The Anonymous Widower

Protests After Claim That Hitachi Has Lost T&W Contract

The title of this post is the same as that of this article on Railnews.

This is the introductory paragraphs.

There have been protests in north east England after a report claimed that Hitachi has been ruled out of the three-way contest to build a £500 million fleet for Tyne & Wear Metro.

The other contenders are CAF and Stadler, and the source of the claims says ‘insiders’ at Nexus have been told that Hitachi will be ‘overlooked’.

It should be noted that the two other bidders have orders for similar trains in the pipeline.

CAF

In TfL Awards Contract For New DLR Fleet To Replace 30-year-old Trains , I wrote about how CAF had been awarded the contract for new trains for the Docklands Light Railway.

I also said this about the possibility of CAF being awarded the contract for the new trains for the Tyne and Wear Metro.

In Bombardier Transportation Consortium Preferred Bidder In $4.5B Cairo Monorail, I indicated that as the trains on the Tyne and Wear Metro and the trains on the Docklands Light Railway, are of a similar height and width, it might be possible to use the same same car bodies on both trains.

So now that CAF have got the first order for the Docklands Light Railway, they must be in prime position to obtain the Tyne and Wear Metro order!

A second order would fit well with the first and could probably be built substantially in their South Wales factory.

Stadler

Stadler seem to be targeting the North, with new Class 777 trains for Merseyrail and Class 399 tram-trains for Sheffield and bids in for tram-trains and and new trains for the Tyne and Wear Metro.

Their trains are both quirky, accessible and quality and built to fit niche markets like a glove.

Only Stadler would produce a replacement for a diesel multiple unit fleet with a bi-mode Class 755 train, with the engine in the middle, that is rumoured to be capable of running at 125 mph.

Note the full step-free access between train and platform, which is also a feature of the Merseyrail trains.

Does the Tyre and Wear Metro want to have access like this? It’s already got it with the existing trains, as this picture at South Shields station shows.

Stadler’s engineering in this area, would fit their philosophy

I first thought that Stadler would propose a version of their Class 399 tram-trains. for the Tyne and Wear Metro and wrote Comparing Stadler Citylink Metro Vehicles With Tyne And Wear Metro’s Class 994 Trains.

This was my conclusion.

I am led to the conclusion, that a version of the Stadler Citylink Metro Vehicle similar to those of the South Waes Metro, could be developed for the Tyne and Wear Metro.

My specification would include.

  • Length of two current Class 994 trains, which would be around 111 metres.
  • Walk through design with longitudinal seating.
  • Level access between platform and train at all stations.
  • A well-designed cab with large windows at each end.
  • Ability to use overhead electrification at any voltage between 750 and 1500 VDC.
  • Ability to use overhead electrification at 25 KVAC.
  • Pantographs would handle all voltages.
  • A second pantograph might be provided for reasons of reliable operation.
  • Ability to use onboard battery power.
  • Regenerative braking would use the batteries on the vehicle.

Note.

  1. Many of these features are already in service in Germany, Spain or Sheffield.
  2. The train would be designed, so that no unnecessary platform lengthening is required.
  3. As in Cardiff, the specification would allow street-running in the future.
  4. Could battery range be sufficient to allow new routes to be developed without electrification?

I also feel that the specification should allow the new trains to work on the current network, whilst the current trains are still running.

But since I wrote that comparison in June 2018, Merseyrail’s new trains have started to be delivered and Liverpudlians have started to do what they do best; imagine!

The Tyne and Wear Metro has similar ambitions to expand the network and would a version of the Class 777 train fit those ambitions better?

Conclusion

I wouldn’t be surprised if Hitachi misses out, as the experience of the Docklands Light Railway or Merseyrail fed into the expansion of the Tyne and Wear Metro could be the clincher of the deal.

They would also be the first UK customer for the Hitachi trains.

 

September 22, 2019 Posted by | Transport | , , , , , , , | 3 Comments

Plans To Reopen The Brentford To Southall Railway

The title of this post, is the same as that of this article on Ian Visits.

I have posted on the Brentford Branch Line several times previously and Ian says this about Hounslow Council’s thinking.

The council has been working on a scheme for some years to resurrect the line, with a new station built in Brentford and passenger services restored to Southall. A key factor for the plans is that Southall will then be on the Elizabeth line, which they hope will drive a lot more traffic on the spur down to Brentford.

In order to part-fund the 4-mile railway, Hounslow Council has now agreed to undertake a full business case to look at introducing a Workplace Parking Levy (WPL) within the Great West Corridor (GWC).

In my trips to document the updating of Syon Lane station with a new step-free footbridge, I have talked to several people, who would find a rail link to Southall useful.

