The Anonymous Widower

Is This One Of The Most Significant Pages On The Internet?

The page is Rolls-Royce’s List Of Press Releases.

On July 8th, 2021, the company issued this press release, which is entitled Rolls-Royce Welcomes All-Electric Ground Support From Jaguar Land Rover For All-Electric Flight Speed World Record Attempt.

This is the opening paragraph.

Rolls-Royce’s all-electric aircraft the ‘Spirit of Innovation’ will take to the skies for the first time in the coming weeks as we work towards a world-record attempt with a target speed of 300+ MPH (480+ KMH). This exciting project will be carbon neutral and to support this ground-breaking innovation Jaguar Land Rover is loaning all-electric zero emission Jaguar I-PACE cars as towing and support vehicles.

This picture shows Spirit of Innovation and one the Jaguar I-PACE cars together in this Rolls-Royce picture

They make an interesting pair.

There is a full analysis of the plane in this article on CleanTechnica, which is entitled Rolls-Royce Attempting 100% Electric Aircraft Speed Record, Jaguar I-PACE Offering Ground Support.

The Jaguar can even tow the plane.

Unusual.

Also on On July 8th, 2021, the company issued this press release, which is entitled Rolls-Royce And Cavendish Nuclear Sign Delivery And Manufacturing Partnership Agreement For SMR Programme.

Another world-class company has joined the small modular nuclear reactor programme.

I have feelings, that this could be the start of something small and incredibly powerful!

Conclusion

I suspect Rolls-Royce have lots of useful research sitting in their archives. We should all follow, what they doing.

July 19, 2021 Posted by | Transport | , , , , , | 3 Comments

United Airlines To Buy 100, 19-seat Electric Planes from Heart Aerospace

The title of this post, is the same as that of this article on Reuters.

This is the first paragraph.

United Airlines said on Tuesday it would buy 100 19-seat ES-19 electric planes from Swedish start-up Heart Aerospace, as the U.S. carrier eyes battery-powered aircraft for regional routes.

It looks fairly conventional, except that you don’t find many four-engined propeller driven aircraft these days.

This page on the Heart Aerospace web site, gives more details of the company and its plane.

I suggest you read the FAQ, as the last five sections give details on the use of the planes, as short-haul airliners and island hoppers.

What’s A Typical Route That The ES-19 Will Fly In 2026?

In answer to this question, the FAQ says this.

Our early adopter market will be very short flights where there is high demand. This will include island-hopping and flying over mountainous terrain, where the flight distance is significantly less than the road routes available.

I can certainly see these planes and other 19-seaters  island hopping and on cross-country routes all over the British Isles.

Other 19-seater Aircraft You May Have Flown

I have only flow in one and that was an Embraer Bandeirante from Norwich to Stavanger.

Others will have flown in a De Havilland Canada Twin Otter or the Britten-Norman Trilander.

Conclusion

This well-backed Swedish design could be a very widely-used airliner, if it meets the ambitious in-service date of 2026.

There are other designs being developed including the more unusual Faradair Aerospace BEHA.

Unlike the ES-19 it is not fully electric, but is powered by a small Honeywell gas turbine running on sustainable aviation fuel.

But the ES-19 looks the best yet!

 

N

July 15, 2021 Posted by | Transport | , , , | 1 Comment

Eviation Alice Has Changed Shape

This article on Flying Magazine gives the latest status of the Eviation Alice.

If you look at the picture in the Flying Magazine article and an earlier one taken at the 2019 Paris Air Show in this article in The Times, you are looking at two different aircraft.

  • The earlier aircraft has three engines; two in the wingtips and one in the tail, a V-tail and a taildragger undercarriage.
  • The latest aircraft has two engines in pods alongside the rear fuselage, a T-tail and a tricycle undercarriage.

The latest aircraft is much more conventional. This quote from the Flying Magazine article talks about the design.

The production configuration was optimized from real-world lessons learned and customer feedback.

My feedback, as a private pilot with many hours in command of a big piston twin, would have questioned the use of a taildragger configuration with three engines and I certainly prefer the new more-conventional configuration.

Every pilot’s nightmare in a twin-engined aircraft, is an engine-failure on take-off, as it sets up forces that are difficult to control. So you make sure you can cope in that situation. With three engines, there are more difficult situations to handle.

I suspect any pilot, who did their twin training on an aircraft like a Piper Seneca, could be easily and quickly converted to the later version of the Eviation Alice. But few pilots these days learn how to fly taildraggers and this configuration with three engines in the earlier aircraft, could require a longer and more demanding conversion process.

I haven’t piloted an aircraft for twenty years, but even so, in an emergency, I would feel I could take over the current Alice, but the original configuration would have been beyond my experience.

