The Anonymous Widower

Are Hydrogen-Fuelled Vehicles A Waste Of Our Time And Energy?

The title of this post, is the same as that of this article on Engineering & Technology, which is the magazine of the Institution of Engineering and Technology. So it should be authoritative.

This is the concluding paragraph.

Cars account for 61 per cent of surface transport emissions, HGVs only 17 per cent, buses 3 per cent, and rail 2 per cent (CCC, December 2020) so for cost/benefit it cannot be worthwhile switching to hydrogen fuel cell buses and trains. Through any impartial lens of engineering science, hydrogen fuel cell cars do not appear to be a transport winner and the Government should revisit decisions it has made about related funding. But then there is political virtue signalling.

It is a must-read contribution to the debate, as to whether hydrogen or battery power, is best for surface transport.

I don’t believe there is a simple answer, because for some applications, battery electric power is not feasible because of reasons of power or range.

  • Would a battery-electric truck, be able to haul a forty-four tonne load between the Channel Tunnel and Scotland?
  • Would a battery-electric locomotive be able to haul a thousand tonne aggregate or stone train for anything but a few tens of miles?
  • Is it possible to design a a battery-electric double-deck bus, that can carry seventy passengers?

I believe there are applications, where battery-electric is not a feasible alternative to the current diesel traction.

It is worth noting, that truck-maker; Daimler is planning to have both battery and hydrogen heavy trucks in its product line.

Users will choose, what is the best zero-carbon transport for their needs.

The Black Cab Driver’s Answer

It is always said, that, if you want to know the answer to a difficult question, you ask the opinion of a black cab driver.

So as the new electric black taxis, are the most common electric vehicle, that the average Londoner uses, what do the guys up-front say about their expensive vehicles.

  • Regularly, cab drivers complain to me about the range and having to use the diesel engine to charge the battery or power the car.
  • Some suggest to me, that hydrogen might be a better way to make the vehicles zero-carbon.

I think they may have a point about hydrogen being a better method of powering a black taxi, when you look at the pattern of journeys and the battery size and charging limitations of the vehicle.

These limitations may reduce in the future, as the technology gets better, with higher density batteries and faster charging.

We could even see a design and sales war between battery and hydrogen black cabs.

It always pays to follow the money!

February 17, 2021 Posted by | Energy, Hydrogen, Transport | , , , , , , | 4 Comments

Alstom Calls For Hydrogen Rail Fleets In The UK

The title of this post, is the same as that of this article on H2View.

These are the first three paragraphs.

Alstom has called for a £10bn investment programme in UK rail and mass transit systems, through which it would like fleets of clean, zero emission hydrogen trains to replace pouting diesel alternatives.

Titled: The UK’s New Green Age; A Step Change in Transport Decarbonisation, the report states that 300-400 hydrogen trains could be launched simply with a like for like replacement of diesels and would deliver huge environmental benefits.

The report was released after recent research revealed that the UK is lagging behind surrounding countries in comparable infrastructure. For example, France has over double the number of mass transit systems as the UK, whilst Germany has four.

There is a rapidly developing argument between the proposers of hydrogen and battery trains.

Consider.

  • Both types of train can ve a straight replacement for diesel trains, often with very little modification to stations.
  • As both hydrogen and battery trains have electric traction, they could have improved performance, so tracks and signalling might need upgrades to make full use of that performance to provide a better service for passengers.
  • Hydrogen trains will need a refuelling strategy.
  • Hydrogen trains need to carry a large tank of hydrogen.
  • Battery trains may well need charging systems or extra lengths of electrification for charging.
  • The UK will have plenty of green hydrogen and zero carbon electricity.

I also believe that hydrogen and battery trains designed from scratch will be much better than conversions of existing stock.

Conclusion

I think the environment will win this argument.

I can see cost and local circumstances deciding, whether to use battery or hydrogen trains.

For instance, Ipswich and Norwich, where there are an electrified main lines, might become battery train hubs, whereas Middlesbrough, where there is a plentiful supply of hydrogen, might use hydrogen trains for local services.

January 14, 2021 Posted by | Hydrogen, Transport | , , , | Leave a comment

Shooter Urges Caution On Hydrogen Hubris

The title of this post is the same as that of an article in the January 2021 Edition of Modern Railways.

This is the first paragraph.

Vivarail Chairman Adrian Shooter has urges caution about the widespread enthusiasm for hydrogen technology. In his keynote speech to the Golden Spanner Awards on 27 November, Mr. Shooter said the process to create ‘green hydrogen’ by electrolysis is ‘a wasteful use of electricity’ and was skeptical about using electricity to create hydrogen to then use a fuel cell to power a train, rather than charging batteries to power a train. ‘What you will discover is that a hydrogen train uses 3.5 times as much electricity because of inefficiencies in the electrolysis process and also in the fuel cells’ said Mr. Shooter. He also noted the energy density of hydrogen at 350 bar is only one-tenth of a similar quantity of diesel fuel, severely limiting the range of a hydrogen-powered train between refuelling.

Mr. Shooter then made the following points.

  • The complexity of delivering hydrogen to the railway depots.
  • The shorter range available from the amount of hydrogen that can be stored on a train compared to the range of a diesel train.
  • He points out limitations with the design of the Alstom Breeze train.

This is the last paragraph.

Whilst this may have seemed like a challenge designed purely to promote the battery alternatives that Vivarail is developing, and which he believes to be more efficient, Mr. Shooter explained: ‘I think that hydrogen fuel cell trains could work in this country, but people just need to remember that there are downsides. I’m sure we’ll see some, and in fact we should because competition improves the breed.’

i think Mr. Shooter may have made several good points.

These are my thoughts.

Creating Green Hydrogen

I haven’t done an analysis of the costs of creating green hydrogen from electrolysis, but I have a feeling, that electrolysis won’t be the only way to create large amounts of carbon-free hydrogen, in a few years.

These methods are currently available or under development or construction.

  • The hydrogen tram-buses in Pau have a personal electrolyser, that provides hydrogen at 350 bar.
  • London’s hydrogen buses will be provided with hydrogen from an electrolyser at Herne Bay by truck. Will the trucks be hydrogen-powered?

Some industrial processes like the Castner-Kellner process create hydrogen as a by-product.

In Shell Process To Make Blue Hydrogen Production Affordable, I describe the Shell Blue Hydrogen Process, which appears to be a way of making massive amounts of carbon-free hydrogen for processes like steel-making and cement production. Surely some could be piped or transported by truck to the rail depot.

In ITM Power and Ørsted: Wind Turbine Electrolyser Integration, I describe how ITM Power and Ørsted plan to create the hydrogen off shore and bring it by pipeline to the shore.

Note.

  1. The last two methods could offer savings in the cost of production of carbon-free hydrogen.
  2. Surely, the delivery trucks if used, must be hydrogen-powered.
  3. The Shell Blue Hydrogen Process uses natural gas as a feedstock and converts it to hydrogen using a newly-developed catalyst. The carbon-dioxide is captured and used or stored.
  4. If the local gas network has been converted to hydrogen, the hydrogen can be delivered to the depot or filling station through that gas network.

I very much feel that affordable hydrogen can be supplied to bus, train, tram or transport depot. For remote or difficult locations. personal electrolysers, powered by renewable electricity, can be used, as at Pau.

Hydrogen Storage On Trains

Liquid hydrogen could be the answer and Airbus are developing methods of storing large quantities on aircraft.

In What Size Of Hydrogen Tank Will Be Needed On A ZEROe Turbofan?, I calculated how much liquid hydrogen would be needed for this ZEROe Turbofan.

I calculate that to carry the equivalent amount of fuel to an Airbus A320neo would need a liquid hydrogen tank with a near 100 cubic metre capacity. This sized tank would fit in the rear fuselage.

I feel that in a few years, a hydrogen train will be able to carry enough liquid hydrogen in a fuel tank, but the fuel tank will be large.

In The Mathematics Of A Hydrogen-Powered Freight Locomotive, I calculated how much liquid hydrogen would be needed to provide the same amount of energy as that carried in a full diesel tank on a Class 68 locomotive.

The locomotive would need 19,147 litres or 19.15 cubic metres of liquid hydrogen, which could be contained in a cylindrical tank with a diameter of 2 metres and a length of 6 metres.

Hydrogen Locomotives Or Multiple Units?

We have only seen first generation hydrogen trains so far.

This picture shows the Alstom Coradia iLint, which is a conversion of a Coradia Lint.

It is a so-so train and works reasonably well, but the design means there is a lot of transmission noise.

This is a visualisation of an Alstom Breeze or Class 600 train.

Note that the front half of the first car of the train, is taken up with a large hydrogen tank. It will be the same at the other end of the train.

As Mr. Shooter said, Alstom are converting a three-car train into a two-car train. Not all conversions live up to the hype of their proposers.

I would hope that the next generation of a hydrogen train designed from scratch, will be a better design.

I haven’t done any calculations, but I wonder if a lighter weight vehicle may be better.

Hydrogen Locomotives

I do wonder, if hydrogen locomotives are a better bet and easier to design!

  • There is a great need all over the world for zero-carbon locomotives to haul freight trains.
  • Powerful small gas-turbine engines, that can run on liquid hydrogen are becoming available.
  • Rolls-Royce have developed a 2.5 MW gas-turbine generator, that is the size of a beer-keg.

In The Mathematics Of A Hydrogen-Powered Freight Locomotive, I wondered if the Rolls-Royce generator could power a locomotive, the size of a Class 68 locomotive.

