027 a big year for new renewable energy commissioning.

By 2027, we have more than doubled our renewable energy generation.

The Growth Plan 2022

In this document from the Treasury, the following groups of wind farms are listed for acceleration.

  • Remaining Round 3 Projects
  • Round 4 Projects
  • Extension Projects
  • Scotwind Projects
  • INTOG Projects
  • Floating Wind Commercialisation Projects
  • Celtic Sea Projects

I will look at each in turn.

Remaining Round 3 Projects

In this group are the the 1200 MW Dogger Bank B and Dogger Bank C wind farms, which are due for commissioning in 2024/25.

Suppose that as with the Sofia wind farm in the same area, they were to be able to be brought forward by a year.

The new renewables summary figures would change to.

  • 2022 – 3200 MW
  • 2023 – 2925 MW
  • 3024 – 3726 MW
  • 2025 – 5076 MW
  • 2026 – 1705 MW
  • 2027 – 13173 MW

This totals to 28554 MW.

It looks like if Dogger Bank B and Dogger Bank C can be accelerated by a year, it has four effects.

  • The renewables come onstream at a more constant rate.
  • SSE and Equinor, who are developing the Dogger Bank wind farms start to get paid earlier.
  • The UK gets more electricity earlier, which helps bridge the gap until Hornsea 3 and Hinckley Point C come onstream in 2027.
  • The UK Government gets taxes and lease fees from the Dogger Bank wind farms at an earlier date.

Accelerating the remaining Round 3 projects would appear to be a good idea.

Round 4 Projects

According to Wikipedia’s list of proposed wind farms, there are six Round 4 wind farms, which total up to 7026 MW.

Accelerating these projects, is probably a matter of improved government regulations and pressure, and good project management.

But all time savings in delivering the wind farms benefits everybody all round.

This document from the Department of Business, Industry and Industrial Strategy lists all the Contracts for Difference Allocation Round 4 results for the supply of zero-carbon electricity.

Many of these projects are smaller projects and I suspect quite a few are shovel ready.

But as with the big wind farms, there are some projects that can be brought forward to everybody’s benefit.

Norfolk Boreas

Norfolk Boreas wind farm is one of the Round 4 projects.

The wind farm is shown as 1400 MW on Wikipedia.

On the web site, it now says construction will start in 2023, which could mean a completion by 2025, as these projects seem to take about two years from first construction to commissioning, as I showed in How Long Does It Take To Build An Offshore Wind Farm?.

The new renewables summary figures would change to.

  • 2022 – 3200 MW
  • 2023 – 2925 MW
  • 3024 – 3726 MW
  • 2025 – 6476 MW
  • 2026 – 1705 MW
  • 2027 – 11773 MW

This still totals to 28554 MW.

This acceleration of a large field would be beneficial, as the 2025 figure has increased substantially.

I would suspect that Vattenfall are looking hard to accelerate their Norfolk projects.

Extension Projects

I first talked about extension projects in Offshore Wind Extension Projects 2017.

The target was to add 2.85 GW of offshore wind and in the end seven projects were authorised.

These are the best figures I have and they add up to an interim total of 3359 MW.

I suspect that these projects could be easy to accelerate, as the developers have probably been designing these extensions since 2017.

I think it is reasonable to assume that these seven wind farms will add at least 3000 MW, that can be commissioned by 2027.

The new renewables summary figures would change to.

  • 2022 – 3200 MW
  • 2023 – 2925 MW
  • 3024 – 3726 MW
  • 2025 – 6476 MW
  • 2026 – 1705 MW
  • 2027 – 14773 MW

This now totals to 31554 MW.

Accelerating the extension projects would be a good idea, especially, as they were awarded some years ago, so are probably well into the design phase.

ScotWind Projects

I first talked about ScotWind in ScotWind Offshore Wind Leasing Delivers Major Boost To Scotland’s Net Zero Aspirations.

It was planned to do the following.

  • Generate 9.7 GW from six wind farms with fixed foundations.
  • Generate 14.6 GW from ten floating wind farms.

But since then three more floating wind farms with a total capacity of 2800 MW have been added, as I wrote about in Three Shetland ScotWind Projects Announced.