Ian also says this about the latest situation.

As part of the proposal, the council has also commissioned Network Rail to begin a detailed study (known as ‘GRIP 4’) on building the new train link from Brentford to Southall, following encouraging early studies into the feasibility of such a link.

At least, this will give the Hounslow a list of all the problems and a cost estimate.

A few of my thoughts.

What Should Be The Frequency Of The Service?

The current truncated Brentford Branch Line is mainly single track, but from my helicopter, it appears that there would be space to add an additional track for as much of the route as required.

Preferably, there should be a service on the branch of at least two trains per hour (tph). Although, ideally four tph is much better, as it attracts passengers in large numbers.

It should be noted that from December 2019, there will be four tph on Crossrail calling at at Southall station all day. Connections should surely be well-arranged.

Four tph would be possible between two single platforms at Southall and Brentford, but would require selective doubling or passing loops to accommodate the service and the freight trains going to Brentford.

This Google Map shows the various sites clustered around the branch.

The branch runs from the North-West to the South-East across the map.

  • The Great West Road is a couple of hundred metres to the South.
  • To the East of the branch, there are a collection of waste and scrap metal transfer sites, aggregate and concrete sites and others that hide away in big cities.
  • To the West is the massive Sky Studios complex.

I do wonder, if Sky would like a station? If they did, this would surely mean that a four tph service would be required.

What Is The Future Of The Industrial Site?

Because of London’s thirst for land for housing and office developments, sites like this inevitably get developed.

With its position between the River Brent and parkland, and the Brentford Branch Line, I believe that if new sites can be found for the various tenants, that this site could be a high quality housing development.

An intermediate station would surely be required.

What Should Be The Terminus Of The Branch?

I believe that the branch should terminate as close to the River as is possible.

  • There is a lot of new housing being constructed in Brentford.
  • I believe that Thames Clippers will eventually extend their river-boat services to Brentford and Kew.

But the problem would be that this would need an expensive bridge over the Great West Road.

These pictures show the Great West Road, where the current Brentford Branch Line finishes.

The tracks finish about a hundred metres North of the road, as shown on this Google Map.

The rusty footbridge over the busy road can be clearly seen.

Initially, I believe that the passenger service should terminate at the Great West Road.

If I was designing the station, I would build it much like the Deptford Bridge DLR station.

  • It would be on a bridge above the Great West Road.
  • It would be suspended from step-free towers on either side of the road.
  • Would it only need to be a single platform station?
  • The pavements on either side of the Great West Road would be improved to create a better walking environment.
  • If possible a walking and cycling route to Brentford and the River would be provided.
  • The design would leave provision to extend the railway South.

I also think, that it could be designed to enhance the collection of Art Deco and modern buildings in the area.

Could The Service Go Further Than The Great West Road?

This Google Map shows the former route of Brentford Branch Line, from just North of the Great West Road to the centre of Brentford.

Note.

  1. The former route is very green on the map.
  2. The Hounslow Loop Line crossing parallel and a few hundred metres South of the Great West Road.
  3. The only building on the route is some retail sheds between the Great West Road and the Hounslow Loop Line.
  4. To the \east of the Brentford Branch Line is a large and semi-derilict bus garage.

I’m sure that the railway could be extended through this area, as it is developed with housing and offices or parkland.

Could The Service Go Further Than Southall?

There is a section in the Wikipedia entry for the Brentford Branch Line, which is entitled Proposed Reopening, where this is said.

In April 2017, it was proposed that the line could reopen to allow a new link between Southall to Hounslow and possibly down to the planned Old Oak Common station with a new station in Brentford called Brentford Golden Mile.  The proposals suggest the service could be operated by Great Western Railway and could be open by 2020 with a new service from Southall to Hounslow and possible later to Old Oak Common

It sounds a good idea, but it would mean trains would surely have to reverse direction and cross over to the North side.

It must be better to provide full step-free access at Southall station, which should be finished fairly soon.

Crossrail will also be providing at least four tph to and from Old Oak Common.

How Many Trains Would Be Needed?

I am pretty sure, that several train types could do a Southall and Brentford round trip in under thirty minutes.

This would mean the following.

  • For a two tph service, one train would be needed.
  • For a four tph service, two trains would be needed.

I suspect too, that a spare train would be added to the fleet.

Would The Branch Be Electrified?

I doubt it!

  • The branch is only four miles long.
  • A 100 kWh battery would probably provide enough power for a four-car train.
  • It is unlikely electric haulage will be needed for the freight trains o the branch.
  • There is 25 KVAC electrification at the Southall end of the branch to charge trains with batteries.
  • The branch is probably short enough to not need a charging point at Brentford.