This was my conclusion.

I feel that there are several routes to a hydrogen-powered railway locomotive and all the components could be fitted into the body of a diesel locomotive the size of a Class 68 locomotive.

Consider.

  • Decarbonising railway locomotives and ships could be a large market.
  • It offers the opportunities of substantial carbon reductions.
  • The small size of the Rolls-Royce 2.5 MW generator must offer advantages.
  • Some current diesel-electric locomotives might be convertible to hydrogen power.

I very much feel that companies like Rolls-Royce and Cummins (and Caterpillar!), will move in and attempt to claim this lucrative worldwide market.

In the UK, it might be possible to convert some existing locomotives to zero-carbon, using either liquid hydrogen, biodiesel or aviation biofuel.

Perhaps, hydrogen locomotives could replace Chiltern Railways eight Class 68 locomotives.

  • A refuelling strategy would need to be developed.
  • Emissions and noise, would be reduced in Marylebone and Birmingham Moor Street stations.
  • The rakes of carriages would not need any modifications to use existing stations.

It could be a way to decarbonise Chiltern Railways without full electrification.

It looks to me that a hydrogen-powered locomotive has several advantages over a hydrogen-powered multiple unit.

  • It can carry more fuel.
  • It can be as powerful as required.
  • Locomotives could work in pairs for more power.
  • It is probably easier to accommodate the hydrogen tank.
  • Passenger capacity can be increased, if required by adding more coaches.

It should also be noted that both hydrogen locomotives and multiple units can build heavily on technology being developed for zero-carbon aviation.

The Upward Curve Of Battery Power

Sparking A Revolution is the title an article in Issue 898 of Rail Magazine, which is mainly an interview with  Andrew Barr of Hitachi Rail.

The article contains a box, called Costs And Power, where this is said.

The costs of batteries are expected to halve in the next years, before dropping further again by 2030.

Hitachi cites research by Bloomberg New Energy Finance (BNEF) which expects costs to fall from £135/kWh at the pack level today to £67/kWh in 2030 and £47/kWh in 3030.

United Kingdom Research and Innovation (UKRI) are predicting that battery energy density will double in the next 15 years, from 700 Wh/l to 1400 Wh/l in 2-35, while power density (fast charging) is likely to increase four times in the same period from 3 kW/kg to 12 kW/kg in 2035.

These are impressive improvements that can only increase the performance and reduce the cost of batteries in all applications.

Hitachi’s Regional Battery Train

This infographic gives the specification of Hitachi Regional Battery Train, which they are creating in partnership with Hyperdrive Innovation.

Note that Hitachi are promising a battery life of 8-10 years.

Financing Batteries

This paragraph is from this page on BuyaCar, which is entitled Electric Car Battery Leasing: Should I Lease Or Buy The Batteries?

When you finance or buy a petrol or diesel car it’s pretty simple; the car will be fitted with an engine. However, with some electric cars you have the choice to finance or buy the whole car, or to pay for the car and lease the batteries separately.

I suspect that battery train manufacturers, will offer similar finance models for their products.

This paragraph is from this page on the Hyperdrive Innovation web site.

With a standardised design, our modular product range provides a flexible and scalable battery energy storage solution. Combining a high-performance lithium-ion NMC battery pack with a built in Battery Management System (BMS) our intelligent systems are designed for rapid deployment and volume manufacture, supplying you with class leading energy density and performance.

I can envisage that as a battery train ages, every few years or so, the batteries will get bigger electrically, but still be the same physical size, due to the improvements in battery technology, design and manufacture.

I have been involved in the finance industry both as a part-owner of a small finance company and as a modeller of the dynamics of their lending. It looks to me, that train batteries could be a very suitable asset for financing by a fund. But given the success of energy storage funds like Gore Street and Gresham House, this is not surprising.

I can envisage that battery electric trains will be very operator friendly, as they are likely to get better with age and they will be very finance-friendly.

Charging Battery Trains

I must say something about the charging of battery trains.

Battery trains will need to be charged and various methods are emerging.

Using Existing Electrification

This will probably be one of the most common methods used, as many battery electric services will be run on partly on electrified routes.

Take a typical route for a battery electric train like London Paddington and Oxford.

  • The route is electrified between London Paddington and Didcot Junction.
  • There is no electrification on the 10.4 miles of track between Didcot Junction and Oxford.

If a full battery on the train has sufficient charge to take the train from Didcot Junction to Oxford and back, charging on the main line between London Paddington and Didcot Junction, will be all that will be needed to run the service.

I would expect that in the UK, we’ll be seeing battery trains using both 25 KVAC overhead and 750 VDC third rail electrification.

Short Lengths Of New Strategic Electrification

I think that Great Western Railway would like to run either of Hitachi’s two proposed battery electric trains to Swansea.

As there is 45.7 miles pf track without .electrification, some form of charging in Swansea station, will probably be necessary.

The easiest way would probably be to electrify Swansea station and perhaps for a short distance to the North.

This Google Map shows Swansea station and the railway leading North.

Note.

  1. There is a Hitachi Rail Depot at the Northern edge of the map.
  2. Swansea station is in South-West corner of the map.
  3. Swansea station has four platforms.

Swansea station would probably make an excellent battery train hub, as trains typically spend enough time in the station to fully charge the batteries before continuing.

There are other tracks and stations of the UK, that I would electrify to enable the running of battery electric trains.

  • Leeds and York, which would enable carbon-free London and Edinburgh services via Leeds and help TransPennine services. This is partially underway.
  • Leicester and East Midlands Parkway and Clay Cross North Junction and Sheffield – These two sections would enable EMR InterCity services to go battery electric.
  • Sheffield and Leeds via Meadowhall, Barnsley Dearne Valley and the Wakefield Line, which would enable four trains per hour (tph) between Sheffield and Leeds and an extension of EMR InterCity services to Leeds.
  • Hull and Brough, would enable battery electric services to Hull and Beverley.
  • Scarborough and Seamer, would enable electric services services to Scarborough and between Hull and Scarborough.
  • Middlesbrough and Redcar, would enable electric services services to Teesside.
  • Crewe and Chester and around Llandudno Junction station – These two sections would enable Avanti West Coast service to Holyhead to go battery electric.
  • Shrewsbury station – This could become a battery train hub, as I talked about for Swansea.
  • Taunton and Exeter and around Penzance, Plymouth and Westbury stations – These three sections would enable Great Western Railway to cut a substantial amount of carbon emissions.
  • Exeter, Yeovil Junction and Salisbury stations. – Electrifying these three stations would enable South Western Railway to run between London and Exeter using Hitachi Regional Battery Trains, as I wrote in Bi-Modes Offered To Solve Waterloo-Exeter Constraints.

We will also need fast chargers for intermediate stations, so that a train can charge the batteries on a long route.

I know of two fast chargers under development.

I believe it should be possible to battery-electrify a route by doing the following.

  • Add short lengths of electrification and fast charging systems as required.
  • Improve the track, so that trains can use their full performance.
  • Add ERTMS signalling.
  • Add some suitable trains.

Note.

  1. I feel ERTMS  signalling with a degree of automatic train control could be used with automatic charging systems, to make station stops more efficient.
  2. In my view, there is no point in installing better modern trains, unless the track is up to their performance.

January 4, 2021 Posted by | Energy, Hydrogen, Transport | , , , , , , , , , , , , , , , , , , , , , , , , , | 2 Comments

The Hitachi Intercity Tri-Mode Battery Train Between Paddington And Bedwyn

This is probably one of the easiest services for GWR to run using a Hitachi Intercity Tri-Mode Battery Train.

This Hitachi infographic shows the specification.

Consider.

  • The route is fully electrified between London Paddington and Newbury.
  • It is 13.3 miles between Bedwyn and Newbury, with two intermediate stations.
  • There is under thirty miles without electrification in a round trip between Paddington and Bedwyn.
  • There is a turnback siding at Bedwyn, that could be fitted with a charger if required.
  • Current trains take 17 minutes for between Bedwyn and Newbury, which is an average speed of 47 mph.
  • The trains would run at up to 125 mph between Paddington and Reading.
  • If the Great Western Main Line gets full in-cab digital ERTMS digital signalling, they will be able to take advantage and run at up to 140 mph between Reading and Paddington.

If it could be shown to be able to run the route reliably, I feel that a Hitachi Intercity Tri-Mode Battery Train with a mix of diesel engines and battery packs might be the ideal train.

  • Large amounts of power would not be needed to maintain an average speed of 47 mph between Newbury and Bedwyn, which from my helicopter appears to be a fairly level railway by the side of the Kennett and Avon Canal.
  • Except in emergencies, I doubt that diesel running would be needed.

On my list of possible services for these trains, they would also be able to work GWR services between Paddington and Oxford or any other station with a less than thirty mile round trip away from the electrification

December 20, 2020 Posted by | Transport | , , , , | 4 Comments

Report Reveals The Environmental Benefits HS2 Will Deliver

The title of this post, is the same as that of this article on Rail Technology Magazine.

This is the introductory paragraph.

A significant report from the High-Speed Rail Group has been published today and details how the environmental team working on HS2 are delivering connected, climate-resilient habitats at a new scale, raising ambition for future infrastructure projects.

The report also suggests that High Speed Two will bring forward other projects.

The Borders Railway

The article says this about the Borders Railway.

Besides providing capacity, an extended high-speed rail network could catalyse wider public transport upgrades, such as improving the case for reopening the Borders Railway to Carlisle.