I suspect that some of these projects are ripe for acceleration and some may well be generating useful electricity by 2030 or even earlier.

INTOG Projects

I wrote about INTOG in What Is INTOG?.

I can see the INTOG Projects contributing significantly to our fleet of offshore wind turbines.

I have already found a 6 GW/£30 billion project to decarbonise oil and gas rigs around our shores, which is proposed by Cerulean Winds and described on this web page.

If the other large INTOG projects are as good as this one, then we’ll be seeing some sensational engineering.

Floating Wind Commercialisation Projects

This page on the Carbon Trust website is entitled Floating Wind Joint Industry Programme (JIP).

They appear to be very much involved in projects like these.

The page has this description.

The Floating Wind Joint Industry Programme is a world leading collaborative research and development (R&D) initiative dedicated to overcoming technological challenges and advancing commercialisation of floating offshore wind.

This graphic shows the partners and advisors.

Most of the big wind farm builders and turbine and electrical gubbins manufacturers are represented.

Celtic Sea Projects

The Celtic Sea lies between South-East Ireland, Pembrokeshire and the Devon and Cornwall peninsular.

The Crown Estate kicked this off with press release in July 2022, that I wrote about in The Crown Estate Announces Areas Of Search To Support Growth Of Floating Wind In The Celtic Sea.

This map shows the five areas of search.

One Celtic Sea project has already been awarded a Contract for Difference in the Round 4 allocation, which I wrote about in Hexicon Wins UK’s First Ever CfD Auction For Floating Offshore Wind.

Other wind farms have already been proposed for the Celtic Sea.

In DP Energy And Offshore Wind Farms In Ireland, I said this.

They are also developing the Gwynt Glas offshore wind farm in the UK sector of the Celtic Sea.

  • In January 2022, EDF Renewables and DP Energy announced a Joint Venture partnership to combine their knowledge and
    expertise, in order to participate in the leasing round to secure seabed rights to develop up to 1GW of FLOW in the Celtic Sea.
  • The wind farm is located between Pembroke and Cornwall.

The addition of Gwynt Glas will increase the total of floating offshore wind in the UK section of the Celtic Sea.

  • Blue Gem Wind – Erebus – 100 MW Demonstration project  – 27 miles offshore
  • Blue Gem Wind – Valorus – 300 MW Early-Commercial project – 31 miles offshore
  • Falck Renewables and BlueFloat Energy – Petroc – 300 MW project – 37 miles offshore
  • Falck Renewables and BlueFloat Energy – Llywelyn – 300 MW project – 40 miles offshore
  • Llŷr Wind – 100 MW Project – 25 miles offshore
  • Llŷr Wind – 100 MW Project – 25 miles offshore
  • Gwynt Glas – 1000 MW Project – 50 miles offshore

This makes a total of 2.2 GW, with investors from several countries.

It does seem that the Celtic Sea is becoming the next area of offshore wind around the British Isles to be developed.

How do these wind farms fit in with the Crown Estate’s plans for the Celtic Sea?

I certainly, don’t think that the Crown Estate will be short of worthwhile proposals.

Conclusion

More and more wind farms keep rolling in.

September 29, 2022 Posted by | Energy | , , , , , , , , , , , , , , , | 3 Comments

The Rolls-Royce SMR Web Site

Rolls-Royce now have a web site for their proposed small modular reactor (SMR) design.

This page is entitled Why Rolls-Royce SMR?, has this outline of the reactor program.

Rolls-Royce SMR offers a radically different approach to delivering nuclear power, we have drastically reduced the amount of construction activities and transformed the delivery environment, from a large complex infrastructure programme into a factory built commoditised product.

Our design has evolved in response to a definitive set of market driven outcomes, this is not technology for technology’s sake, but innovation, to create a transformational clean energy solution that will deliver clean affordable energy for all.

This would appear to be an approach driven by proven engineering principles and excellence, good low-risk design, backed up by the best project management.

These are all traditions inherent in the Rolls-Royce DNA.

But I also believe that Rolls-Royce have looked at the world market for nuclear reactors and designed a product to fit that market.

This paragraph is in a long section entitled Global & Scalable.