The new more conventional configuration will probably be easier to certify.

Conclusion 

I very much agree with the change of configuration.

I hope I get a chance to fly in this aircraft soon after its planned entry into service in 2024.

Alice and other similar electric aircraft will change short-haul aviation very much for the better.

July 9, 2021 Posted by | Design, Transport | , , | Leave a comment

Are Disposable Nappies A Wasted Resource?

I stated my views on disposable nappies in this post called Disposable Nappies, where this was the first sentence.

From a scientifically green point of view, in many places I’m against using disposable nappies, as they clog sewers, end up in landfill and I’ve even seen them in litter bins in parks. We used real nappies for all our three children in the seventies, washing them ourselves in a machine for the first and then using a nappy service for the last two.

But dirty nappies contain a lot of the ingredients, that can be used to make hydrocarbons.

This article from the Sunday Times in 2018 is entitled Syngas, The New Jet Fuel — Stinky Nappies And Coffee Cups.

These are the first two paragraphs of The Times article.

With their packed cabins and recycled air, long-haul passenger jets are the last place where you would want to encounter the whiff of a dirty nappy.

However, old nappies are to be used — along with other non-recyclable waste such as meal packaging and takeaway coffee cups — to power British Airways planes.

Syngas is a mixture of hydrogen, carbon monoxide and some carbon dioxide. Some countries without access to petroleum or diesel created syngas and then used the Fischer–Tropsch process to create the fuels they needed. The process doesn’t have a good reputation as the two main countries to use the process were Germany under the Nazis and South Africa during apartheid.

Why is the use of this process being revived to produce aviation biofuel or sustainable aviation fuel for British Airways?

According to Wikipedia, it can save between 20 and 98 % of carbon emissions compared to conventional jet fuel.

The same process can also make biodiesel for buses, trains and trucks

It’s certainly an area, where a lot of research is going on! Just type “syngas nappies” or “syngas diapers” into Google and you’ll get a lot of serious hits.

By my front door I have a well-designed blue bin.

This is for my food waste bin, which is collected once a week.

This page on the Hackney web site is entitled Food Waste Recycling, and this is said about where the food waste goes.

Food waste from households in Hackney is sent to an anaerobic digestion facility in south east England, where it’s turned into renewable energy to power homes and biofertiliser to be spread on local farmland to grow crops.

A similar bin of an appropriate size could be used for nappies.

The nappies would go to an appropriate recycling site, instead of down the toilet or into landfill.

 

 

July 4, 2021 Posted by | Transport | , , , , , , , | 1 Comment

Velocys Technology Powers First Commercial Flight

The title of this post, is the same as that of this article on Biomass Magazine.

This is the first two paragraphs.

Velocys plc, the sustainable fuels technology company, is pleased to announce that sustainable aviation fuel (SAF) produced by the company’s proprietary technology using woody biomass residue feedstock has been used in a commercial flight by Japan Airlines.

Japan Airlines flight (JAL #515) from Tokyo to Sapporo was completed on June 17.

Note.

  1. From the picture, the aircraft appears to be an Airbus A350.
  2. Velocys is a sign-out from Oxford University.

Sustainable Aviation Fuel is definitely on its way.

June 22, 2021 Posted by | Transport | , | Leave a comment

Air Passengers Can Beat Queues With Uber-Style Private Jet Service

The title of this post, is the same as that of this article on The Times.

Hyer Aviation are starting a service that uses similar technology to Uber to share seats on private jets around Europe.

Their modus operandi is laid out in this press release on their web site.

This paragraph is from the press release.

The concept works like an extra-comfortable UberPool with wings. Passengers can initiate their own flight or join flights proposed by others. This allows them to fly on private aircraft for a fraction of the cost while offsetting the carbon emission of their flights. From London, routes are available to some of Britain’s favourite holiday destinations such as Ibiza, Cannes, Malaga, Amalfi Coast and Amsterdam. From Amsterdam, it is also possible to find flights proposed by other passengers to Nice and Ibiza.

think this business model could fly.

Years ago, I owned a twin piston-engined six seater aircraft and I flew it all over Europe. I don’t fly now, as my medical history would probably stop that, but the experience showed there are many quiet airports all over the UK and Europe, that could be destinations for a 6-9 seater aircraft.

To me the interesting thing about this business model, is that there are several zero-carbon 6-9 seater aircraft under development.

Two are electric developments of the widely-used Cessna Caravan and the Britten-Norman Islander and others are clean-sheet developments like the Eviation Alice or the Faradair BEHA.

ZeroAvia are also experimenting with a hydrogen-powered Piper Malibu.

An electric or zero-carbon future for aviation is closer than many think.

But it will start at the smaller end with ranges of up to 500 miles.