It appears to me, that to go South, from towns like Galashiels, Hawick, Peebles and Selkirk will be quicker if you change at Carlisle to High Speed Two.

Battery Electric Trains On The Borders Railway

The Borders Railway could also be one, that is ideal for battery electric operation.

  • It is already electrified at the Edinburgh end of the route.
  • Newcraighall station, where the current wires end, is only thirty miles or so from the current end of the line at Tweedbank.
  • Tweedbank and Hawick are about 15 miles.
  • At the Southern end of the route it joins the West Coast Main Line to the North of Carlisle.
  • Hawick and the West Coast Main are about 35 miles.
  • The West Coast Main Line is fully electrified.

This Hitachi infographic gives the specification of their Regional Battery Train

As Hitachi and others are talking of trains with a range of over fifty miles on batteries, I can see a sensible plan evolving to run battery electric trains between Edinburgh and Carlisle.

  • At both ends trains would join the Borders Railway with full batteries.
  • It might be sensible to extend the electrification at both ends for perhaps five to ten miles.
  • From the South trains could certainly reach Hawick and might possibly be able to reach Tweedbank.
  • From the North trains could certainly reach Tweedbank and might possibly be able to reach Hawick.

I feel that by using the best of modern battery technology and with charging during extended stops at Hawick and Tweedbank, battery electric trains could work between Carlisle and Edinburgh.

 

 

December 19, 2020 Posted by | Transport | , , , | Leave a comment

Beeching Reversal – Ferryhill Station Reopening

This is one of the Beeching Reversal projects that the Government and Network Rail are proposing to reverse some of the Beeching cuts. There used to be a Ferryhill station on the East Coast Main Line. It closed in 1967 and burnt down in 1969, before being demolished.

I first noted the station in Boris Johnson Backs Station Opening Which Could See Metro Link To County Durham, after Boris promised it would be built in PMQs.

I then mentioned the station in Northern Powerhouse Rail – Significant Upgrades Of The East Coast Main Line From Leeds To Newcastle (Via York And Darlington) And Restoration Of The Leamside Line.

Last night, I read this document from Railfuture, which talks about rail improvements in the North East and on the East Coast Main Line.

In the document, Ferryhill station is mentioned eighteen times.

Reopening Ferryhill station would appear to have support at all levels.

The Location Of Ferryhill Station

This Google Map shows the general area of the proposed Ferryhill station.

 

Note.

  1. Ferryhill is the village in the North-West corner of the map.
  2. The lion-shaped quarry in the North-East is destined to become a landfill site.
  3. Below this is Thrislington Plantation, which is a National Nature Reserve.
  4. The East Coast Main Line runs North-South between the village and the quarry.

South of the village the line splits, as is shown in detail in this second Google Map.

Note.

  • Ferryhill South junction by Denhamfields Garage, with the nearby Ferryhill Station Primary School
  • The line going South-East is the Stillington freight line to Teesside.
  • The other line going in a more Southerly direction is the electrified East Coast Main Line to Darlington and the South.
  • Between Ferryhill South junction and Tursdale Junction with the Leamside Line is a 2.5 mile four-track electrified railway.

I suspect the station could be any convenient location, to the North of the junction.

Railfuture have strong opinions on the station and feel it should be a Park-and-Ride station for the settlements in the former North Durham coalfield, with frequent services to Newcastle.

Current Passenger Train Services Through Ferryhill

These services currently pass the location of the proposed Ferryhill station.

  • LNER – London Kings Cross and Edinburgh via York, Darlington. Newcastle and Berwick-upon-Tweed
  • LNER – London Kings Cross and Edinburgh via Peterborough, Newark North Gate, Doncaster, York, Darlington, Durham and Newcastle
  • CrossCountry – Plymouth and Edinburgh via Totnes, Newton Abbot, Exeter St Davids, Tiverton Parkway, Taunton, Bristol Temple Meads, Bristol Parkway, Cheltenham Spa, Birmingham New Street, Derby, Chesterfield, Sheffield, Wakefield Westgate, Leeds, York, Darlington, Durham and Newcastle
  • CrossCountry – Southampton and Newcastle via Birmingham New Street, Derby, Sheffield, Doncaster, York, Darlington and Durham
  • TransPennine Express – Liverpool Lime Street and Edinburgh via Newton-le-Willows, Manchester Victoria, Huddersfield, Leeds, York, Darlington, Durham, Newcastle and Morpeth
  • TransPennine Express – Manchester Airport and Newcastle via Manchester Piccadilly, Manchester Oxford Road, Manchester Victoria, Huddersfield, Dewsbury, Leeds, York, Northallerton, Darlington and Durham

Note.

  1. All trains have a frequency of one train per hour (tph)
  2. All trains call at York, Darlington and Newcastle.
  3. I have missed out some of the intermediate stations, where trains don’t call at least hourly.
  4. I have missed out stations South of Birmingham New Street.
  5. A few Northern Trains services pass through at Peak times or to go to and from depots.

I suspect some of these services could stop and to encourage commuters to Newcastle, Durham and Darlington to swap from car to train,

I also suspect that Ferryhill station needs a frequency of at least two tph and if possible four! Four tph would give a Turn-up-and-Go service to Darlington, Newcastle and York.

Planned And Possible Future Passenger Train Services Through Ferryhill

From various sources, these services are either planned or possible.

High Speed Two

High Speed Two are planning the following services, that will pass through.

  • Birmingham Curzon Street and Newcastle via East Midlands Hub, York, Darlington and Durham.
  • London Euston and Newcastle via Old Oak Common, East Midlands Hub and York.
  • London Euston and Newcastle via Old Oak Common, East Midlands Hub, York and Darlington.

Note.

  1. All trains have a frequency of one tph.
  2. All trains call at York, East Midlands Hub, York and Newcastle.
  3. All trains will be 200 metres long.

I feel that Ferryhill station should have platforms long enough to accommodate these trains and other long trains, to future-proof the design and to cater for possible emergencies.

The longest trains on the route would probably be one of the following.

  • A pair of five-car Class 800 trains or similar, which would be 260 metres long.
  • A High Speed Two Classic-Compatible train, which would be 200 metres long.

Unless provision needed to be made for pairs of High Speed Two Classic-Compatible trains.

East Coast Trains

From next year, East Coast Trains, intend to run a five trains per day (tpd) service between London and Edinburgh via Stevenage, Newcastle and Morpeth.

Note that in Thoughts On East Coast Trains, I said this service would stop at Durham, as that was said in Wikipedia at the time.

Northern Powerhouse Rail

Northern Powerhouse Rail has an objective to to run four tph between Leeds and Newcastle in 58 minutes.

At present there are only three tph on this route, two tph from TransPennine Express and one tph from CrossCountry. All three services stop at Leeds, York, Darlington, Durham and Newcastle.

I believe that the best way to provide the fourth service between Leeds and Newcastle would be to run a third LNER service between London Kings Cross and Edinburgh, when upgrades to the East Coast Main Line give the train operating company another path.

  • The service would only stop en route at Leeds and Newcastle.
  • It would increase the frequency between London Kings Cross and Leeds to three tph
  • It would increase the frequency between London Kings Cross and Newcastle to three tph
  • It would increase the frequency between London Kings Cross and Edinburgh to three tph
  • It would increase the frequency between London Leeds and Newcastle to four tph
  • It would run non-stop between London Kings Cross and Leeds, in under two hours.

I believe that, when all the upgrades to the East Coast Main Line are complete, that such a service could match or even better High Speed Two’s time of three hours and forty-eight minutes between London and Edinburgh.

Ferryhill And Teesside Via The Stillington Freight Line

The Clarence Railway is described in this paragraph in its Wikipedia entry.

The Clarence Railway was an early railway company that operated in north-east England between 1833 and 1853. The railway was built to take coal from mines in County Durham to ports on the River Tees and was a competitor to the Stockton and Darlington Railway (S&DR). It suffered financial difficulty soon after it opened because traffic was low and the S&DR charged a high rate for transporting coal to the Clarence, and the company was managed by the Exchequer Loan Commissioners after July 1834.

But it has left behind a legacy of useful rail lines, that connect important factories, ports, towns, works on other railways on Teesside.

This Google Map shows the triangle between Eaglescliffe, Stockton-on-Tees and Thornaby stations.

Note.

  1. Eaglescliffe station is in the South-West corner of the map and lines from the station lead to Darlington and Northallerton stations.
  2. Thornaby station is in the North-East corner of the map and connects to Middlesbrough station.
  3. Stockton station is at the North of the map.

Tracks connect the three stations.

This Google Map shows the connection between Thornaby and Stockton stations.

Note.

  1. Stockton station is at the North of the map.
  2. Thornaby station is at the East of the map.
  3. In the South-Western corner of the map is a triangular junction, that links Eaglescliffe, Stockton-on-Tees and Thornaby stations.

Currently, this triangular junction, allows trains to go between.

  • Middlesbrough and Newcastle via Thornaby, Stockton, Hartlepool and Sunderland.
  • Middlesbrough and Darlington via Thornaby and Eaglescliffe.
  • Middlesbrough and Northallerton via Thornaby and Eaglescliffe.

But it could be even better.

This Google Map shows another triangular junction to the North of Stockton station.

Note.

  1. The Southern junction of the triangle leads to Stockton station and ultimately to Darlington, Eaglescliffe, Middlesbrough, Northallerton and Thornaby.
  2. The Eastern junction leads to Hartlepool, Sunderland and Newcastle.

So where does the Western Junction lead to?