In my mind, it is a classic route to run using battery power.

What Trains Could Be Used?

I feel the trains need to have the following specification.

  • Abiility to use 25 KVAC overhead electrification.
  • A out and back battery range of at least eight miles.
  • Three or four cars.
  • 60 mph operating speed.

There are several proposed trains that meet this specification.

Class 710 Train

The Class 710 train would be an obvious choice, if London Overground were to run the service.

But it would need the 25 KVAC electrification be added to Platform 5 at Southall station.

Class 230 Train

The Class 230 train could be a lower cost option and would only require one of Vivarail’s clever charging systems at Southall.

Class 387 Train

A modified Class 387 train would surely be a choice, If Great Western Railway were to run the service.

But as with the Class 710 train, it would need Platform 5 at Southall station to be electrified.

Class 399 Tram-Train

A Class 399 tram-train to the South Wales Metro specification is also a possibility.

But as with the Class 710 train, it would need Platform 5 at Southall station to be electrified.

However, the lighter weight vehicle with a tight turning circle might allow the route to be extended further South.

Conclusion

I am led to these conclusions.

  • Battery power is capable of working the Brentford Branch Line.
  • At least two tph is needed between Southall and Brentford.
  • The operator will choose the trains.

IBut as they are a lower-cost and simpler option, this route could be run by Class 230 trains.

 

 

September 22, 2019 Posted by | Transport | , , , , , , | 3 Comments

Manchester Metrolink To Gorton And Glossop

The Wikipedia entry for the Manchester Metrolink doesn’t say much about  Glossop, except that one of the original lines would have taken over the Glossop Line to Gorton, Glossop and Hadfield stations.

In Manchester Metrolink Extensions In A Sentence, I quoted this sentence from the Manchester Evening News.

It includes tram extensions to Port Salford, Middleton and Stalybridge, plus ‘tram trains’ to Hale, Warrington, Gorton and Glossop.

How would tram-trains from Gorton and Glossop join the current Metrolink network at Piccadilly station?

Consider.

  • Glossop Line trains use the low-numbered platforms on the Northern side of Manchester Piccadilly station.
  • Some plans have shown High Speed Two platforms on the save side of Piccadilly station.

Look at this Google Map of the Northern side of the station.

Note.

  1. Two trams crossing the green space to the North of the station.
  2. The area between the tram lines and the tracks going into Piccadilly station, appears to be mainly car parking and low-grade buildings.
  3. The tracks leading to Gorton and Glossop are on the Northern side of Piccadilly station.

These are a few pictures of the area.to the North of the station.

I feel it would be very feasible for tram-trains to connect the Glossop Line and the tram station underneath the main station.

In fact there would be no reason, why tram-trains shouldn’t continue to serve Manchester Piccadilly train station.

High Speed Two

High Speed Two’s terminals in Manchester is in a state of foux at the moment, so it might be preferable to just replace all Glossop Line services with tram-trains and use Manchester Piccadilly tram station.

Updating The Glossop Line

The Glossop Line is electrified with 25 KVAC overhead wires, which looks to be one of the systems in worst condition in the UK along with the Crouch Valley Line in Essex.

It would probably need replacing, as the rust weevils holding it up, must be getting very tired.

To say that some stations look like they’ve seen better times, is an understatement.

Class 399 Tram-Trains For Manchester

Transport for Greater Manchester are serious about tram-trains and I believe that their usefullness to the City could be explored by running the existing service between Manchester Piccadilly and Glossop using a small fleet.

Conclusion

Extending the Manchester Metrolink to Gorton and Glossop using tram-trains appears to be very feasible.

In my view, it would have made a good trial route to prove the concept of tram-trains in the UK.

 

July 29, 2019 Posted by | Transport | , , , , | 11 Comments

Steaming Up To Treforest In A Class 143 Train

On my trip to Treforest, I was in a Class 143 train or one of the dreaded Pacers.

It was performing well on the challenging route and I wondered how the power compared with that of the proposed tram-trains, that will be used in a couple of years.

Class 143 Train

  • Speed – 75 mph
  • Sections – 2
  • Weight – 48.5 tonnes
  • Length 31 metres
  • Power – 336 kW
  • Capacity – 122 seats
  • Gross Weight (90 Kg per passenger) – 49.6 tonnes
  • Kinetic Energy At Operating Speed – 7.7 kWh
  • Time to Operating Speed At Full Power – 1.5 minutes

The train I was on was pretty smooth! Or for a Pacer anyway!