 

 

June 14, 2021 Posted by | Transport | , , , , , , , , | 1 Comment

UK Air Taxi Start-Up Finds Early Buyers For 1,000 Vehicles

The title of this post, is the same as that of this article on the Financial Times.

The article is well worth a read and describes the progress of Vertical Aerospace, which was started by Ovo Energy founder; Stephen Fitzpatrick.

The Vertical Aerospace web site is worth a visit.

Details given of their VA-X4 plane include.

  • Range – 100+ miles
  • Speed – 202 miles
  • Capacity – 5
  • Carbon Emissions – Zero
  • Certification – EASA/CAA
  • Noise – 100 times quieter than a helicopter.

There is a lot to like!

What is certain in my mind, is that there is a market for a short range zero-carbon aircraft of some sort.

Judging by the number of aircraft being proposed for this market, I come to two conclusions.

  • The market isn’t mythical.
  • Someone will make a success of it.

I also wouldn’t be surprised, if the most successful design has rather a weird look about it.

But despite saying that, two of the frontrunners; the Cessna Electric Caravan and the electric version of the Britten-Norman Islander are both conversions of existing successful aircraft.

I believe, that I’m young enough to fly in an electric aircraft.

June 11, 2021 Posted by | Design, Transport | , , , , | Leave a comment

United Airlines Eyes A Supersonic Future With Deal To Buy Boom’s Overture Jets

The title of this post, is the same as that of this article on The Times.

Some may feel that the future of supersonic aviation is about as rosy, as an empty glass of tap water.

But!

  • A flight across the Atlantic in three-and-a-half hours, as is promised by the Boom Overture, is below the four-hour travel limit, where average people start to get anxious about being banged up!
  • Not for nothing do UK train companies want to get London and Edinburgh services below, the magic four-hour time.
  • Technology will get better to reduce the noise and carbon emissions of all aircraft and not just supersonic ones!

I don’t put it outside the genius of engineers to by 2050, be able to create a supersonic, almost noise-free aircraft.

I do have a few thoughts about the Boom Overture.

A Comparison With Concorde

These are comparisons of the Boom Overture to Concorde.

  • Engines – Three as opposed to four.
  • Length – Similar
  • Wingspan – 71 % of Concorde
  • Passengers – 75 % of Concorde

It’s almost as if the Boom Overture is a three-quarter scale model of Concorde.

The Wing/Airframe

When I left Liverpool University in 1968, I wasn’t totally sure, what I wanted to do. So I visited a lot of engineering and aerospace companies including both BAC and Hawker Siddeley. Including my own University, I must have visited about four or five large wind tunnels in that period and every one had a Concorde-like model for the wind tunnel.

Every company had their own ideas on what a supersonic wing, should look like.

And surprise-surprise they were all very similar!

Take the advertising off Formula One cars and paint them all silver and very few could tell them apart.

Aerodynamics defines the shape so strongly, they all look the same.

It’s the same with supersonic aircraft and I’m not surprised that wing planform of the Boom Overture appears to be similar to Concorde, but narrower.

Perhaps the more dart-like shape significantly reduces the drag? It should be noted that drag is proportional to cross-sectional area.

In Concorde’s Wikipedia entry there is a section called Development, which explains how the Royal Aircraft Establishment developed the slender delta wing planform, used by Concorde and now likely to be used by Boom.

Although, it would be different inside the wing, as Concorde was mainly made from metal and the Overture is a composite aircraft.

Perhaps composite construction helps with creating the perfect aerodynamic shape. I don’t have any experience of composites, but they surely mean more aerodynamic shapes and they are regularly used for airframes.

This page on the Heritage Concorde web site gives details of the airframe production materials.

I suspect that Concorde was a nightmare to build, but that the challenge helped develop a large number of machining and fabrication techniques.

The Fuselage

As I said earlier, the length of the plane is similar to Concorde, but the wingspan is 29 % smaller and the number of passengers is around 25 % less.

But if you look at the picture of the aircraft in the Times article, where it is emerging from the hangar, it’s almost as if the fuselage has a square cross section than Concorde.

I wonder about this square cross section. I remember an interview on the radio with Barnes Wallis, where he talked about his latest idea for a fast supersonic aircraft capable of flying between the UK and Australia.

This paragraph is from Barnes Wallis’s Wikipedia entry.

In the late 1950s, Wallis gave a lecture entitled “The strength of England” at Eton College, and continued to deliver versions of the talk into the early 1970s, presenting technology and automation as a way to restore Britain’s dominance. He advocated nuclear-powered cargo submarines as a means of making Britain immune to future embargoes, and to make it a global trading power. He complained of the loss of aircraft design to the US, and suggested that Britain could dominate air travel by developing a small supersonic airliner capable of short take-off and landing.