The railway is the Stillington Branch Line.

  • It leads to Ferryhill.
  • It is about ten miles long.
  • It is double-track.
  • There used to be intermediate stations at Radmarshall, Stillington and Sedgefield.

Looking at timings for trains on the various sections of the route gives.

  • Middlesbrough and Stockton – 11 minutes
  • Stockton and Ferryhill South Junction – 23 minutes
  • Ferryhill South Junction and Newcastle – 20 minutes

This gives a timing of 54 minutes compared with up to 78 minutes for the current service on the Durham Coast Line.

In their document, Railfuture gives this as one of their campaigns.

Providing Faster Journeys Teesside to Tyneside by running passenger services from
Middlesbrough, Thornaby and Stockton via the 10 mile Stillington freight only line and then via the
East Coast Main Line to Newcastle. Our aim is to reduce overall journey time on direct train
between Middlesbrough to Newcastle from 1 hour 15 minutes to 55 minutes and so open up many
additional job opportunities to the residents of both areas.

My calculations say that it should be possible, to run a useful service between Middlesbrough and Newcastle, via the Stillington freight line.

  • The route is used regularly for freight trains and by LNER for what look to be testing or empty stock movements.
  • Will any station be built at Radmarshall, Stillington or Sedgefield?
  • I estimate that between Ferryhill South Junction and Middlesbrough, is about fifteen miles, so it might be possible to run a Middlesbrough and Newcastle service using battery electric trains, like Hitachi’s Regional Battery Trains, which would be charged on the East Coast Main Line.

Activating the route, doesn’t look to be the most expensive passenger reopening on the cards.

I suspect though, that if passenger services were to be run on the Stillington Line, that Ferryhill station, will need platforms on both the East Coast Main Line and the Stillington Line.

Services could include.

  • Newcastle and Middlesbrough via Ferryhill
  • Newcastle and Hartlepool via Ferryhill
  • Newcastle and York via Eaglescliffe and Ferryhill, with a reverse at Middlesbrough.

 

Note.

  1. The Northern terminus could be Ferryhill for some trains.
  2. Two tph between Stockton and Ferryhill would be a useful service.
  3. Would a Newcastle and Middlesbrough service call at the poorly-served Chester-le-Street station to improve services?

I also feel that as some of these services will be running on the East Coast Main Line between Ferryhill and Newcastle, it probably would be desirable for these services to be run by Hitachi’s Regional Battery Trains, which would be capable of maintaining the maximum speed for the route, as all the other passenger services can at present!

Ferryhill And Tyneside Via The Leamside Line

The reopening of the Leamside Line is a high priority of Northern Powerhouse Rail, which I wrote about in Northern Powerhouse Rail – Significant Upgrades Of The East Coast Main Line From Leeds To Newcastle (Via York And Darlington) And Restoration Of The Leamside Line.

In their document, Railfuture gives this as one of their campaigns.

Reopening the rail line from Ferryhill to Pelaw (the Leamside Line) with the aim of providing
services that will improve local connections and open new opportunities to people living in this part
of County Durham, as well as providing relief for congestion on the existing line through Durham.

This reopening has been talked about for years, so I suspect that Network Rail know the problems and at least have a rough estimate for what needs to be done and how much it will cost.

The Wikipedia entry for the Leamside Line has a section, which is entitled Proposed Re-Opening, Upgrade and Development, where this is the first paragraph.

Since the line’s closure in the early 1990s, a number of proposals to re-open the Leamside Line were put forward, including plans by AECOM, ATOC, Durham County Council, Railtrack and Tyne and Wear PTE. The line has been considered for a number of potential uses, including a regional suburban rail service linking Tyneside and Teesside, a diversionary freight route for the East Coast Main Line, and an extension to the Tyne and Wear Metro network.

Wikipedia also states that an application to the Restoring Your Railway Fund for money for a feasibility study was unsuccessful.

All that could change with the developments needed between Leeds and Newcastle for High Speed Two and Northern Powerhouse Rail.

  • High Speed Two are planning to run at least three tph to and from Newcastle.
  • Northern Powerhouse Rail are planning to run an extra service between Leeds and Newcastle.
  • LNER will have an extra path on the East Coast Main Line, that could be used through the area.

Using the Leamside Line as a diversion for freight and slower passenger trains would appear to be a possibility.

It could also be combined with the Stillington Line and Northallerton and Stockton to create a double-track diversion, alongside the double-track section of the East Coast Main Line between Northallerton and Newcastle.

Extending The Tyne And Wear Metro Along The Leamside Line

This has been talked about for some time.

In the Wikipedia entry for the Tyne and Wear Metro. there is a section, which is entitled Extension To Washington IAMP, where this is said.

There have been a number of proposals looking in to the possibility of re-opening the former Leamside Line to Washington, including a 2009 report from the Association of Train Operating Companies (ATOC), and a 2016 proposal from the North East Combined Authority (NECA), as well as the abandoned Project Orpheus programme, from the early 2000s. Most recently, proposals are being put forward to link the current network at Pelaw and South Hylton, with the International Advanced Manufacturing Park in Washington, using part of the alignment of the former Leamside Line.

If the Tyne and Wear Metro were to be extended to the Southern end of the Leamside Line, Ferryhill station could be a Southern terminal.

  • There is space to create a line alongside the East Coast Main Line between Tursdale Junction, where it connects with the Leamside Line and Ferryhill station.
  • The new Tyne and Wear trains have been designed to share tracks with other trains on Network Rail tracks.
  • This would enable interchange between East Coast Main Line, Stillington Line and Metro services, without going North to Newcastle.

At the present time, all that would be needed would be for the Metro connection to be safeguarded.

Railfuture’s Campaigns In The North East

This is a tidying up of several improvements, which are campaigns of Railfuture, that are outlined in this document.

They will be covered in separate posts.

Conclusions

I can separate conclusions into sections.

The Design Of Ferryhill Station

These are my conclusions about the design of Ferryhill station.

  • It should be built as a Park-and-Ride station.
  • It should have platforms long enough for any train that might stop at the station. I suspect this would be a pair of Class 800 trains, which would be 260 metres long.
  • Platforms should be on both the East Coast Main Line and the Stillington Line.
  • There should be safeguarding of a route, so that Metro trains could access the station from the Leamside Line.

As the station could be a Park-and-Ride station, I will assume the station will need good road access.

Train Services At Ferryhill Station

These are my conclusions about the services calling at Ferryhill station.

There should be four tph between Leeds and Newcastle, all of which would stop at York, Darlington, Ferryhill and Durham, with some services calling at Northallerton and Chester-le-Street.

There should also be less frequent services at Ferryhill to Scotland and London. Perhaps a frequency of around six tpd would be sufficient, as changes could be made at Leeds, Newcastle of York.

Two tph would probably be ideal for services on the Stillington Line to Hartlepool, Middlesbrough and Redcar.

It would certainly be a busy and well-connected station.

 

December 13, 2020 Posted by | Design, Transport | , , , , , , , , , , , , , , , , , , | 5 Comments

Beeching Reversal – Consett-Newcastle Connection

This is one of the Beeching Reversal projects that the Government and Network Rail are proposing to reverse some of the Beeching cuts. There used to be a direct line between Newcastle and Consett, which was the Derwent Valley Railway, which connected Consett to the Tyne Valley Line.

I would assume that the basis of the plan, is to reinstate this route and build a new station at Consett.

The Former Route

I will show the route starting from the Tyne Valley Line.

Connection To The Tyne Valley Line

This Google Map shows the MetroCentre with the Tyne Valley Line running along its North side.

Note.

  1. The River Tyne running along the North side of the map.
  2. MetroCentre station on the Tyne Valley Line is by the North-East corner of the MetroCentre.
  3. The River Derwent meanders its way to the River Tyne, to the West of the MetroCentre.
  4. The Derwent Valley Line used to come through this area to join the Tyne Valley Line.

I have a feeling that much of the route of the Derwent Valley Line lies under the new roads.

This map clipped from the Wikipedia entry for the Derwent Valley Line, shows how, the line connected to the Tyne Valley Line.

This Google Map shows the area.

Note.

  1. The Scotswood Railway Bridge is the dark-coloured bridge in the North-West corner of the map.
  2. The Tyne Valley Line runs East-West across the map.
  3. Swalwell station must have been in the area of the junction on the A1.

As the old route appears to be blocked, another route must be found to connect to the Tyne Valley Line.

Perhaps there would be enough space to squeeze a railway line alongside the River Derwent.

Between Swalwell And Nine Arches Viaduct

The Nine Arches Viaduct is an iconic feature of the line. This image of the bridge was taken from a Google Map.

This second image shows it as a map.

 

Note that I have arranged the map, so that the path that uses the route of the Derwent Valley Line runs between the South-West and North-East corners of the map.

This third Google Map has the Nine Arches Viaduct in the South-West corner and Swalwell in the North-East corner.

Note the tadpole-shaped green space by the bridge.

Between Nine Arches Viaduct and Lintz Green

This Google Map shows this section.

Note.

  1. The Nine Arches Viaduct is in the North-East corner.
  2. Lintz Green is in the South West corner.

On the Derwent Valley Railway, there were stations at Lintz Green and Rowlands Gill.

The History section in the Wikipedia entry for the Derwent Valley Railway, explains why a more direct route wasn’t taken in this area.

Between Lintz Green And Ebchester

This Google Map shows this section.

Note.

Lintz Green is at the Eastern edge of the map.

Ebchester is in the South-West corner.

