The Anonymous Widower

Sun Cable’s Australia-Asia PowerLink

Two weeks ago, in How Clean Energy And Jobs Can Flow From Morocco to The UK, I talked about a plan to generate electricity using solar arrays in Southern Morocco and use an underwater interconnector to bring it to the UK.

If you think that project was ambitious and distinctly bonkers, then that project is outshone by Sun Cable‘s Australia-Asia PowerLink, which is shown in this SunCable graphic.

These are a few facts about the project.

  • Electricity will be generated by solar panels in the Northern Territories of Australia.
  • There will be 12,000 hectares of solar panels in Australia, which will create 3.2 GW of electricity for distribution.
  • There will be a 36-42 GWh battery in Australia.
  • There will be 4,200 km of submarine HVDC cable to deliver the electricity to Singapore and Indonesia.
  • It looks like there will be batteries in Darwin and Singapore.
  • The link could supply up to fifteen percent of Singapore’s electricity.

It is certainly an ambitious project, that will contain the world’s largest solar array, the world’s largest battery, and the world’s longest submarine power cable.

Note.

  1. Currently, the largest solar park in the world is Bhadia Solar Park in India, which is half the size of the solar array proposed.
  2. At 720 km, the North Sea Link is the largest undersea HVDC is operation.
  3. The largest battery in the UK is Electric Mountain in Snowdonia, which is only 9.1 GWh.
  4. A Tesla Megapack battery of the required size would probably cost at least ten billion dollars.

This is certainly, a project that is dealing in superlatives.

Is The Australia-Asia PowerLink Possible?

I shall look at the various elements.

The Solar Panels

I have flown a Piper Arrow from Adelaide to Cairns.

  • My route was via Coober Pedy, Yulara, Alice Springs and Mount Isa.
  • There didn’t seem to be much evidence of rain.
  • The circle from South to East took four days of almost continuous flying, as Australia is not a small country.
  • It left me with the impression of a flat featureless and hot country.

Having seen solar panels on flat areas in the UK, the Australian Outback could be ideal for solar farms.

Sun Cable are talking about 10,000 hectares of solar panels, which is roughly 38.6 square miles or a 6.2 mile square.

Given enough money to source the solar panels and install them, I would expect that the required solar farm could be realised.

The Cable

Consider.

  • The North Sea Link is a 1.4 GW cable that is 720 km. long.
  • I would size it as 10008 GW-km, by multiplying the units together.
  • The Australia-Asia PowerLink will be 4200 km or nearly six times as long.
  • But at 3.2 GW as opposed to 1.4 GW, it will have 2.3 times the capacity.
  • I would size it as 13,400 GW-km.

Whichever way you look at it, the amount of cable needed will be massive.

The Battery

Currently, the largest battery in the world is the Bath County Pumped Storage Station, which has these characteristics.

  • Peak power of 3 GW
  • Storage capacity of 24 GWh.

Sun Cable’s 36-42 GWh battery will be the largest in the world, by a long way.

But I don’t think pumped storage will be suitable in the usually dry climate of Northern Australia.

The largest lithium-ion battery in the world is the Hornsdale Power Reserve in South Australia, which is only 150 MW/194 MWh, so something else will have to be used.

As Highview Power are building a CRYOBattery for the Atacama region in Chile, which I wrote about in The Power Of Solar With A Large Battery, I wonder, if a cluster of these could provide sufficient storage.

 

October 12, 2021 Posted by | Energy Storage, Energy | , , , , , , , , , | Leave a comment

Could The Morocco-UK Power Project Be Developed Into A Western Europe And Africa Interconnector?

This page on the Xlinks web site, describes the Morocco-UK Power Project, which is proposed to generate solar and wind power in Morocco and deliver it to the UK.

  • The plan envisages 10.5 GW of electricity being generated.
  • There will be a 5GW/20GWh battery in Morocco.
  • They will export 3.6 GW of electricity to the UK for at least twenty hours per day.
  • The electricity will be exported to the UK by an Interconnector that skirts to the West of Spain, Portugal and France.
  • The interconnector will be 3,800 kilometres long.

I described the project in detail in Moroccan Solar-Plus-Wind To Be Linked To GB In ‘Ground-Breaking’ Xlinks Project.

This Google Map shows Western Europe And North Africa.

Note.