It sounds to me that he would have been a Brexiteer.

Could this supersonic airliner, be what I heard him talking about?

I distinctly remember that he was advocating a fuselage with a square cross section for supersonic flight.

  • It would have given more space inside for passengers.
  • Concorde was a bit pokey with small windows!
  • The picture in The Times of the interior of the Boom Overture is certainly spacious.

Have Boom, been looking through Barnes Wallis’s ideas?

One quote I heard Barnes Wallis say, in an interview with Chris Brasher was this.

There is no greater thrill in life, than proving something is impossible and then showing how it can be done.

Boom may not have been able to develop a small supersonic airliner capable of short take-off and landing, but it does sound, they’ve developed a smaller supersonic airliner capable of shorter take-off and landing.

The Engines

In the Boom Overture’s Wikipedia entry there is a section called Engines, where this is the last sentence.

In July 2020, the company announced that it had entered into an agreement with Rolls-Royce to collaborate on engine development.

As Rolls-Royce built the engines for Concorde, they probably have some experience locked away.

The design of the Olympus 593 engines for Concorde wasn’t simple.

  • The engines were based on an Olympus engine used in aircraft like the Avro Vulcan and the TSR-2.
  • The engines were fitted with afterburners, as the extra thrust was needed for take-off.
  • According to Wikipedia the engines had a high thermal efficiency in supersonic cruise.
  • According to Wikipedia, there was an engine without afterburning for a longer range Concorde under development.

Over the years, there have been various proposals for supersonic aircraft, in military, commercial and business fields, so I suspect Rolls-Royce have done significant work in powering supersonic flight.

But then other engine companies would have gone down similar routes!

Rolls-Royce though probably have all the data on the engine ideas for Concorde that failed.

I wouldn’t be surprised, if one of the major aero-engine companies has a solution to the powerplant for the Boom Overture, based on the chase for supersonic speeds forty and fifty years ago.

But Rolls-Royce because of the Concorde experience could be closer to a successful development.

So I think signing with Rolls-Royce could be a very sensible move.

The Afterburners

The Wikipedia entry for the Boom Overture says this about afterburners.

Boom wants to use moderate bypass turbofans without afterburners, unlike Concorde’s Rolls-Royce/Snecma Olympus.

Could that be one piece of complication, that improvements in technology has eliminated?

The Engine Intakes

The Wikipedia entry for the Olympus 593 engines has a section called Intakes.

They were thought to be clever in the 1960s, but they just look complicated to me, with all my extra experience.

The intakes seem to have used very comprehensive digital control systems, but these days controls like these will be even more comprehensive and a lot more sophisticated, as computing has moved on.

I very much feel that if the Boom Overture needed sophisticated variable-geometry engine intakes like Concorde, we have the knowledge to create them and the computer expertise to make them act as needed.

The Exhaust Nozzle

The Wikipedia entry for the Olympus 593 engines has a section called Exhaust Nozzle.

These too are complicated and a lot of what I said for the intakes, would apply to the nozzles.

The Fuel

The Wikipedia entry for the Boom Overture says

The aircraft is intended to run on Sustainable Aviation Fuel.

It is likely, that Sustainable Aviation Fuel will be used for commercial aviation until there is a significant move to hydrogen.

  • In the UK, a company called Altalto is building a large plant to make the fuel at Immingham from household and industrial waste.
  • One idea being pursued by some companies is to create the fuel from used disposable nappies.
  • Wikipedia indicates that the fuel could cut CO2 emissions by between 20-98%.
  • Altalto is backed by British Airways and Velocys, who are a spin-out from Oxford University.

There is certainly a lot of money and technology being thrown behind Sustainable Aviation Fuel to make it a net-zero alternative for the powering of aircraft.

The Noise

This Youtube video shows Concorde’s last take-off from New York.

It was certainly a noisy aircraft.

  • Concorde’s engines had afterburners.
  • It also needed a long take-off run, so it made more noise on the ground.
  • It used to take off with a high angle of attack with the nose high.

All of these factors would have increased real and perceived noise levels.

I feel that if the Boom Overture is going to have significantly lower noise levels than Concorde, then its design will need to be radically different.

The lack of afterburners will make some difference.

It carries only about 75 % of the passengers of Concorde.

It is roughly, the same length as Concorde, but the wingspan is nearly thirty percent smaller.

To be continued…

 

 

June 6, 2021 Posted by | Design, Hydrogen, Transport | , , , , , , , , , | Leave a comment

Will This Be The First Electric Air Service To Take-Off?

This article on GeekWire is entitled MagniX Inks Deal To Retrofit Seaplanes With electric Motors For Blade Flights Around NYC And Hamptons.

This is the first two paragraphs.