On the Derwent Valley Railway, there were stations at High Westwood and Ebchester.

Between Ebchester and Consett

This Google Map shows this section.

Note.

  1. Ebchester is at the Northern edge of the map in the centre.
  2. Consett is in the South of the map.
  3. Shotley Bridge Hospital is an NHS hospital.

On the Derwent Valley Railway, there were stations at Shotley Bridge, Blackhill and Consett.

Consett Station

A new station would have to be built in Consett.

Consett is a town of around 25,000 and is shown in this Google Map.

Note that the red arrow shows the rough location of the original station near Annfield Plain. The station and the tracks were demolished in the 1980s to make way for new roads.

How thinking on transport has changed in forty years!

Is This Route Feasible?

Google gives the distance between the Metrocentre and Consett as 11.5 miles and Wikipedia says that Consett is about 900 feet above sea level.

To put the altitude into perspective, this is higher than Merthyr Tydfil, but not as high as Buxton, so I feel that trains could ascend to Consett, as steam trains did in far-off Victorian days, when they carried over half a million passengers every year, according to Wikipedia.

I would say, that although restoring the route could be challenging, it would not be filed under Impossible.

These are a few other thoughts.

Would The Route Carry Freight?

If we’re talking about long freight trains with lots of containers or many trucks of coal, the answer is probably a negative.

But rail freight is changing, I can see many towns in the UK getting a high speed parcels service using modified electric multiple units.

  • Rail Operations Group and others are planning to experiment with this type of service.
  • With on-line shopping, 25,000 residents can generate a lot of deliveries and returns.
  • The average guy on the Consett omnibus, is getting more worried about carbon emissions.

But trains like these could fit in with the passenger service on the route and could even unload at a well-designed passenger terminal in Consett.

The route would also have to be able to take maintenance and construction trains, just like the London Underground and the Tyne and Wear Metro do!

Would The Route Be Single- Or Double-Track?

Consider.

  • The original Victorian route was double-track.
  • The more trains on the route, the greater the need for a full double-track railway.
  • Would the Nine Arches Viaduct accommodate a double-track.
  • Single-track railways are easier to construct and more affordable.

Hopefully a serious study, will give an answer.

How Would Trains Go Between MetroCentre and Newcastle Stations?

Currently, there are three trains per hour (tph) between MetroCentre and Newcastle stations.

The Tyne and Wear Metro generally runs on the principle of five tph, so a one or two tph service between Consett and Newcastle would fit in well with the Tyne and Wear Metro, even if it was not their service.

This Google Map shows MetroCentre station.

Could a third platform be fitted here to run a shuttle service to Consett?

Trains between MetroCentre and Newcastle stations, go via Dunston station, Norwood Junction and the King Edward VII Bridge.

Note.

  1. Norwood Junction also allows trains to go between The Tyne Valley Line and the East Coast Main Line in both North and South directions.
  2. The comprehensive track layout to the South of Newcastle allows access to everywhere.

The Consett trains could even be run on a Back-to-Back basis to Ashington and Blyth.

Would The Line Be Zero-Carbon?

I feel strongly, that all new or reopened railways should be zero-carbon.

But whether it should be electrified is another matter and depends on the rolling stock.

Battery Electric Trains To Consett

If the route to Consett is to be zero-carbon, then the obvious choice for the route are battery electric trains.

  • To run these successfully, there would probably need to be some electrification along the Tyne Valley Line, as far as the junction with the new Derwent Valley Line, so trains started the climb to Consett with full batteries.
  • If necessary, some parts of the Derwent Valley Line could be electrified, to assist the trains up the hill.
  • Coming down from Consett, they could use Newton’s friend, with regenerative braking charging the batteries.
  • Intriguingly, between MetroCentre and Hexham is under twenty miles, so why not run these services using similar battery electric trains.

I also think, that if the electrification were to be 25 KVAC, then it could enable battery electric trains like Hitachi’s Regional Battery Train or CAF’s proposed Class 331 train with batteries, to run between Newcastle and Carlisle stations.

The Tyne And Wear Metro’s New Trains

I believe that the new trains being built by Stadler for the Tyne and Wear Metro, will be very similar to the Class 777 trains for Merseyrail.

The Class 777 trains are known to have this features.

  • A capacity of 484 passengers.
  • An operating speed of 75 mph.
  • A weight of 99 tonnes.
  • Ability to use 750 VDC third-rail electrification.
  • A small battery to be used for hotel power, when there is no electrification.
  • Some will be fitted with batteries to allow route extension on unelectrified lines, like between Ormskirk and Preston, which is 15.3 miles.
  • In the future, they will be able to use 25 KVAC overhead electrification.

The new Tyne and Wear trains appear to be different to the Class 777 trains in the following ways.

  • A different length, with five cars instead of four.
  • Ability to use 750 VDC overhead instead of 750 VDC third-rail electrification.
  • Longitudinal instead of transverse seating.

These facts should also be born in mind.

Stadler built the Class 399 tram-trains for Sheffield, that can use both 750 VDC and 25 KVAC overhead electrification from the same pantograph.

Parts of the Tyne and Wear Metro use tram-train operation under the Karlsruhe model, which is also used in Sheffield.

Could The Tyne And Wear Metro’s New Trains Work Between Newcastle And Consett Stations?

I feel if the following conditions were to be met, that the Tyne And Wear Metro’s new trains, would be able to work the route.

  • Batteries with sufficient range to work the route were fitted.
  • Ability to use both 750 VDC and 25 KVAC overhead electrification.
  • Sufficient electrification were erected to power the train and charge the batteries on their journey between Newcastle and MetroCentre stations.

It is my view, that the trains could be ideal for the route.

They could also work between Newcastle and Hexham, with slightly larger batteries than their Liverpool cousins.

What Size Batteries Would Be Needed For A Service To Consett?

I will do a calculation based on the Class 777 train figures.

  • The train weight is 99 tonnes.
  • Each of 484 passengers weighs 80 Kg with baggage, bikes and buggies.
  • This adds up to 38.7 tonnes giving a train weight of 137.7 tonnes.

Using Omni’s Potential Energy Calculator gives a value of 103 kWh to lift the full train the 900 feet to Consett.

In an article in the October 2017 Edition of Modern Railways, which is entitled Celling England By The Pound, Ian Walmsley says this in relation to trains running on the Uckfield Branch, which is not very challenging.

A modern EMU needs between 3 and 5 kWh per vehicle mile for this sort of service.

The new Tyne and Wear Metro trains have five cars, so assuming 3 kWh per vehicle mile, would need the following energy to power the train to Consett.

5* 3 * 11.5 = 172.5 kWh

I wouldn’t be surprised to see a 400 kWh battery on the train.

On the flat, it would do about twenty-seven miles, which would mean the train could provide a service between Newcastle and Hexham.

Incidentally, the distance between Newcastle and Ashington is under twenty five miles of which a couple of miles are electrified.

Conclusion

Newcastle and Consett would appear to be an ideal route to reopen.

It would require.

  • A dozen miles of new track. much of which would be on an dismantled alignment.
  • An appropriate number of new stations.
  • Some electrification between Newcastle and MetroCentre stations.
  • A number of the new Stadler trains for the Tyne and Wear Metro to be fitted with batteries.

A service of one or two tph could be provided.

In addition, the following could be possible.

  • The Newcastle and Hexham service could be run by the same battery electric trains.
  • The Consett and Newcastle service could be run Back-to-Back with the proposed Newcastle and Ashington service.

This scheme has collateral benefits.

 

 

December 10, 2020 Posted by | Transport | , , , , , , , , , , , | 7 Comments

LNER Seeks 10 More Bi-Modes

The title of this post, is the same as that of an article in the December 2020 Edition of Modern Railways.

This is the opening paragraph.

LNER has launched the procurement of at least 10 new trains to supplement its Azuma fleet on East Coast Main Line services.

Some other points from the article.

  • It appears that LNER would like to eliminate diesel traction if possible.
  • On-board energy storage is mentioned.
  • No form of power appears to be ruled out, including hydrogen.
  • LNER have all 65 of their Azumas in service.

The last paragraph is very informative.

Infrastructure upgrades are due to prompt a timetable recast in May 2022 (delayed from December 2021) from which point LNER will operate 6.5 trains per hour, out of Kings Cross, compared to five today. As an interim measure, LNER is retaining seven rakes of Mk 4 coaches hauled by 12 Class 91 locomotives to supplement the Azuma fleet and support its timetable ambitions until the new trains are delivered.

These are my thoughts.

More Azumas?

Surely, It would require a very innovative train at perhaps a rock-bottom price from another manufacturer, for LNER to not acquire extra Azumas.

Classic-Compatible Trains For High Speed Two

Consider.

  • Alstom, Bombardier, CAF, Hitachi, Siemens and Talgo are involved in the competition to design Classic-Compatible trains for High Speed Two.
  • As the York and Edinburgh section of the East Coast Main Line will eventually be upgraded and used by High Speed Two services,
  • Also in the December 2020 Edition of Modern Railways, is an article entitled 140 mph Plan For ECML North of York, which details improvements proposed by Northern Powerhouse Rail to improve services between Leeds and Edinburgh.

Would there be advantages to High Speed Two, LNER and Network Rail and Northern Powerhouse Rail, to have some commonality between the  High Speed Two, LNER and Northern Powerhouse Rail fleets?

Hopefully, the various government-controlled companies are talking.