  1. The light blue of the Continental Shelf
  2. The darker blue of deeper water.
  3. The Southern end of the Morocco and the UK interconnector will at Guelmim Oued Noun in the South of Morocco, which is indicated by the red arrow.
  4. The UK end of the cable will be at Alverdiscott between Barnstaple and Bideford in North Devon.
  5. Southern Morocco and Algeria look to be mainly in the Sahara Desert.

If we look at the route of the cable, it connects a lot of possible renewable energy sources.

  • Morocco – Solar and wind
  • Spain – Solar and wind
  • Portugal – Solar and wind
  • France – Nuclear, tidal and wind
  • UK – Nuclear and wind.

Could the UK and Morocco interconnector be developed into a bigger power project?

  • Solar and wind power from Algeria could be added.
  • Tidal power from a Severn Barrage could be added.
  • Connections could be added to Gibraltar, the Irish Republic and Wales.

I believe that there could be a large amount of electricity developed on the Western costs of Europe and Africa.

An interconnector would move it to where it is needed.

 

September 29, 2021 Posted by | Energy, World | , , , , , , , , , , , , , , , | 2 Comments

Quinbrook To Build The UKs Largest Consented Solar + Battery Storage Project

The title of this post, is the same as that article on Financial Buzz.

This is the first paragraph.

Quinbrook Infrastructure Partners (“Quinbrook”), a specialist global investment manager focused exclusively on renewables, storage and grid support infrastructure investment, today announced that it has acquired a consented 350MW Solar + Battery storage project, located in Kent, UK (“Project Fortress”). Quinbrook expects to commence construction of the project in the first half of 2022.

I have also read about Quinbrook on their web site.

A section on the site is entitled Our Industry Pedigree, where this is said.

Quinbrook is led and managed by a senior team of power industry professionals who have collectively invested over US$ 8.2 billion in energy infrastructure assets since the early 1990’s, representing over 19.5GW of power supply capacity. Our team brings an industrial perspective to investing in low carbon and renewables infrastructure.

Could companies like this be one of the keys to get more renewable power sources delivered?

September 29, 2021 Posted by | Energy, Energy Storage, World | , , , | Leave a comment

Moroccan Solar-Plus-Wind To Be Linked To GB In ‘Ground-Breaking’ Xlinks Project

The title of this post, is the same as that of this article on Current News.

This is the first paragraph.

New solar and wind under development in Morocco is to be linked with Britain, with developer Xlinks also seeking to develop a cable manufacturing industry.

It looks to be a very challenging project.

  • The HVDC cable will be 3,800 km long.
  • The plan envisages 10.5 GW of electricity being generated.
  • There will be a 5GW/20GWh battery in Morocco.
  • They will export 3.6 GW of electricity to the UK for at least twenty hours per day.
  • The electricity will be exported to the UK by a cable that skirts to the West of Spain, Portugal and France.
  • The UK end of the cable will be at Alverdiscott in Devon.

All except the last are pushing current technology to the limit.

There is more information on the Morocco-UK Power Project page on the Xlinks web site.

  • The company claims, that it can supply renewable energy, that acts like baseload power.
  • When complete, it could supply eight percent of the UK’s energy needs.

These are my thoughts.

The 3,800 km. HVDC Link

This paragraph on the project web page describes the HVDC link.

Four cables, each 3,800km long form the twin 1.8GW HVDC subsea cable systems that will follow the shallow water route from the Moroccan site to a grid location in Great Britain, passing Spain, Portugal, and France.

It appears that would be 15200 kilometres of cable.

The longest HVDC link in the world is 2375 km. It’s overland and it’s in Brazil.

I can’t think otherwise, than that this will be a very challenging part of the project.

This Google map shows the area of Morocco, where the energy will be generated.

Note.

  1. Guelmim Oued Noun is outlined in red.
  2. The Canary Islands are just off the map to the West.

At least the project will be able to have convenient access to the sea.

This second Google Map shows the <Moroccan, Portuguese and Spanish coasts from Guelmim Oued Noun to the Bay of Biscay.

Note.

  1. The light blue of the Continental Shelf
  2. The darker blue of deeper water.
  3. Guelmim Oued Noun is outlined in red.
  4. The Canary Islands in the Atlantic Ocean to the West of Guelmim Oued Noun.
  5. Could the cable bring power to Gibraltar?
  6. There are other large cities on the route in Morocco, Portugal and Spain.

This third Google Map shows the Bay of Biscay.

Note.

  1. The light blue of the Continental Shelf
  2. The darker blue of deeper water.
  3. There are a series of islands off the Spanish and French coasts.
  4. Could these islands be used as stepping stones for the cable?