The compact footprint increases site flexibility and maximises potential plant locations, including replacement for existing coal or gas-fired plants.

Many things said on the Rolls-Royce SMR Web Site, appear to be very much market led.

In my view, this is the web site of a product designed to dominate the world market for nuclear energy.

August 16, 2022 Posted by | Energy | , , , | Leave a comment

The Channel Crossing Problem

My company provided the project management computer system; Artemis, that planned how both the tunnel and the rail link to London was built. So I heard numerous stories of inadequate infrastructure on both sides of the Channel.

I also for a time was a business partner of the man, who had been project manager on a previous attempt to build a Channel Tunnel, that was cancelled by Harold Wilson’s government in 1975, who had a lot of interesting input.

I have heard over the years of these inadequacies,

  • The Dartford Crossing wouldn’t be able to handle the traffic generated at busy times.
  • The Eurotunnel terminal in Folkestone wasn’t built large enough.
  • The port of Dover is too small.
  • The roads to the Port of Dover were inadequate.
  • The rail terminal at St. Pancras doesn’t have the capacity to run services to the places that are better served by train.

The government only has one major improvement in place, which is a new Thames Crossing, but that will only make matters worse, as more traffic will be tempted to cross the Channel to get to Europe.

It is my belief, that we need more innovative services to provide more capacity.

  • A German company called CargoBeamer, is developing a system, whereby unaccompanied freight trailers can be moved thousands of miles across Europe by rail. Their plans include services to Birmingham, Cardiff, Manchester and Scotland.
  • I would also run a CargoBeamer service from Calais to Holyhead to create a direct freight service between Ireland and Europe.
  • Ebbsfleet needs to be developed as a destination for the Elizabeth Line and an extra terminal for both daytime and sleeper trains to Europe.
  • High speed freight trains, based on existing 160 mph EMUs could be used.
  • Given the position of the new Thames Crossing on the Isle of Grain, perhaps a new ferry port could be built on the island to partially replace Dover.
  • Could some Eurotunnel services start from Watford Gap?

We have to be bold.

July 24, 2022 Posted by | Transport/Travel | , , , , , , , , , , , | 22 Comments

Monte To Purchase 100 FC Aircraft Drives From ZeroAvia

The title of this post, is the same as that of this article on electrive.com.

This is the first paragraph.

ZeroAvia and Monte Aircraft Leasing will jointly market hydrogen-powered aircraft to regional operators. Under an agreement now signed between the companies, Monte will purchase up to 100 ZA600 hydrogen-electric powertrains from ZeroAvia to be installed on existing and new 5- to 20-seat aircraft.

Monte look to be an interesting company from their web site, which has this title.

Supporting The Transition Of The Regional Aviation Industry To Net Zero Carbon Emissions

The business model appears to be a well-proven and it is not that far removed from the one, colleagues and myself used to sell the project management system; Artemis.

In our case we took proven Hewlett-Packard computers and and other hardware, added our Artemis software and a custom-made desk and leased the systems to those who wanted to do project management, with as much support as our clients required. Customers just had to supply operators, printer paper and a thirteen amp socket.

Finance was obtained by various innovative methods, often through a bank manager, who was a bit of a rogue. But he was a rogue, who was on the side of the angels.

Later he became a firm friend of mine, before he sadly died within a few days of my wife.

Monte Aircraft Leasing’s model would appear to take a proven aircraft like a Cessna Caravan, Dornier 228 or Dash 8, replace the turboprop engines with a zero-carbon powerplant and then lease the aircraft. Often this will just be an additional lease to the existing operator.

The great advantage of this approach, is that the reengined aircraft does not need to be fully re-certified. It can fly under a Supplemental Type Certificate, which is described like this in Wikipedia.

A supplemental type certificate (STC) is a civil aviation authority-approved major modification or repair to an existing type certified aircraft, engine or propeller. As it adds to the existing type certificate, it is deemed “supplemental”. In the United States issuance of such certificates is under the purview of the Federal Aviation Administration (FAA).

Monte seem to have found a good way to make money from going net-zero.

June 10, 2022 Posted by | Transport/Travel | , , , , , , , , , , | 1 Comment