A Flagship Train For Aberdeen And Inverness

The InterCity 225s, which consist of a Class 91 locomotive and a rake of nine Mark 4 coaches, have given thirty years of top-quality service on the East Coast Main Line and appear to be being asked to handle services until the new trains are delivered.

  • Full-length InterCity 225s are 245 metres long and have 406 Standard and 129 First seats or a total of 535 seats.
  • Nine-car Azumas are 234 metres long and have 510 Standard and 101 First seats or a total of 611 seats.
  • Two five-car Azumas working as a pair are 260 metres long and have 604 seats. They can also be handled on most platforms, that are used by LNER.
  • The power of a Class 91 locomotive is 4.83 MW.
  • A Class 91 locomotive is 19.4 metres long and weighs 81.5 tonnes.
  • Both Azumas and InterCity 225s can maintain 125 mph with ease on the East Coast Main Line and both will be able to reach 140 mph with in-cab signalling.

There would appear to be nothing wrong with locomotive-hauled high speed services, in terms of capacity and performance.

In The Mathematics Of A Hydrogen-Powered Freight Locomotive, I laid out my thoughts on a high-powered railway locomotive fuelled by hydrogen, that used one or possibly two Rolls-Royce gas-turbine engines to generate electricity for traction.

With all the work done, by the companies bidding for Classic-Compatible trains for High Speed Two, into very high speed trains, I believe that at least one company could build a locomotive with this specification.

  • 140 mph operation on 25 KVAC overhead electrification. As I said, that was done by British Rail almost forty years ago.
  • Ability to use full digital in-cab signalling. This is on its way and already working in some applications.
  • 110 mph operation on hydrogen. Hitachi are planning 100 mph battery trains, so it should be possible.
  • 400 mile range on one filling of hydrogen. This is working in Germany.
  • Ability to be upgraded to higher speeds on electric power, should the East Coast Main Line be upgraded for higher speeds in the future. The train manufacturers are probably ahead of track designers with this one.

Such a locomotive would be key to building a train with this specification.

  • Sub-four hour time between London and Edinburgh.
  • Sub-seven hour time between London and Aberdeen, which has 130 miles without wires.
  • Sub-eight hour time between London and Inverness, which has 146 miles without wires.
  • Hydrogen would be used, where there is no electrification.
  • Zero-carbon at all times.
  • A maximum length of 260 metres, which I estimate could give a passenger capacity of around 640 seats.
  • The last coach would include a driving van trailer.
  • They would not need the ability to split and join, except for the purpose of rescue, as there is no platform on the route, that could accommodate the resulting 520 metre long pair of trains.

I estimate that a fleet of around seven trains would be needed to run the current Aberdeen and Inverness services.

A few extra thoughts.

  • Could they have an up-market more spacious interior, as their main competition to the North of Scotland, would be the budget airlines?
  • Could they be slightly longer, with some platform work at Kings Cross and other stations?
  • Add a few extra trains to the order, so that extra services between London and Edinburgh could be added to the timetable.
  • Could the driving van trailer incorporate an observation car?
  • Hydrogen refuelling shouldn’t be a problem in Scotland, as the country is developing a hydrogen economy.
  • Hydrogen refuelling wouldn’t be needed in England, as they’d be using the electrification.
  • As an alternative to hydrogen, sustainable aviation fuel could be used.

I suspect that Talgo, would be very happy to tender.

  • They are developing hydrogen-powered trains as I wrote in Talgo: Our Hydrogen Train Will Be Ready In 2023.
  • They are building a factory in Scotland, close to the Forth Bridge.
  • Because of the factory, Talgo probably have the ear of the Scottish Government, who would probably welcome a Scottish-built train.
  • A shorter version of these trains without the hydrogen, could be the design for a High Speed Two Classic-Compatible train, for which Talgo, are on the short list of suppliers.

What better way, would there be to sell your hydrogen-powered high speed trains, than to give prospective clients a ride up from London to the factory in the luxury version?

A New Elizabethan

I can remember The Elizabethan, which was a steam-hauled non-stop express between London and Edinburgh between 1953 and 1961.

  • The steam-hauled train took six-hours-and-a-half.
  • It used to be the longest non-stop railway service in the world.
  • Today, the service could be run by the current or refurbished Azumas or perhaps a new flagship train, built for the service.
  • It could be easily under four hours.

It could be an interesting concept, to increase capacity between London and Edinburgh.

Splitting And Joining

Some of LNER’s philosophy to serve places like Harrogate, Huddersfield and Middlesbrough, depends on the ability to split and join trains.

A pair of Azumas could leave London and go to Leeds, where they would split, with one train going to Harrogate and the other going to Huddersfield.

When returning to London, the two trains would join at Leeds.

The big advantage of splitting and joining, is that it increases the capacity on the main line, as services can be arranged, so that every path always carries a full-length train. I would expect that LNER would prefer never to run a single five-car Azuma into Kings Cross.

Currently LNER have these paths to and from Kings Cross.

  • 2 tph between London Kings Cross and Leeds
  • 1 tph between London Kings Cross and Lincoln and East Yorkshire
  • 2 tph between London Kings Cross and Edinburgh

Note.

  1. LNER have already started to extend services from Leeds, so will we see splitting and joining being used on one tph at Leeds to provide services to several destinations, throughout the day.
  2. Splitting and joining at Edinburgh is surely another possibility, to serve Stirling and Glasgow, with the same train.
  3. Splitting and joining at York could serve destinations like Middlesbrough, Newcastle, Redcar, Scarborough and Sunderland.
  4. In A Trip To Grantham Station – 4th November 2020, I advocated splitting at Grantham station to serve both Nottingham and Lincoln.

There are a lot of possibilities for splitting and joining.

As LNER has a fleet of twenty-two five-car Azumas, if the new trains are needed to split and join on certain services, this might mean more five-car Azumas are a better buy.

What Will Happen To Nine Car Azumas?

Hitachi have launched the Regional Battery Train concept, the specification of which is given in this Hitachi infographic.

The diesel engines in LNER’s Class 800 trains will be able to be replaced with batteries, making them all-electric trains.

  • Destinations like Cleethorpes, Dundee, Grimsby, Harrogate, Huddersfield, Hull, Lincoln, Middlesbrough Nottingham, Perth, Redcar, Scarborough, Sheffield and Sunderland will be within range of battery electric Azumas.
  • Some destinations would need the ability to charge the train before it returned, but I can see lots of places getting an appropriate service, even if it was just one or two trains per day.
  • Unfortunately, Aberdeen and Inverness would be too far for battery electric Azumas, so services will still need to be run by nine-car bi-mode Azumas.

Five-car battery electric Azumas working in pairs from London could be the key to increasing LNER services.

I can see that LNER may end up with too many nine-car Azumas, if nine-car trains are replaced by pairs of five-car trains to serve two destinations by splitting and joining.

Would it be possible to shorten nine-car Azumas to five-car trains?

These are the formations of the two trains.

  • nine-car: DPTS-MS-MS-TS-MS-TS-MC-MF-DPTF
  • five-car: DPTS-MS-MS-MC-DPTF

It is known, that the trains have a computer, that does a quick check on start-up to determine, what cars are present and correct in the train.

  • This means that if LNER needed twelve-car trains for say London and Edinburgh, they could create a sub-fleet by just buying the requisite number of extra TS (Trailer Standard) and MS (Motor Standard) cars and coupling them up.
  • This feature also means that operators running fleets of five-car Hitachi trains, like TransPennine Express and Hull Trains can increase capacity by just purchasing the extra cars.
  • It would also allow, cars to be shuffled to create viable trains, after say several cars were damaged by vandalism.

All trains these days seem to have this very operator-friendly feature.

With LNER’s trains, I suspect that all cars of the same type are identical.

This would mean, that a nine-car train can be converted to a five-car by removing two TS (Trailer Standard), one MS (Motor Standard) and one MF (Motor First) cars.

The four cars, that have been removed could be reconfigured to form the middle three cars of a new five-car train, which would be completed by adding new DPTS (Driver Pantograph Trailer Standard) and DPTF (Driver Pantograph Trailer First) cars.

An Increase In Paths From 5 To 6.5

This will certainly allow LNER to run more services.

The odd half path could be easy to explain.

  • Hull is a city, that is on the up.
  • I suspect that it could support a five-car direct service from London with a frequency of one tph.
  • But Hull Trains are also running a successful service on the route.

Perhaps a fair solution, would be to allow both LNER and Hull Trains to run a one train per two hour (tp2h) service.

If LNER didn’t want to use the path to just run a five-car train to Hull, there are several possibilities for a split and join.

  • With a Cleethorpes, Lincoln or Nottingham service at Grantham.
  • With a Cleethorpes or Lincoln service at Newark.
  • With a Cleethorpes, Middlesbrough, Sheffield or Sunderland service at Doncaster.

I can only see splitting and joining increasing, which surely means an Azuma order is more likely.

As someone, who spent a working life, writing software to schedule projects, I can’t resist speculating on what to do with the extra whole path, that LNER will be allocated, when the infrastructure allows.

  • Many travellers wouldn’t mind LNER providing more seats between the English and Scottish capitals.
  • Many would like an alternative to flying.
  • Others would like a faster service.
  • Leeds and York will soon be a route, that LNER’s Azumas will be able to use without diesel, because of extra electrification and Azumas with traction batteries.

This leads me to believe that LNER could use the extra path for a third London and Edinburgh service in every hour, that ran via Leeds.