Everett, Wash.-based MagniX will provide electric aircraft motors to power Cessna seaplanes flying between Nantucket, the Hamptons and downtown New York City, under an agreement announced Thursday.

The zero-emission motors will be retrofitted onto nine-passenger Cessna Caravan seaplanes operated under the Blade brand name. If all goes to plan, MagniX will start delivering motors for the Cessnas in 2023. The total number of planes to be converted will be determined later.

This is significant for the following reasons.

Blade Is A Different Company

This paragraph describes the company in their Wikipedia entry.

BLADE Urban Air Mobility, Inc. (stylized “BLADE”) is a publicly-traded, technology-powered, global urban air mobility platform based in New York City committed to reducing travel friction by enabling cost-effective air transportation alternatives to some of the most congested ground routes in the U.S. and abroad. Blade users can book by the seat on scheduled flights throughout the Northeast and West Coast or charter or crowdsource a flight anywhere in the world.

Blade is also the first publicly traded urban air mobility company.

Cessna Caravans Are Reliable Utility Airplanes

Cessna Caravans first flew forty years ago and over 2,600 have been produced.

The picture shows the one I flew in from Nairobi airport to the Masai Mara.

Note.

  1. The single turbo-prop engine in the nose.
  2. They can take up to nine passengers.
  3. They have range of nearly 1300 miles.

FedEx operate 260 as parcel carriers.

MagniX Have Already Flown An Electric Caravan

This video shows the Electric Caravan in flight.

This is a video of a testflight on YouTube.

The guy behind the project;Roei Ganzarski gave a very optimistic interview on BBC Breakfast.

Electric Caravans Can Fly On A Supplemental Type Certificate

I explain this in magniX, Sydney Seaplanes And Dante Aeronautical Partner For World’s First All Electric Cessna Caravan STC Program.

It means that the certification process can be shortened, as it builds on what was done to certify the aircraft iby the original manufacturer.

Blade Are At the Top End Of The Aviation Market

The Hamptons says it all!

Conclusion

I think this will be a successful venture.

 

 

May 28, 2021 Posted by | Transport | , , , | 1 Comment

What Is Possible On The East Coast Main Line?

In the Wikipedia entry for the Class 91 locomotive, there is an amazing story.

This picture shows one of these locomotives at Kings Cross.

Note.

  1. They have a design speed of 140 mph.
  2. They have a power output of 4.8 MW.
  3. They were built around 1990 by British Rail at Crewe.

They were designed to run services between London King’s Cross and Edinburgh as fast as possible, as the motive power of the InterCity 225 trains.

This section in the Wikipedia entry for the Class 91 locomotive is entitled Speed Record. This is the first paragraph.

A Class 91, 91010 (now 91110), holds the British locomotive speed record at 161.7 mph (260.2 km/h), set on 17 September 1989, just south of Little Bytham on a test run down Stoke Bank with the DVT leading. Although Class 370s, Class 373s and Class 374s have run faster, all are EMUs which means that the Electra is officially the fastest locomotive in Britain. Another loco (91031, now 91131), hauling five Mk4s and a DVT on a test run, ran between London King’s Cross and Edinburgh Waverley in 3 hours, 29 minutes and 30 seconds on 26 September 1991. This is still the current record. The set covered the route in an average speed of 112.5 mph (181.1 km/h) and reached the full 140 mph (225 km/h) several times during the run.

Note.

  1. For the British locomotive speed record, locomotive was actually pushing the train and going backwards, as the driving van trailer (DVT) was leading.
  2. How many speed records of any sort, where the direction isn’t part of the record, have been set going backwards?
  3. I feel that this record could stand for many years, as it is not very likely anybody will build another 140 mph locomotive in the foreseeable future. Unless a maverick idea for a high speed freight locomotive is proposed.

I have a few general thoughts on the record run between Kings Cross and Edinburgh in three-and-a-half hours.

  • I would assume that as in normal operation of these trains, the Class 91 locomotive was leading on the run to the North.
  • For various reasons, they would surely have had at least two of British Rail’s most experienced drivers in the cab.
  • At that time, 125 mph InterCity 125 trains had been the workhorse of East Coast Main Line for well over ten years, so British Rail wouldn’t have been short of experienced high speed drivers.
  • It was a Thursday, so they must have been running amongst normal traffic.
  • On Monday, a typical run between Kings Cross and Edinburgh is timetabled to take four hours and twenty minutes.
  • High Speed Two are predicting a time of three hours and forty-eight minutes between Euston and Edinburgh via High Speed Two and  the West Coast Main Line.

The more you look at it, a sub-three-and-and-a-half hour time, by 1980s-technology on a less-than-perfect railway was truly remarkable.

So how did they do it?