Class 399 Tram-Train

  • Speed – 62 mph
  • Sections – 3
  • Weight -66.15 tonnes
  • Length – 37.2 metres
  • Power – 870 kW
  • Capacity – 88 seats and 150 standing.
  • Gross Weight (90 Kg per passenger) – 87.6 tonnes
  • Kinetic Energy At Operating Speed – 9.3 kWh
  • Time to Operating Speed At Full Power – 6 minutes

These figures are taken from details of the tram-trains in Sheffield.

The two trains are very similar in some respects, but the tram-train is heavier with a full load of passengers.

I certainly can see no reason, why the Class 399 tram-train won’t perform as well as the lass 143 train, but with a bigger and heavier load of passengers.

But one important factor should be born in mind.

The German cousins of the Class 399 tram-trains are used in Karlsruhe, where they easily climb out of the city into the surrounding hills.

A trip up the valleys to Aberdate, Merthyr Tydfil or Treherbert could be no more difficult, once the electrification is in place.

Conclusion

I can see other cities and tram networks around the UK, Europe and the wider world developing urban transport networks around these Stadler tram-trains.

UK cities for their deployment must include Manchester and Sheffield.

July 25, 2019 Posted by | Transport | , , | 4 Comments

Sheffield Region Transport Plan 2019 – Tram-Trains Between Sheffield And Doncaster-Sheffield Airport

The Sheffield plans, state this as a medium to long-term priority.

Regional tram-train services to be maximised through Rotherham Central, with direct fast services to Doncaster, DSA and Sheffield.

The tram-train route between Sheffield and Doncaster, would probably be as follows.

  • Tinsley Meadowhall South
  • Magna
  • Rortherham Central
  • Rotherham Parkgate
  • Swinton
  • Mexborough
  • Conisbrough
  • Doncaster

The distance between Rotherham Parkgate and Doncaster is under twelve miles and has full electrification at both ends.

The Class 399 tram-trains being built with a battery capability for the South Wales Metro to be delivered in 2023, should be able to reach Doncaster.

But there are probably other good reasons to fully electrify between Doncaster and Sheffield, via Meadowhall, Rotherham Central and Rotherham Parkgate.

The major work would probably be to update Rotherham Parkgate to a through station with two platforms and a step-free footbridge.

Currently, trains take twenty-three minutes between Rotherham Central and Doncaster. This is a time, that the tram-trains would probably match.

Onward To Doncaster Sheffield Airport

I have clipped this map of services from the report on Sheffield’s plans.

The tram-train route to the Airport is clearly marked in a broken orange line.

  • The tram-train uses a loop from the East Coast Main Line.
  • It shares the loop with expresses between London and Doncaster, that call at the Airport.
  • The tram-train extension from Doncaster to Doncaster Sheffield Airport has new stations at Lakeside, Bessacarr and terminates at a new station at Bawtry.

It looks a well-thought out plan.

 

 

 

July 21, 2019 Posted by | Transport | , , , , | 6 Comments

Sheffield Region Transport Plan 2019 – Renewal Of Supertram Network

Sheffield’s plan has renewal of the Supertram network as a short term priority.

The Sheffield Supertram is twenty-five years old and when you consider, many UK urban railway and tram systems of the same vintage have been substantially updated with new rolling stock and new routes.

The plan lists three things that must be done.

Network Rerailing

This has already been done over part of the network to allow the Class 399 tram-trains to operate on the Supertram network.

So I suspect that the rest of the network needs to be re-railed.

Certainly, the Class 399 tram-trains, which are cousins of the tram-trains working in Karlsruhe don’t seem to have had any serious problems, that have surfaced in the media.

New Vehicles

New trams are needed, mainly because the original trains are twenty-five years old.

But will these new trams, be trams or tram-trains?

That question has already been answered, as Sheffield uses some Class 399 tram-trains as capacity enhancers on some normal tram routes.

The Class 399 tram-trains that have been ordered for the South Wales Metro are being delivered with a battery capability.

So if Class 399 tram-trains or something similar, should they have a battery capability?

Undoubtedly, as Birmingham are showing, the ability to extend a route without wires is extremely useful amd cost-saving.

I also suspect that Cardiff, Karlsruhe and Sheffield will share similar vehicles, as the latter two cities do now.

The only differences are the German version runs on 15 KVAC as opposed to the UK’s 25 KVAC, some changed body panels, boarding heights, door number and position, colour schemes and couplers.

Sheffield and Cardiff will be using a standard European tram-train, adapted to our working practices and track standards.

Extending The Network

Suppose Sheffield choose as the tram replacement, a vehicle with the following characteristics.