  • Additionally, it might stop at stations like Peterborough, York, Darlington or Newcastle.
  • It could also provide a non-stop London and Leeds service.
  • Some services could go non-stop between London and Edinburgh.
  • The direct London and Edinburgh service would be under four hours.
  • Going via Leeds would add under an hour.

It would be run by a nine-car all-electric Azumas, of which there will be unlikely to be a shortage.

How Many Azumas Could Be Fitted With Batteries Instead Of Diesel Engines?

The Wikipedia entry for the Class 800 train, has a section called Powertrain, where this is said.

Despite being underfloor, the generator units (GU) have diesel engines of V12 formation. The Class 801 has one GU for a five to nine-car set. These provide emergency power for limited traction and auxiliaries if the power supply from the overhead line fails. The Class 800 and Class 802 bi-mode has three GU per five-car set and five GU per nine-car set. A five-car set has a GU situated under vehicles 2/3/4 and a nine-car set has a GU situated under vehicles 2/3/5/7/8.

Consider.

  • Class 807 trains for Aventi West Coast will have no batteries or diesel engines. Does this save weight?
  • Class 803 trains for East Coast Trains will only have a small battery for emergency hotel power, in case of catenary failure. Does this save weight?
  • Saving weight should improve acceleration and deceleration, which could reduce journey times.
  • Removal of diesel engines would reduce the trains carbon footprint.
  • Removal of diesel engines could reduce maintenance costs.
  • Diesel engines are only needed for services that run North of Edinburgh. Other sections without electrification are probably within battery range or could be easily made so.
  • It appears every Motor car (MC, MF and MS) can be fitted with a diesel engine, although in Class 801 trains, only one is fitted. Does that mean that every Motor car in the future, could have a battery?

I think this could lead to the following.

  • The Class 801 trains are fitted with sufficient batteries to enable handling of expected emergencies. These could be similar to those in the Class 803 trains.
  • Enough nine-car Class 800 trains would be kept with diesel engines to work the Aberdeen and Inverness services. These routes at 130 and 146 miles without wires are too long for battery trains, without a succession of chargers along the routes.
  • If a third Edinburgh service were to be introduced, could some of the remainder of the nine-car Class 800 trains be converted to Class 801 trains, by removing the diesel engines?
  • I would expect most of the five-car thirty-six Class 800 trains would be fitted with batteries to run services to destinations, that can be reached on battery power. In a few years time, these will probably mean splitting and joining at Edinburgh, Leeds and other places.
  • Could we even see the twelve five-car Class 801 trains converted to battery electric Class 800 trains, which would surely give maximum flexibility about their use?

If the software on the trains, is as intelligent as it could be and can accept cars with diesel engines, batteries or no extra power, then LNER will have an enormous amount of flexibility, to configure the trains as they need.

I could even see a nine-car Class 800 train with a mix of batteries and diesel engines, that can be used as range extenders, reaching further towards Aberdeen and Inverness.

Consider a five-car Class 800 train with two batteries and a single diesel engine!

  • If I assume that Hitachi’s specification for the Regional Battery Train, is for a five-car train with three diesel engines replaced with battery packs, then a two battery pack train could have a range of 60 km or 37 miles.
  • If the route wasn’t very challenging, and the computer made judicious use of the diesel engine, could the train’s range be extended to beyond the ninety kilometres of the three-battery pack train.
  • The diesel engine could also be used to charge the batteries, before returning to the electrification of the main line.

In Vivarail’s Plans For Zero-Emission Trains, I talked about Adrian Shooter and his concept of a Pop-Up Metro, run for perhaps a year, to test if a Metro service would be viable, instead of spending the money on consultants.

The two-battery pack/one diesel Class 800 train, could run a Pop-Up London Service to test the need for a London service. All it would need is a convenient platform long enough to take a 130 metre long Class 800 train.

Possible destinations to test could include Cleethorpes, Dundee, Glenrothes-with-Thornton, Grimsby, Nottingham, Norwich, Perth, Redcar, Sheffield and Sunderland

Conclusion

There is a lot of scope to develop LNER’s services.

I think it is likely that the order will go to Hitachi.

But as I indicated, I do believe that there is scope for a manufacturer to design a zero-carbon train, that was able to serve the Aberdeen and Inverness.

  • I suspect a fleet of ten trains would be sufficient.
  • Trains would use the 25 KVAC overhead electrification, where it exists and hydrogen or battery power North of the wires.

The trains would also be capable of being upgraded to high speeds, should the East Coast Main Line be turned into a High Speed Line.

I also think, that whatever trains are bought, there will be a large upgrading of the existing Hitachi fleet, which will add batteries to a lot of trains.

November 25, 2020 Posted by | Hydrogen, Transport | , , , , , , , , , , , , , , , , | 7 Comments

Northern Powerhouse Rail – Significant Upgrades And Journey Time Improvements To The Hope Valley Route Between Manchester And Sheffield

In this article on Transport for the North, which is entitled Northern Powerhouse Rail Progress As Recommendations Made To Government, one of the recommendations proposed for Northern Powerhouse Rail is significant upgrades and journey time improvements to the Hope Valley Line between Manchester and Sheffield.

I shall look at a few of the possibilities for the route.

Northern Powerhouse Rail’s Objective For The Route

Wikipedia, other sources and my calculations say this about the trains between Manchester and Sheffield.

  • The distance between the two stations is 42.6 miles
  • The current service takes 49 to 57 minutes and has a frequency of two trains per hour (tph)
  • This gives an average speed of 52.2 mph for the fastest journey.
  • The proposed service with Northern Powerhouse Rail will take 40 minutes and have a frequency of four tph.
  • This gives an average speed of 63.9 mph for the journey.

This last figure of 63.9 mph, indicates to me that a 100 mph train will be able to meet Northern Powerhouse Rail’s objective.

Current Trains On The Hope Valley Line

In July this year, I went along the Hope Valley Line between Manchester Piccadilly and Dore and Totley stations, which I wrote about in Along The Hope Valley Line – 13th July 2020.

My train was a pair of refurbished Class 150 trains.

These trains can handled the current timetable but they have an operating speed of only 75 mph.

Looking at Real Time Trains for last week, it now appears that Northern are using new three-car Class 195 trains.

These are much better.

  • They are 100 mph trains with much better acceleration.
  • The train was still running the timetable for the slower trains.

With thirteen stops, I suspect that these new trains could be under fifty minutes between Manchester and Sheffield.

Will The Hope Valley Line Be Electrified?

Consider.

  • Currently, the Hope Valley Line is electrified between Manchester Piccadilly and Hazel Grove stations.
  • In the future, the line is likely to be electrified between Sheffield and Dore & Totley stations, in conjunction with rebuilding the Midland Main Line, to the North of Clay Cross North junction for High Speed Two.
  • After the electrification at the Eastern end, just over thirty miles will be without electrification.
  • The Hope Valley Line has an operating speed of 90 mph.

This Hitachi infographic shows the specification of the Hitachi Regional Battery train.

As these are a 100 mph train with a range of 90 km or 56 miles on battery power, these trains could work Manchester and Sheffield in the required time of forty minutes. provided they could be charged at the Sheffield end of the route.

TransPennine’s Class 802 trains can be fitted with batteries to become Regional Battery Trains, so it would appear that TransPennine’s services on this route could go zero-carbon.

In addition Northern, who are the other passenger operator on the route are working with CAF on battery electric trains, as I wrote about in Northern’s Battery Plans,

I don’t believe there are pressing reasons to electrify the Hope Valley Line to allow passenger trains to meet Northern Powerhouse Rail’s objective.

Will Operating Speed On The Hope Valley Line Be Increased?

Under Plans in the Wikipedia entry for the Hope Valley Line, this is said.

Network Rail, in partnership with South Yorkshire ITA, will redouble the track between Dore Station Junction and Dore West Junction, at an estimated cost of £15 million. This costing is based on four additional vehicles in traffic to deliver the option, however, this will depend on vehicle allocation through the DfT rolling stock plan. This work will be programmed, subject to funding, in conjunction with signalling renewals in the Dore/Totley Tunnel area.

Other proposals include a 3,600 feet (1,100 m) loop in the Bamford area, in order to fit in an all-day (07:00–19:00) hourly Manchester–Sheffield via New Mills Central stopping service, by extending an existing Manchester–New Mills Central service. Planning permission for this was granted in February 2018, but delays mean that this will now not be completed until 2023.

These changes to allow three fast trains, a stopping train and freight trains each hour were also supported in a Transport for the North investment report in 2019, together with “further interventions” for the Northern Powerhouse Rail programme.

It would also probably be a good idea, to increase the operating speed of the line to 100 mph where possible.

Effect On Passenger Services

100 mph trains on a track with an operating speed of 100 mph, could show some impressive timings.

On the Great Eastern Main Line, which is a very busy 100 mph double-track railway, 100 mph trains, achieve a 77 mph average for 90 minutes over the 115 miles, between London Liverpool Street and Norwich with a single stop.

A one-stop Manchester and Sheffield service at this speed would take just 33.2 minutes.

The stopping trains would be more of a challenge to get under forty minutes, but at least if they were battery electric trains, they’d have the better acceleration and deceleration of the electric trains.

  • Fifty minutes would be a realistic time.
  • Ten minutes turnround time at each end, would be ideal for charging the batteries and give an efficient two hour round trip.

Efficient timetabling could create a very comprehensive service for the Hope Valley Line.

Freight Trains On The Hope Valley Line

Under Freight in the Wikipedia entry for the Hope Valley Line, this is said.

Over a million tons of cement a year is taken away by rail from Earle’s Sidings at Hope.