This fourth Google Map shows the Western Approaches to the UK.

Note that the prominent red arrow indicates Alverdiscott, where cable connects to the UK National Grid.

The article also says that they may be building their own cable-manufacturing facility. Does this indicate that there is a shortage of HVDC cable?

10.5 GW Of Zero-Carbon Electricity

This sentence on the project web page describes the power generation.

This “first of a kind” project will generate 10.5GW of zero carbon electricity from the sun and wind to deliver 3.6GW of reliable energy for an average of 20+ hours a day.

It appears that they will be providing a baseload of 3.6 GW to the UK for over twenty hours per day.

Consider.

  • Hinckley Point C has an output of 3.2 GW.
  • As I write this around midnight, the UK is generating 22.2 GW of electricity.

This paragraph from their web site describes the advantages of Morocco.

Most importantly, Morocco benefits from ideal solar and wind resources, required to develop renewable projects that could guarantee suitable power production throughout the year. It has the third highest Global Horizontal Irradiance (GHI) in North Africa, which is 20% greater than Spain’s GHI and over twice that of the UK. Furthermore, the shortest winter day still offers more than 10 hours of sunlight. This helps in providing production profiles that address the needs of the UK power market, especially during periods of low offshore wind production.

It is not a small power station in the wrong place.

The 5GW/20GWh Battery

That is a massive battery.

The world’s largest lithium-ion battery is Gateway Energy Storage in California. It has a capacity of 250 megawatts for one hour.

The proposed battery in Morocco is eighty times as large.

If I was choosing a battery for this application, I believe the only one that has been demonstrated and might work is Highview Power’s CRYOBattery.

I wrote about Highview’s similar type of application to Morocco in Chile in The Power Of Solar With A Large Battery.

But that installation only will only have storage of half a GWh.

But I believe Highview and their partner; MAN Energy Solutions can do it.

Conclusion

I wish the company well, but I have a feeling that there’s a chance, that this will join the large pile of dead mega-projects.

But I do feel that the solar and wind power station in Morocco will be developed.

And like the project in Chile it will have a large Highview CRYOBattery.

 

 

 

September 26, 2021 Posted by | Energy | , , , , , , , | 35 Comments

Denmark Hill Station – 4th September 2021

The article on Rail Technology Magazine is entitled Denmark Hill Station First To Use Innovative Solar Technology In Europe.

The first two paragraphs describe the technology.

Denmark Hill station has become the first train station in Europe to have BIPVco’s Flextron thin film technology installed, on top of other upgrades, following a £7.5m extension.

The sophisticated and flexible solar panels are different from traditional ‘glass like’ panels, requiring no additional weight support, and will be used across other stations going forward.

Note.

  1. In the application of the technology at Denmark Hill station, a surplus of electricity is returned to the grid.
  2. BIPVco is a company based in South Wales, that evolved from research by Tata Steel and Swansea University, with the backing of the Welsh Government.
  3. The panels are lightweight, flexible, durable and self-cleaning.

Many years ago, I put up a barn based on timber beams, which had a sheet steel roof. These panels would be ideal for many agricultural buildings, like the one I commissioned.

These are pictures I took at Denmark Hill station, this morning.

Note.

  1. The original station was designed by Charles Henry Driver.
  2. The new entrance displays a high degree of craftsmanship, especially in the brickwork.
  3. The coffee and gluten-free cake I had in FCB Coffee were excellent.
  4. The station has its own pub; The Phoenix.

According to Network Rail, it has already been nominated for two architectural awards.

September 4, 2021 Posted by | Energy, Food, Transport | , , , , , , , | 2 Comments

Namibia Is Building A Reputation For The Cheapest Green Hydrogen

The title of this post, is the same as that of this article on Hydrogen Fuel News.

This paragraph explains the deal that Germany and Namibia have done.

Germany, the largest economy in Europe, has just closed a partnership with Namibia, for a supply of the cheapest green hydrogen. The Southern African country is aiming to produce its H2, made with renewable energy, for prices as low as $1.8/kg. The European nation intends to import massive volumes of what it believes will be the most affordable renewable H2 in the world. It has signed a deal with Namibia that steps up the worldwide scramble to secure the best options for H2 supply connected with substantial renewable installations.

Note.

  1. Namibia has the ability to produce large amounts of solar and wind energy.
  2. I suspect the hydrogen will be converted to liquid ammonia for shipment to Germany.