  • Tram-train.
  • Able to use 25 VAC and 750 VDC overhead wires.
  • Able to use battery power.
  • Regeerative braking to battery.
  • Enhanced performance, as the original vehicles struggle on the hills, according to drivers to whom I’ve spoken. But the 399s are much better!
  • Extra capacity.
  • 75 mph operating speed

Sheffield would be able to develop several new routes.

I am particularly curious, as to whether a tram-train with a battery capability delivered in say 2025, will have the capability of handling a route like the Penistone Line.

It should be noted, that if Sheffield were Karlsruhe, there would be tram-trains to Doncaster, Doncaster-Sheffield Airport, Huddersfield, Retford and Worksop.

But the German city is at the centre of a network of electrified lines.

Conclusion

Sheffield will be the next city in the UK, after Cardiff, that will have a wide-spresad battery-electric tram-train network.

July 21, 2019 Posted by | Transport | , , , | 4 Comments

Sheffield Region Transport Plan 2019 – A New Tram-Train Route To A New Station At Waverley

Sheffield’s plans state that a medium to long term priority is to have a new station on the Sheffield-Lincoln Line.

This Google Map shows the location of Waverley between Darnall and stations.

 

Note.

  1. Darnall station is in the North-West corner of the map.
  2. Woodhouse station is in the South-East corner of the map.
  3. Waverley is a new housing area and is highlighted in red towards the North-East corner of the map.

The plans also propose that the service will be run by tram-trains and they will also serve the Advanced Manufacturing Park (AMP)

This Google Map shows AMP and Waverley in a larger scale.

Note.

  1. Waverley in the South-East corner of the map.
  2. The AMP in the North-West corner of the map.
  3. The Sheffield-Lincoln Line curving through to the South.

Most rail and tram systems are straight out-and-back layouts, but there are two very important loops  that serve a wider area under Liverpool City Centre and Heathrow Airport.

Could Waverley and the AMP be served by a surface loop from the Shyeffield-Lincoln Line?

  • The loop could be single- or double-track.
  • Stops would be in appropriate places.
  • The loop could be electrified as needed with 750 VDC to the Sheffield Supertram standard.

As Sheffield is less than three miles from Waverley, the battery-electric version of Class 399 tram-trains, as ordered for the South Wales Metro, should be able to run to and from Sheffield on battery power, if the loop was fully electrified, so could charge the tram-trains.

The Sheffield-Lincoln Line passes to the back of the Sheffield Supertram Depot, so I suspect, if required the tram-trains could sneak through the depot to join the main tram route through Sheffield City Centre.

But as the Sheffield Supertram expands, there must surely come a point, where a second route across the City is needed to handle increasing numbers of trams. Manchester found this a few years ago and have since built the Second City Crossing.

Sheffield already has a second route across the City and it is the rail line through Sheffield station, which will be electrified in the next few years, to allow High Speed Two trains to reach the City.

So I can see no reason, why tram-trains from Waverley and the AMP can’t terminate in Sheffield station or go across the City.

To show what the Germans get up to, here’s one of Karlruhe’s tram-trains in a platform in Karlsruhe HBf, with a double-deck TGV in an adjacent platform.

This is one of Karlsruhe’s older train trains, that are being replaced by tram-trains, which are cousins of those in Sheffield.

If the Waverley loop is built, it can be considered as a separate tram system, that connects to Sheffield station, by running as a battery-electric train.

Conclusion

Why shouldn’t Sheffield have an advanced tram-train system to serve the Advanced Manufacturing Park?

 

July 20, 2019 Posted by | Transport | , , , , | 3 Comments

Irlam Station To Go Step-Free

This document on the Government web site is entitled Access for All: 73 Stations Set To Benefit From Additional Funding.

Irlam station is on the list.

These pictures show the station and the current subway.

The station was a total surprise, with a large pub-cafe and a lot of visitors and/or travellers sitting in the sun.

I had an excellent coffee and a very welcoming gluten-free blueberry muffin!

This Google Map shows the station.

It is one of those stations where commuters have to cross the railway either on the way to work or coming home.

So a step-free method of crossing the railway is absolutely necessary.

The Current And Future Rail Service

As the station lies conveniently between Liverpool and Warrington to the West and Manchester and Manchester Airport to the East, it must be a station with tremendous potential for increasing the number of passengers.

At the moment the service is two trains per hour (tph) between Liverpool Lime Street and Manchester Oxford Road stations.

  • Oxford Road is probably not the best terminus, as it is not on the Metrolink network.
  • When I returned to Manchester, many passengers alighted at Deansgate for the Metrolink.
  • On the other hand, Liverpool Lime Street is a much better-connected station and it is backed up by Liverpool South Parkway station, which has a connection to Merseyrail’s Northern Line.
  • The current service doesn’t serve Manchester Piccadilly or Airport stations.