That is a very large number of freight trains, all of which are currently hauled by diesel locomotives.

  • Looking at Real Time Trains, there are nearly always two freight trains in every hour of the day.
  • If you look at the routes, they go to a myriad number of destinations.
  • Following the routes between Dore Junction and the quarries to the South of the Hope Valley Line, there are several tunnels.
  • There are numerous quarries in a cluster, all served by their own rail lines.

Electrifying the delivery of the cement and limestone from the quarries would be a large and very expensive operation.

This Google Map shows Earle’s Sidings at Hope.

Perhaps a half-way house solution would be to use diesel to haul trains between the quarries and Earle’s sidings, where the locomotive is changed for an electric one?

  • But that would then mean that all routes from between the Peak District quarries and their destinations would need to be fully-electrified.
  • It should be noted that that the problem of zero-carbon trains, also exists at port and rail freight interchanges, where safe operation with 25 KVAC overhead wires everywhere can be a nightmare.
  • Rail freight companies are unlikely to change their old diesel locomotives for new expensive electric locomotives, until all possible routes are fully electrified.
  • It is also a big problem, all over the world.

Perhaps, what is needed is a self-powered zero-carbon locomotive with sufficient power to haul the heaviest trains?

I believe such a locomotive is possible and in The Mathematics Of A Hydrogen-Powered Freight Locomotive, I explored the feasibility of such a locomotive, which was based on a Stadler Class 68 locomotive.

The zero-carbon locomotive, that is eventually developed, may be very different to my proposal, but the commercial opportunities for such a locomotive are so large, that I’m sure the world’s best locomotive designers are working on developing powerful locomotives for all applications.

Conclusion

Northern Powerhouse Rail’s ambition for Manchester and Sheffield via the Hope Valley Line is simply stated as four tph in forty minutes. But this may be something like.

  • Three fast tph in forty minutes.
  • One stopping tph in perhaps fifty minutes.
  • One freight tph in each direction to and from the quarries that lie to the South of the line.

I didn’t realise how close that the line is to that objective, once the following is done.

  • Introduce 100 mph passenger trains on the route.
  • Improve the track as has been planned for some years.

Note that all the passenger trains, that now run the route; Class 185, 195 and 802 trains, are all 100 mph trains, although they are diesel-powered.

With a length of just under 43 miles, the route is also ideal for battery electric trains to work the passenger services, be the trains be from Hitachi, CAF or another manufacturer, after High Speed Two electrifies the Midland Main Line to the North of Clay Cross North Junction, in preparation for high speed services between London and Sheffield.

I would recommend, that one of High Speed Two’s first Northern projects, should be to upgrade the Midland Main Line between Clay Cross North junction and Sheffield station to the standard that will be required for High Speed Two.

I would also recommend, that the Government sponsor the development of a hydrogen electric locomotive with this specification.

  • Ability to use 25 KVAC overhead or 750 VDC electrification
  • 110 mph operating speed on electrification.
  • Ability to use hydrogen.
  • 100 mph operating speed on hydrogen.
  • 200 mile range on hydrogen.

A locomotive with this specification would go a long way to decarbonise rail freight in the UK and would have a big worldwide market.

Project Management Recommendations

This project divides neatly into three.

  • Perform the upgrades at Dore Junction and add the loop in the Bamford area, as detailed in Wikipedia, which will increase the capacity of the Hope Valley Line.
  • Electrify the Midland Main Line between Clay Cross North junction and Sheffield, as will be needed for High Speed Two. This electrification will allow battery electric trains to run between Manchester and Sheffield and between Sheffield and London.
  • Procurement of the trains. CAF and Hitachi are currently finalising suitable designs for this type of operation.

It would also be helpful, if the freight trains could be hauled by zero-carbon hydrogen electric locomotives, to create a much-improved zero-carbon route between Manchester and Sheffield.

 

 

 

 

 

November 23, 2020 Posted by | Hydrogen, Transport | , , , , , , , , , , , , , , , , | 2 Comments

EMR Set To Retain Liverpool – Nottingham Service

The title of this post is the same as that of this article on Railway Gazette.

This is the introductory paragraph.

The Department for Transport has confirmed to East Midlands Railway that, for the time being at least, it is no longer planning to transfer the Liverpool Lime Street – Nottingham service to TransPennine Express from the December 2021 timetable change.

My experience of the service is limited these days, but occasionally, I do use the Liverpool and Sheffield section of the service to get across the Pennines on trips North.

In January 2020, I had a horrendous trip on an overcrowded train composed of several one-car Class 153 trains, which I wrote about in Mule Trains Between Liverpool And Norwich.

This is not the way to run a long distance service, which takes over five and a half hours.

The plan to improve the service involves splitting it into two from the December 2021 timetable change.

  • Liverpool and Nottingham
  • Derby and Norwich

It was thought that the Liverpool and Nottingham section would be going to TransPennine Express (TPE).

These points summarise the Railway Gazette article.

  • TPE were training drivers and that has now stopped.
  • EMR have told staff, they will be keeping both services.
  • The service will still be split.
  • EMR  will not have enough trains to run the split service.

This paragraph sums up what could happen to run the service.

One option favoured by industry insiders would see EMR take on 15 Class 185 Desiro trainsets which are due to be released by TPE during 2021 as its fleet renewal programme concludes. These trains are maintained by Siemens at its conveniently located Ardwick depot in Manchester.

I see this splitting, as being a pragmatic solution to the problems of running a long service, with a very varied loading at various parts of the route.

  • As one company runs both sections, the changeover can be arranged to be very passenger-friendly.
  • EMR manage the possible change stations at Derby and Nottingham.
  • Passengers can be given proper care in the changeover.
  • Derby gets a direct connection to Peterborough, Cambridge and Norwich.

With my East Anglian hat on, I can see advantages in the split, as I regularly used to travel as far as Derby or Nottingham, when I lived in the East, but only once took the full service to Liverpool.

I have a few thoughts.

Capacity Between Liverpool And Nottingham

This section of the service is generally run by a pair of Class 158 trains, which have a capacity of around 140 each or 280 in total.

The Class 185 trains have three-cars and a capacity of 180 seats.

Currently, Liverpool and Nottingham takes just under two hours and forty minutes, which would make for a comfortable six-hour round trip. This would mean, that an hourly service between the two cities, will need a fleet of six trains.

Under Future in the Wikipedia entry for Class 185 trains, this is said.

Following the August 2020 decision not to transfer the Liverpool Lime Street to Nottingham route to TransPennine Express, East Midlands Railway could opt to take on the 15 trainsets due to be released from TPE to run this route.

Fifteen trains would be more than enough trains to run a pair on each hourly service and perhaps run some extra services.

Pairs of Class 185 trains between Liverpool and Nottingham would go a long way to solve capacity problems on this route.

Calling At Derby

The current service between Liverpool and Norwich doesn’t call at Derby, as it uses the Erewash Valley Line via Alfreton.

The proposed Eastern portion of the split service has been proposed to terminate at Derby, so passengers would change at Nottingham, if they wanted to travel to Sheffield, Manchester or Liverpool.

As East Midlands Railway, runs both services, they can optimise the service to serve and attract the most passengers.

Preparation For High Speed Two At East Midlands Hub Station

Eventually, the two halves of the Liverpool and Norwich service must surely call at the future East Midlands Hub station for High Speed Two, so future routes must fit in with the plans for High Speed Two.

But there’ll be plenty of time to get that right.

Interchange At Nottingham

I’m sure a quick and easy interchange can be performed at Nottingham.

In the simplest interchange, the two services could share a platform and passengers could just walk between the two trains on the level.

The following sequence could be used at Nottingham.

  • The train from Derby to Norwich would arrive in the platform and stop at the Eastern end of the platform.
  • The train from Liverpool to Nottingham would arrive in the platform and stop close behind it.
  • Passengers on the train from Liverpool, who wanted to take the Norwich train, would simply walk a along the platform and board the train.
  • The Norwich train would leave when ready.
  • The train from Liverpool would stay where it had stopped and be prepared for the return trip to Liverpool.
  • , The next train from Norwich to Derby would pull in behind the Liverpool train.
  • Passengers on the train from Norwich, who wanted to take the Liverpool train, would simply walk a along the platform and board the train.
  • The Liverpool train would leave when ready.
  • Finally, the Norwich to Derby train would leave for Derby.

Only one platform would be needed at Nottingham station, that would need to be long enough to handle the two trains.

Between Norwich And Derby

This is the only section of the Liverpool and Norwich route with any electrification.

  • Currently about thirty miles between Grantham and Peterborough are electrified.
  • The lines around Ely and Norwich are also electrified.

I think that Ely and Peterborough will be electrified earlier than other lines.

  • It would be part of an electrified freight route between Felixstowe and the East Coast Main Line.
  • It would enable electric passenger trains between Cambridge and the North.
  • It would mean the Ipswich and Peterborough services could be run by battery electric trains.
  • It could be a useful electrified diversion route to London, during engineering works.

,This extra electrification, would also mean that Norwich and Derby would probably be within range of battery electric trains.

Stadler have stated that Greater Anglia’s Class 755 trains can be converted from bi-mode into battery electric trains.

So as Greater Anglia and East Midlands Railway are both Abellio companies, could we see battery electric operation on the around 150 miles between Norwich and Derby?

Conclusion

Splitting the Liverpool and Norwich service opens up a lot of possibilities to improve the service.

 

 

November 15, 2020 Posted by | Transport | , , , , , , , , , , | 4 Comments