Superb Timetabling

In Norwich-In-Ninety Is A Lot More Than Passengers Think!, I talk about how Network Rail and Greater Anglia created a fast service between Liverpool Street and Norwich.

I suspect that British Rail put their best timetablers on the project, so that the test train could speed through unhindered.

Just as they did for Norwich-in-Ninety and probably will be doing to the East Coast Main Line to increase services and decrease journey times.

A Good As ERTMS Signalling

Obviously in 1991, there was no modern digital in-cab signalling and I don’t know the standard of communication between the drivers and the signallers.

On the tricky sections like Digswell Viaduct, through Hitchin and the Newark Crossing were other trains stopped well clear of any difficult area, as modern digital signalling can anticipate and take action?

I would expect the test train got a signalling service as good as any modern train, even if parts of it like driver to signaller communication may have been a bit experimental.

There may even have been a back-up driver in the cab with the latest mobile phone.

It must have been about 1991, when I did a pre-arranged airways join in my Cessna 340 on the ground at Ipswich Airport before take-off on a direct flight to Rome. Air Traffic Control had suggested it to avoid an intermediate stop at say Southend.

The technology was arriving and did it help the drivers on that memorable run North ensure a safe and fast passage of the train?

It would be interesting to know, what other equipment was being tested by this test train.

A Possible Plan

I suspect that the plan in 1991 was to use a plan not unlike one that would be used by Lewis Hamilton, or in those days Stirling Moss to win a race.

Drive a steady race not taking any chances and where the track allows speed up.

So did British Rail drive a steady 125 mph sticking to the standard timetable between Kings Cross and Edinburgh?

Then as the Wikipedia extract indicated, at several times during the journey did they increase the speed of the train to 140 mph.

And the rest as they say was an historic time of 3 hours, 29 minutes and 30 seconds. Call it three-and-a-half-hours.

This represented a start-to-stop average speed of 112.5 mph over the 393 miles of the East Coast Main Line.

Can The Current Trains Achieve Three-And-A-Half-Hours Be Possible Today?

Consider.

  • The best four hours and twenty minutes timings of the Class 801 trains, represents an average speed of 90.7 mph.
  • The Class 801 trains and the InterCity 225 trains have similar performance.
  • There have been improvements to the route like the Hitchin Flyover.
  • Full ERTMS in-cab signalling is being installed South of Doncaster.
  • I believe ERTMS and ETC could solve the Newark Crossing problem! See Could ERTMS And ETCS Solve The Newark Crossing Problem?
  • I am a trained Control Engineer and I believe if ERTMS and ETC can solve the Newark Crossing problem, I suspect they can solve the Digswell Viaduct problem.
  • The Werrington Dive Under is being built.
  • The approaches to Kings Cross are being remodelled.

I can’t quite say easy-peasy. but I’m fairly certain the Kings Cross and Edinburgh record is under serious threat.

  • A massive power supply upgrade to the North of Doncaster is continuing. See this page on the Network Rail web site.
  • ERTMS and ETC probably needs to be installed all the way between Kings Cross and Edinburgh.
  • There may be a need to minimise the number of slower passenger trains on the East Coast Main Line.
  • The Northumberland Line and the Leamside Line may be needed to take some trains from the East Coast Main Line.

Recent Developments Concerning the Hitachi Trains

There have been several developments  since the Hitachi Class 800 and Class 801 trains were ordered.

  • Serious engineers and commentators like Roger Ford of Modern Railways have criticised the lugging of heavy diesel engines around the country.
  • Network Rail have upgraded the power supply South of Doncaster and have recently started to upgrade it between Doncaster and Edinburgh. Will this extensive upgrade cut the need to use the diesel power-packs?
  • Hitachi and their operators must have collected extensive in-service statistics about the detailed performance of the trains and the use of the diesel power-packs.
  • Hitachi have signed an agreement with Hyperdrive Innovation of Sunderland to produce battery-packs for the trains and two new versions of the trains have been announced; a Regional Battery Train and an Intercity Tri-Mode Battery Train.
  • East Coast Trains have ordered five five-car Class 803 trains, each of which will have a small battery for emergency use and no diesel power-packs.
  • Avanti West Coast have ordered ten seven-car Class 807 trains, each of which have no battery or diesel power-packs.

And these are just the ones we know about.

The Class 807 Trains And Liverpool

I find Avanti West Coast’s Class 807 trains the most interesting development.