A guy in the cafe also told me that two tph are not enough and the trains are often too short.

Merseyrail work to the same principle as the London Overground and other cities of four tph at all times and the frequency certainly draws in passengers.

Whilst I was drinking my coffee, other trains past the station.

  • One tph – Liverpool Lime Street and Manchester Airport
  • One tph – Liverpool Lime Street and Norwich

Modern trains like Northern’s new Class 195 trains, should be able to execute stops at stations faster than the elderly diesel trains currently working the route.

So perhaps, after Irlam station becomes step-free, the Manchester Airport service should call as well.

As Liverpool Lime Street station has been remodelled, I can see a time in the not too distant future, when that station can support four tph, that all stop at Irlam station.

The Manchester end of the route could be a problem, as services terminating at Oxford Road have to cross the busy lines of the Castlefield Corridor.

So perhaps all services through Irlam, should go through Deansgate, Manchester Oxford Road and Manchester Piccadilly stations to terminate either at the Airport or perhaps Stockport or Hazel Grove stations.

But would this overload the Castlefield Corridor?

Battery/Electric Trains

If you look at the route between Liverpool Lime Street and Manchester Oxford Road stations, the following can be seen.

  • Only about thirty miles between Deansgate and Liverpool South Parkway stations is not electrified.
  • The section without electrification doesn’t appear to be particularly challenging, as it is along the River Mersey.

It is my view, that the route between Liverpool and Manchester via Irlam, would be an ideal route for a battery/electric train.

A train between Liverpool Lime Street and Manchester Airport stations would do the following.

  • Run from Liverpool Lime Street station to Liverpool South Parkway station using the installed 25 KVAC overhead electrification.
  • Drop the pantograph during the stop at Liverpool South Parkway station.
  • Run from Liverpool South Parkway station to Deansgate station using battery power.
  • Raise the pantograph during the stop at Deansgate station.
  • Run from Deansgate station to Manchester Airport station, using the installed 25 KVAC overhead electrification.

The exact distance between Deansgate and Liverpool South Parkway stations is 28.2 miles or 45.3 kilometres.

In 2015, I was told by the engineer riding shotgun on the battery/electric Class 379 train, that that experimental train was capable of doing fifty kilometres on battery power.

There are at least four possible trains, that could handle this route efficiently.

  • Porterbrook’s proposed batteryFLEX train based on a Class 350 train.
  • A battery/electric train based on the seemingly unwanted Class 379 train.
  • A battery/electric version of Stadler’s Class 755 train.
  • I believe that Bombardier’s Aventra has been designed so that a battery/electric version can be created.

There are probably others and I haven’t talked about hydrogen-powered trains.

Battery power between Liverpool and Manchester via Irlam, appears to be very feasible.

Tram-Trains

As my train ran between Manchster and Irlam it ran alongside the Metrolink between Cornbrook and Pomona tram stops.

Manchester is very serious about tram-trains, which I wrote about in Could A Class 399 Tram-Train With Batteries Go Between Manchester Victoria And Rochdale/Bury Bolton Street/Rawtenstall Stations?.

Tram-trains are often best employed to go right across a city, so could the Bury tram-trains go to Irlam after joining the route in the Cornbrook area?

  • Only about thirty miles between Deansgate and Liverpool South Parkway stations is not electrified.
  • The route between Liverpool and Manchester via Irlam doesn’t look to be a very challenging line to electrify.
  • The total distance bettween Liverpool Lime Street and Manchester Victoria station is only about forty miles, which is a short distance for a tram-train compared to some in Karlsruhe.
  • Merseyrail’s Northern Line terminates at Hunts Cross station, which is going to be made step-free.
  • There is an existing step-free interchange between the Liverpool and Manchester route via Irlam and Merseyrail’s Northern Line at Liverpool South Parkway station.
  • Class 399 tram-trains will have a battery capability in South Wales.
  • Class 399 tram-trains have an operating speed of 62 mph, which might be possible to increase.
  • Stadler make Class 399 tram-trains and are building the new Class 777 trains for Merseyrail.

I think that Stadler’s engineers will find a totally feasible and affordable way to link Manchester’s Metrolink with Liverpool Lime Street station and Merseyrail’s Northern and Wirral Lines.

I can envisage the following train service running between Liverpool and Manchester via Irlam.