The Gremans are building a large hydrogen terminal at Wilhelmshaven, which I wrote about in Uniper To Make Wilhelmshaven German Hub For Green Hydrogen; Green Ammonia Import Terminal.

Although, Namibia has now been an independent country since 1990, from 1884 to 1915 it was the German colony of German South West Africa.

Hopefully, this deal will work out to the benefit of both Germany and Namibia.

September 2, 2021 Posted by | Energy, Hydrogen | , , , , | Leave a comment

The Immense Potential Of Solar Panels Floating On Dams

The title of this post, is the same as that of this article on the Anthropocene.

The article reviews the practice of floating solar panels on ponds, lakes and reservoirs.

I like the practice, as the two technologies are compatible.

  • The panels reduce evaporation and help to curb algae growth.
  • Floating panels are cooled by the environment and more efficient.
  • Solar and hydro power can share electricity transmission systems.

But best of all. they use land twice.

The article claims that as much as forty percent of the world’s power can be generated this way.

The article is certainly an interesting read.

August 14, 2021 Posted by | Energy, Energy Storage | , , , | 8 Comments

The Power Of Solar With A Large Battery

This post is based on this press release from Highview Power, which is entitled Highview Enlasa Developing 50MW/500MWh Liquid Air Energy Storage Facility In The Atacama Region Of Chile.

This is the first paragraph.

Highview Enlasa, the 50/50 joint venture between Highview Power, a global leader in long duration energy storage solutions, and Energía Latina S.A.-Enlasa, the largest backup power generation provider in Chile, is pleased to announce that it is developing the first liquid air long duration energy storage project in Chile. This 50MW/500MWh (10 hours) CRYOBattery™, which represents an estimated investment of USD $150 million, will be located in Diego de Almagro in the Atacama Region.

Ican deduce these points from this paragraph.

The power output of 50 MW appears to be standard for all of Highview Power’s CRYOBatteries, which is not surprising as the centre of each system appears to be a standard turbomachinery solution from MAN Energy Solutions, as I wrote about in MAN Energy Partners With Highview Power On Liquid-Air Energy-Storage Project.

But whereas the first system at Carrington, near Manchester, can only store 250 MWh, this plant in Chile is twice the size and can provide 50 MW of electricity for ten hours. The Chile plant will just have twice the number of storage tanks for liquid air.

I can no reason, why if Carrington needed to store more electricity, that more tanks couldn’t be added.

This Google Map shows the area around the city of Diego de Almagro.

Note.

  1. The city of Diego de Almagro is in the centre of the map.
  2. In the North-Western corner is the Planta Fotovoltaica ENEL Diego de Almagro, which even my rudimentary Spanish, identifies as a solar power plant.
  3. In the North-Eastern corner of the map, is appears that a second solar power plant is under construction.

The city is surrounded by the large Atacama Desert.

This second Google Map shows the location of Diego de Almagro, with respect to the Chilean Coast.

Note.

  1. The red arrow indicates the solar powerplant at Diego de Almagro.
  2. La Paz in Bolivia is in the North-East corner of the map.
  3. The sandy-beige colour indicates the Atacama Desert.

The area would appear not to lack sun.

This extract is from the press release.

With one of the highest solar irradiations in the world, the Atacama Region has the potential to generate all the country’s electricity. By pairing solar with cryogenic energy storage, Chile can benefit from 24/7, 100% renewable energy.

The Wiukipedia entry for Solar Power In Chile, is not as optimistic as the press release, but does show the rapid growth in the amount of solar power.

Conclusion

Solar power installed with large batteries, will transform the electricity supply in countries like Australia, Chile and India and those in Africa and other places, where there are large hot deserts.

In Europe, Spain is investing heavily in solar power and is a big innovator in solar technology.

 

 

July 1, 2021 Posted by | Energy, Energy Storage | , , , , , , | 2 Comments

Could West Africa Become A Green Energy Powerhouse?

I ask this question, because I have just read this article on Hydrogen Fuel News, which is entitled Green Hydrogen Potential Causes Germany to court West African countries.

The article has this sub-title.

Nations in that part of Africa have the capacity to meet 1500 times Germany’s 2030 H2 demand.

That would appear to be a massive amount of hydrogen.

This extract from the article, talks about energy production.

Initial results for the 15 West African Economic Area (ECOAS) countries revealed that a massive three quarters of West African land is appropriate for wind turbines. Moreover, the electricity production from wind energy in the region costs about half the amount it would in Germany.