  • They have been partly financed by Rock Rail, who seem to organise train finance, so that the train operator, the train manufacturer all get the best value, by finding good technical solutions.
  • I believe that these trains have been designed so they can run between Euston and Liverpool Lime Street stations in under two hours.
  • Does the absence of battery or diesel power-packs save weight and improve performance?
  • Euston and Liverpool Lime Street in two hours would be an average of only 96.8 mph.
  • If the Class 807 trains could achieve the same start-stop average of 112.5 mph achieved by the InterCity 225 test run between Kings Cross and Edinburgh, that would mean a Euston and Liverpool Lime Street time of one hour and forty-three minutes.
  • Does Thunderbird provision on the West Coast Main Line for the Class 390 trains mean that the Class 807 trains don’t need emergency power?
  • Have diesel power-packs been rarely used in emergency by the Hitachi trains?

I believe the mathematics show that excellent sub-two hour times between Euston and Liverpool Lime Street are possible by Avanti West Coast’s new Class 807 trains.

The Class 803 Trains And Edinburgh

East Coast Trains ordered their Class 803 trains in March 2019,  nine months before Avanti West Coast ordered their Class 807 trains.

In Trains Ordered For 2021 Launch Of ‘High-Quality, Low Fare’ London – Edinburgh Service, I outlined brief details of the trains and the proposed service.

  • FirstGroup is targeting the two-thirds of passengers, who fly between London and Edinburgh.
  • They are also targeting business passengers, as the first train arrives in Edinburgh at 10:00.
  • The trains are five-cars.
  • The trains are one class with onboard catering, air-conditioning, power sockets and free wi-fi.
  • Stops will be five trains per day with stops at Stevenage, Newcastle and Morpeth.
  • The trains will take around four hours.
  • The service will start in Autumn 2021.

I also thought it would be a successful service

As I know Edinburgh, Liverpool and London well, I believe there are similarities between the Euston-Liverpool Lime Street and Kings Cross-Edinburgh routes.

  • Both routes are between two cities known all over the world.
  • Both routes are fully-electrified.
  • Both routes have the potential to attract passengers from other transport modes.

The two services could even be run at similar speeds.

  • Euston-Liverpool Lime Street in two hours will be at 96.8 mph
  • Kings Cross-Edinburgh in four hours will be at 98.3 mph.

Does this explain the similar lightweight trains?

Could Lightweight Trains Help LNER?

There is one important factor, I haven’t talked about in detail in this post. Batteries and diesel power-packs on the Hitachi trains.

I have only mentioned them in the following circumstances.

  • When trains are not fitted with battery and/or diesel power-packs.
  • When battery developments are being undertaken.

Let’s consider the LNER fleet.

  • LNER has thirteen nine-car Class 800 trains, each of which has five diesel power-packs
  • LNER has ten five-car Class 800 trains, each of which has three diesel power-packs
  • LNER has thirty nine-car Class 801 trains, each of which has one diesel power-pack
  • LNER has twelve five-car Class 801 trains, each of which has one diesel power-pack

There are sixty-five trains, 497 coaches and 137 diesel power-packs.

And look at their destinations.

  • Aberdeen – No Electrification from Edinburgh
  • Alnmouth – Fully Electrified
  • Berwick-upon-Tweed – Fully Electrified
  • Bradford Forster Square – Fully Electrified
  • Darlington – Fully Electrified
  • Doncaster – Fully Electrified
  • Durham – Fully Electrified
  • Edinburgh – Fully Electrified
  • Glasgow – Fully Electrified
  • Grantham – Fully Electrified
  • Harrogate – No Electrification from Leeds – Possible Battery Destination
  • Huddersfield – No Electrification from Leeds – Possible Battery Destination – Probable Electrification
  • Hull – No Electrification from Temple Hirst Junction – Possible Battery Destination
  • Inverness – No Electrification from Stirling
  • Leeds – Fully Electrified
  • Lincoln – No Electrification from Newark North Gate – Possible Battery Destination
  • Middlesbrough – No Electrification from Northallerton – Possible Battery Destination
  • Newcastle – Fully Electrified
  • Newark North Gate – Fully Electrified
  • Northallerton – Fully Electrified
  • Peterborough – Fully Electrified
  • Skipton – Fully Electrified
  • Retford – Fully Electrified
  • Stevenage – Fully Electrified
  • Stirling – Fully Electrified
  • Sunderland – No Electrification from Northallerton – Possible Battery Destination
  • Wakefield Westgate – Fully Electrified
  • York – Fully Electrified

The destinations can be summarised as followed.

  • Not Electrified – 2
  • Possible Battery Destination – 6
  • Fully Electrified – 20

This gives a total of 28.

Could the trains be matched better to the destinations?

  • Some routes like Edinburgh, Glasgow, Newcastle and Stirling could possibly be beneficially handled by lightweight trains without any diesel or battery power-packs.
  • Only Aberdeen and Inverness can’t be reached by all-electric or battery-electric trains.
  • In LNER Seeks 10 More Bi-Modes, I proposed a hydrogen-electric flagship train, that would use hydrogen North of the existing electrification.