  • An hourly service between Liverpool Lime Street and Nottingham, as has been proposed for the new East Midlands Franchise.
  • A four tph service between Liverpool Lime Street and Manchester Airport via Manchester Piccadilly.
  • A tram-train every ten minutes, linking Liverpool Central and Manchester’s St Peter’s Square.
  • Tram-trains would extend to the North and East of Manchester as required.
  • All services would stop much more comprehensively, than the current services.
  • Several new stations would be built.
  • In the future, the tram-trains could have an interchange with High Speed Two at Warrington.

Obviously, this is just my speculation, based on what I’ve seen of tram-train networks in Germany.

The possibilities for the use of tram trains are wide-ranging.

Installing Step-Free Access At Irlam Station

There would appear to be two ways of installing step-free access at Irlam station.

  • Add lifts to the existing subway.
  • Add a separate bridge with lifts.

These are my thoughts on each method.

Adding Lifts To The Existing Subway

Consider.

  • The engineering would not be difficult.
  • Installaton would probably take a number of weeks.
  • There is good contractor access on both sides of the railway.

There are similar successful step-free installations around the UK

The problem is all about, how you deal with passengers, whilst the subway is closed for the installation of the lifts.

Adding A Separate Bridge With Lifts

Consider.

  • There is a lot of space at both the Eastern and Western ends of the platform to install a new bridge.
  • Adding a separate bridge has the big advantage, that during the installation of the bridge, passengers can use the existing subway.
  • Once the bridge is installed, the subway can be refurbished to an appropriate standard.

Passengers will probably prefer the construction of a new bridge.

In Winner Announced In The Network Rail Footbridge Design Ideas Competition, I wrote how the competition was won by this bridge.

So could a factory-built bridge like this be installed at Irlam station?

There is certainly space at both ends of the platform to install such a bridge and the daily business of the station and its passengers would be able to continue unhindered, during the installation.

I’m also sure, that the cafe would be happy to provide the daily needs of the workforce.

Conclusion

From a station and project management point-of-view, adding a new factory-built bridge to Irlam station is the easiest and quickest way to make the station step-free.

It also appears, that Network Rail have made a wise choice in deciding to put Irlam station on their list of stations to be made step-free, as the station could be a major part in creating a new high-capacity route between Liverpool and Manchester.

This could also be one of the first stations to use an example of the new bridge.

  • Installation would be quick and easy.
  • There is no site access problems.
  • There station can remain fully open during the installation.
  • All stakeholders would probably be in favour.

But above all, it would be a superb demonstration site to bring those from stations, where Network Rail are proposing to erect similar bridges.

July 6, 2019 Posted by | Transport | , , , , , , , , , , , , | Leave a comment

Comparing Trams And Tram-Trains In Manchester And Sheffield

In Could A Class 399 Tram-Train With Batteries Go Between Manchester Victoria And Rochdale/Bury Bolton Street/Rawtenstall Stations?, I discussed how Class 399 tram-trains might be used on a route in the Manchester area.

This was my conclusion.

Could we see tram-trains running from Bury Bolton Street, Hebden Bridge, Rawtenstall and Rochdale into Manchester Victoria and then taking to the existing tram network?

If you’ve ever been to Karlsruhe, as I have to see the Class 399 tram-trains German cousins, you wouldn’t rule out anything.

That would include tram-train services to Blackburn, Buxton, Chester, Glossop, Hebden Bridge, Sheffield, Southport and Wigan.

So how do Manchester’s M5000 trams, Sheffield’s Supertrams compare to the Class 399 tram-train?

Body Construction

  • M5000 – Aluminium
  • Supertram – Steel
  • Class 399 – Lightweight Stainless Steel

Does the Class 399 use lightweight stainless steel to give enhanced crash protection and better corrosion resistance?

Sections, Doors and Length

  • M5000 – 2, 4 and 38.4 metres
  • Supertram – 3, 4 and 34.8 metres
  • Class 399 – 3, 4 and 37.2 metres

Capacity

  • M5000 – 60 or 66 seats, 149 standing, 209/215 maximum
  • Supertram – 86 seats, 155 standing, 241 maximum
  • Class 399 – 88 seats and 150 standing, 238 maximum

The M5000 is a bit less because it is a shorter vehicle with less standing space.

Entrance Height

  • M5000 – 0.98 metres
  • Supertram – 0.42 metres
  • Class 399 – .425 metres

The Supertram and the Class 399 have obviously been built to be able to use the same tram platforms in Sheffield.

Wikipedia says this about standard UK platform height.

The standard height for platforms is 915 mm with a margin of +0,-25 mm

But it would appear that the M5000 is not far from the UK standard height, but the Class 399 is 0.465 metres too low.

Consider.

  • The entrance height of a Greater Anglia Class 755 train, which is a bi-mode FLIRT is 0.96 metres.
  • On the South Wales Metro, variants of Class 399 tram/trains and Class 755 trains will share platforms.

