The Anonymous Widower

Automated Shuttle Trains With A Train Captain

There are various short routes on the UK rail network, where shuttle trains work a frequency of perhaps two or three trains per hour (tph), that is generally felt by passengers and train operators to be inadequate.

Examples include the following.

Could the frequency on these lines be increased using automation?

The Automated Docklands Light Railway

The Docklands Light Railway is not a simple railway, but it is fully automated.

  • Trains are driverless
  • A Train Captain is responsible for patrolling the train, checking tickets, making announcements and controlling the doors.
  • The Train Captain can take control of the train if required.

It is a system that seems to have worked well for many years.

An Automated Shuttle With A Train Captain

Could a similar principle be applied to a shuttle train?

As an example, I’ll use the Bromley North Line.

Consider.

  • The line is two miles long and trains take five minutes each way.
  • The current frequency is three tph.
  • There are problems at Grove Park station with connections in the Peak.
  • The route is double-track.
  • The current service is operated by a single train, manned only by a driver.

It would appear if the Bromley North Line could be run at four tph, this would be a welcome improvement.

One of the problems of driver-operated shuttle services like this, is that at each end of the route, the driver must change ends, which takes a couple of valuable minutes.

To operate a frequency of four tph, the round-trip must be performed in fifteen minutes.

  • Each leg takes five minutes.
  • There are four stops in a round trip; one at Grove Park, one at Bromley North and two at Sundridge Park.

I believe that a single automated train, with a Train Captain on board to look after safety, open and close the doors and start the train after each stop, should be able to handle the much-needed four tph on the Bromley North Line.

How Would The Automation Work?

Many years ago, a Central Line driver explained to me how the original automation of the Victoria Line worked.

  • A train would arrive in the station and stop in the correct place automatically with high precision.
  • The doors would be opened.
  • After passengers had unloaded and loaded, the doors would be closed.

When the doors were closed and everything was safe, the driver would push a button to ask the automation to take the train to the next station.

Automation has moved on since the 1960s, and I believe that some form of on-train automation would be able to handle a simple shuttle.

  • Only one track would probably be need to used to remove the complication of points.
  • Only one train would be used for the shuttle, as this increases safety.
  • Sensors would determine the exact position of the train.
  • CCTV cameras, including ones looking forwards and backwards,  would be relayed to the Train Captain and their Control Station in the middle of the train.
  • The Train Captain would have an Emergency Stop Button.

If something goes wrong or the train is  being taken to and from the depot, the Train Captain would go to the forward cab, switch off the automation and drive the train in the normal manner.

I am sure, that it would not only be a very safe system, but if it made full use of the capabilities of modern trains, it would speed up services sufficiently, so that frequencies could be increased.

What Trains Would Be Suitable?

I think that the choice of trains would be wide, but I think they must have the following characteristics.

  • An ability to perform a station stop and restart quickly.
  • Fast acceleration and deceleration.
  • Level access between platform and train.
  • Walk-through interior, to help the Train Captain perform their duties.
  • Lots of wide double doors and large lobbies.

All these characteristics would enable the train to save time on the route.

Power would be anything that could be used on the route. For the Bromley North Line, that would be either third-rail electrification or battery power.

Battery power, though on this route, would have a problem.

If the train is running an intense shuttle service, with stops taking a minute or even less, the train never stops long enough to charge the batteries. As the route is electrified with 750 VDC using third-rail, this would need to be used on the Bromley North Line.

Although, I have used the word train in this section, I suspect trams, tram-trains or light rail vehicles could be used.

All vehicles would retain their driving cabs for the following reasons.

  • If there is a problem, the Train Captain can drive the train, as happens on the Docklands Light Railway.
  • If the train needs to be positioned to and from a depot, the train could be driven manually.

I also feel that for these reasons, the Train Captain would be a fully qualified driver.

Examples of vehicles that could be used, if appropriate automation were to be fitted include.

Class 399 Tram-Train

Class399 tram-trains are working successfully in Sheffield and they have been ordered for the South Wales Metro, where they will run under both overhead and battery power.

As an Electrical Engineer, I believe that it would not be the most difficult piece of engineering to fit these tram-trains with the ability to run under third-rail power.

The tram-trains would have similar capacities, cross-section and performance to the current Class 466 trains.

The only modifications that would be needed to the route, would be to adjust the platforms used by the tram-train to give level access between tram-train and platform.

A Three-Car Aventra Or Similar

Three-car Class 730 Aventra trains,  have been ordered by West Midlands Railway and Aventras have also been ordered to run using third-rail power.

As with the Class 399 tram-train, these trains could probably work the route successfully, subject to suitable platform modification.

How Fast Could Stops Be Performed?

I have timed stops on the London Overground and the London Tramlink rarely do you find a time from brakes on to brakes off in excess of a minute, without a red signal being involved.

I have measured some London Overground stops are at  thirty seconds some  London Tramlink stops at twenty seconds.

If a shuttle had the track to itself and the train was a modern design, I could see maximum timings on the Bromley North Line as follows.

  • Bromley North – One minute
  • Sundridge Park – Thirty seconds
  • Grove Park – One minute

Surely, with station stop times like these and perhaps faster running than the current 30 mph, the goal of four tph could be comfortably achieved.

What Happens With Delays?

Suppose, an incident occurs, and the train is delayed.

After the incident is successfully sorted, the train could just carry on or wait until it was on schedule for the next train.

Within a few minutes, the train would be running to time.

Some Other Selected Routes

Over the next few days, I will be adding calculations for other routes.

Brentford Branch Line

Greenford Branch Line

Marlow Branch Line

Romford And Upminster

Slough And Windsor & Eton Central

Extra routes will be added here.

Conclusion

On the Bromley North Line, selective automation should be able to enable a four tph service using one train or tramtrain.

February 19, 2019 - Posted by | Transport | , , , , , ,

No comments yet.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.