There certainly appear to be possibilities.

Example Journey Times To Edinburgh

This table shows the various time for particular start-stop average speeds between Kings Cross and Edinburgh.

  • 80 mph – 4:54
  • 85 mph – 4:37
  • 90 mph – 4:12
  • 98.2 mph – 4:00
  • 100 mph – 3:56
  • 110 mph – 3:34
  • 120 mph – 3:16
  • 125 mph – 3:08

Note.

  • Times are given in h:mm.
  • A few mph increase in average speed reduces journey time by a considerable amount.

The figures certainly show the value of high speed trains and of removing bottlenecks, as average speed is so important.

Decarbonisation Of LNER

LNER Seeks 10 More Bi-Modes was based on an article in the December 2020 Edition of Modern Railways, with the same title. These are the first two paragraphs of the article.

LNER has launched the procurement of at least 10 new trains to supplement its Azuma fleet on East Coast main line services.

In a Prior Information Notice published on 27 October, the operator states it is seeking trains capable of operating under 25kW overhead power with ‘significant self-power capability’ for operation away from overhead wires. ‘On-board Energy Storage for traction will be specified as a mandatory requirement to reduce, and wherever practical eliminate, diesel usage where it would otherwise be necessary, although LNER anticipates some degree of diesel traction may be required to meet some self-power requirements. Suppliers tendering are asked to detail their experience of designing and manufacturing a fleet of multi-mode trains with a range of traction options including battery-electric, diesel-electric, hydrogen-electric, battery-diesel, dual fuel and tri-mode.

From this, LNER would appear to be serious about decarbonisation and from the destination list I published earlier, most services South of the Scottish Central Belt can be decarbonised by replacing diesel-power packs with battery power-packs.

That last bit, sounds like a call for innovation to provide a solution to the difficult routes to Aberdeen and Inverness. It also looks as if it has been carefully worded not to rule anybody out.

This press release from Hitachi is entitled Hitachi And Eversholt Rail To Develop GWR Intercity Battery Hybrid Train – Offering Fuel Savings Of More Than 20%.

It announces the Hitachi Intercity Tri-mode Battery Train, which is described in this Hitachi infographic.

As the Hitachi press release is dated the 15th of December 2020, which is after the publication of the magazine, it strikes me that LNER and Hitachi had been talking.

At no point have Hitachi stated what the range of the train is on battery power.

To serve the North of Scotland these gaps must be bridged.

  • Aberdeen and Edinburgh Haymarket – 130 miles
  • Inverness and Stirling – 146 miles

It should also be noted that distances in Scotland are such, that if these gaps could be bridged by battery technology, then probably all of the North of Scotland’s railways could be decarbonised. As Hitachi are the major supplier of Scotland’s local and regional electric trains, was the original Prior Information Notice, written to make sure Hitachi responded?

LNER run nine-car Class 800 trains on the two long routes to Aberdeen and Inverness.

  • These trains have five diesel power-packs under coaches 2,3, 5, 7 and 8.
  • As five-car Class 800 trains have diesel power-packs under coaches 2, 3 and 4, does this mean that Hitachi can fit diesel power-packs under all cars except for the driver cars?
  • As the diesel and battery power-packs appear to be interchangeable, does this mean that Hitachi could theoretically build some very unusual trains?
  • Hitachi’s trains can be up to twelve-cars in normal mode and twenty-four cars in rescue mode.
  • LNER would probably prefer an all Azuma fleet, even if a few trains were a bit longer.

Imagine a ten-car train with two driver and eight intermediate cars, with all of the intermediate cars having maximum-size battery-packs.

Supposing, one or two of the battery power-packs were to be replaced with a diesel power-pack.

There are a lot of possibilities and I suspect LNER, Hitachi and Hyperdrive Innovation are working on a train capable of running to and from the North of Scotland.

Conclusion

I started by asking what is possible on The East Coast Main Line?

As the time of three-and-a-half hours was achieved by a short-formation InterCity 225 train in 1991 before Covids, Hitchin, Kings Cross Remodelling, Power Upgrades, Werrington and lots of other work, I believe that some journeys between Kings Cross and Edinburgh could be around this time within perhaps five years.

To some, that might seem an extraordinary claim, but when you consider that the InterCity 225 train in 1991 did it with only a few sections of 140 mph running, I very much think it is a certainly at some point.

As to the ultimate time, earlier I showed that an average of 120 mph between  King’s Cross and Edinburgh gives a time of 3:16 minutes.

Surely, an increase of fourteen minutes in thirty years is possible?

 

 

 

May 15, 2021 Posted by | Transport | , , , , , , , , , , , , , , , , , , , , , , , , , | 2 Comments