Additionally, solar power systems can also be economically operated on about one third of the West African region.

Add in a few large electrolysers and you have the hydrogen.

The hydrogen can be transported to Germany by tanker, either as hydrogen or ammonia.

The German strategy is to be underpinned by education, as this extract explains.

In support of developing West African green hydrogen production, a new master’s graduate program on clean H2 technology will begin in September. The purpose of the program will be to train local green hydrogen scientific specialists. The first three waves of the program are expected to train about 180 students attending four universities in Côte d’Ivoire, Togo, Senegal, and Niger.

Perhaps the Commonwealth should do something similar in West African countries like Gambia, Ghana, Nigeria and Sierra Leone.

After all many parts of Australia have very similar climate and population densities and probably energy generation potential to large parts of West Africa.

The Geographical Advantage

It should also be noted that geographically West Africa is close to Europe by ship.

There are no pinch points like the Suez Canal

As the European hydrogen gas network grows, the journey will get shorter.

Does anybody know how long it would take a tanker to go between say Accra in Ghana to Rotterdam?

Conclusion

I would see four main benefits coming to West Africa.

  • Electricity for all.
  • Employment to support the new industries.
  • Hydrogen to power transport.
  • The value of all those exports.

Hopefully, the standard of living of all those in West Africa would improve.

 

May 26, 2021 Posted by | Hydrogen | , , , , , , | Leave a comment

Highview Power Unveils $1bn Of Liquid-Air Energy Storage Projects In Spain

The title of this post, is the same as that of this article on Recharge Magazine.

The article is based on this press release from Highview Power, which is entitled Highview Power Developing 2 GWh of Liquid Air Long Duration Energy Storage Projects in Spain.

This is the introductory paragraph from the press release.

Highview Power, a global leader in long duration energy storage solutions, announced today it is developing up to 2 GWh of long duration, liquid air energy storage projects across Spain for an estimated investment of around $1 billion. These projects will enable several Spanish regions to move towards their net zero emissions target.

The press release also says this about location and size.

Highview Power is planning to develop up to seven CRYOBattery™ projects ranging from 50 MW/300 MWh in Asturias, Cantabria, Castilla y Leon, and the Canary Islands.

Three of these areas are in Northern Spain and the other is a group of islands.

As Spain has at least two large pumped storage systems, perhaps geography rules this proven technology out in these areas.

System Modularity 

According to the Wikipedia entry for Highview Power, the two current CRYOBatteries under development are sized as follows.

  • Carrington, Manchester, UK – 50 MW/250 MWh – Under construction
  • Vermont, USA – 50 MW/400 MWh – Under development

Do the figures indicate that several systems will share the same 50 MW core power system, with a number of liquid air tanks to give the appropriate capacity?

I have extensively modelled chemical plants in my past to see, how different sizes work and I am fairly certain, that Highview Power have developed a design, that is extremely flexible.

It looks like if initial calculations show that a system capable of supplying 50 MW for five hours is needed, but operation proves that a capacity of six hours would be better, that all Highview Power need to do is add another 50 MWh tank.

This is surely an operator’s dream, as if say a developer builds a thousand dwellings and/or a windfarm nearby and more energy storage is needed, an appropriate number of extra tanks can be added.

Sourcing The 50 MW Core Power System

I talked about how the first system at Carrington will use a system from MAN Energy Solutions in MAN Energy Partners With Highview Power On Liquid-Air Energy-Storage Project.

This surely is an approach that minimises risk.

Sourcing The Storage Tanks

I have been searching the Internet for manufacturers of cryogenic gas tanks and I’ve found them in countries like Australia, Brazil, Germany, India, South Africa, Spain, the UK and the US.

But then most hospitals have one for their liquid oxygen.

This image was from shutterstock.

They are not difficult to find.

Spain And Renewable Energy

Spain is a large producer of renewable energy and also a leader in wind and solar power technology.

See Renewable Energy in Spain on Wikipedia for more details.

Siemens Gamesa, which was created by a merger of a German and a Spanish company and is headquartered at Zamudio in Spain,  have also developed the Siemens Gamesa ETES, which is a volcanic rock-based energy storage system about the same size of Highview Power’s CRYOBattery.

Conclusion

It looks to me, that Highview Power have closed a good sale.

May 20, 2021 Posted by | Energy, Energy Storage | , , , , | 4 Comments