So Stadler must have a nifty solution to overcome the platform height difference for these two trains, which is similar to that in Manchester between a Class 399 tram-train and an M5000.

If it’s on the tram-train, then Stadler have a solution, that will allow Class 399 tram-trains to run on the Manchester Metrolink.

The datasheet for the Class 399 tram-train says this about the suspension of the tram-train.

Smooth and silent operation with secondary air suspension and resilient wheels.

Secondary air suspension is not new on trains, as it certainly featured on British Rail Mark 3 coaches from the 1970s, which have a legendary smooth ride. It can still be seen between the bogie and the coach on many Bombardier trains, which trace their ancestry to British Rail designs.

The picture shows the bogie on a Class 378 train.

Note the air-suspension above the frame of the bogie.

Some cars use secondary air suspension with computers to control the amount of air in each rubber bag to improve the ride and road-holding.

Transport for London measure the pressure in the suspension and use this to calculate train loading. I described this application in Is This The Hippest Train Status Displays?

Could the air bags be pumped up to raise the train and and reduced in pressure to drop it a few centimetres?

There are certainly suspension engineers, in the automotive and motor-sport industries, who have relevant experience and could suggest a solution.

All this speculation is a bit like Lew Grasde’s quote on the film Raise the Titanic on which he lost a lot of money.

Raise The Titanic?  It would have been cheaper to lower the Atlantic!

Here it’s a bit of the reverse as if the tram-trains can be adjusted to the platform height, then hundreds of platforms don’t need to be rebuilt.

Suppose the platforms were built to fit an existing tram or train.

  • On the Manchester Metrolink the platforms would fit the M5000 trams.
  • On the Sheffield Supertram, the platforms would fit the Supertrams.
  • On the South Wales Metro, the platforms would fit the Welsh variant of the Class 755 train.

The Class 399 tram-trains running in Sheffield have their suspension adjusted on mnufacture and in the depot, so that there is level access between tram-train and platform.

Could the same tram-trains be adjusted so that they fit the Manchester Metrolink platforms, which are higher?

If they can, then Manchester has got a source of off-the-shelf tram-trains.

The picture shows a Class 399 tram-train at Rotherham Parkgate. Note the level access at the orange door in the foreground.

Manchester would need a different colour as Chelsea Blue wouldn’t be appropriate.

The intriguing idea, is can the same Class 399 tram-trains run in both Manchester and Sheffield, with the tram-train’s computer adjusting the ride height to suit the different height of platforms?

At present the answer is probably no, as if they could then there wouldn’t be dual-height platforms at Rotherham Central station.

Note the slopes down on both sides of the tracks from the high-level train platforms in the background, to the low-level tram platforms in the foreground.

It all depends on whether the suspension design is possible.

If it is, which I doubt, it would get round the bit problem of platforms on tram-train systems.

Weight

  • M5000 – 30.7 tonnes
  • Supertram – 46.5 tonnes
  • Class 399 – .66.1 tonnes

The Class 399 tram-train is a heavy beast so raising it by much might be difficult, as you changed from Sheffield to Manchester heights.

Operating Speed

  • M5000 – 80 kph
  • Supertram – 80 kph
  • Class 399 – .100 kph

Power And Power/Weight Ratio

  • M5000 – 480 kW – 15.6 kW/tonne
  • Supertram – 1108kW –  23.8 kW/tonne
  • Class 399 – 870 kW – 13.2 kW/tonne

Noye.

  1. By comparison the power/weight ratio of a Class 321 train is just 7.9 kW/tonne
  2. I have talked to Sheffield tram-drivers and their view is that the Class 399 tram-trains handle Sheffield’s hills better with a full load of passengers.
  3. The Class 399 has six traction motors, whereas the others have four.

So perhaps, the way that the Class 399 tram-train puts its power to the rail with more driven axles,  is important.

Conclusion

I am convinced that just as Sheffield’s Supertram can work happily with Class 399 tram-trains, Stadler have ways and means of making Manchester Metrolink’s M5000 trams work with the tram-trains.

If the Class 399 tram-train is compatible with both tram networks, this will be a great advantage in designing new tram-train routes.

It would also mean that one day, a tram-train service could run from Cathedral in Sheffield to Piccadilly Gardens in Manchester via the Hope Valley Line.

I suspect that a lot of local services from the two cities will be run by tram-train services, that cross the cities.

 

 

 

 

March 10, 2019 Posted by | Transport | , , , | 2 Comments

Stadler Rail’s Specification For UK Trains

These are links to the pdf specifications of Stadler Rail’s products in the UK.

I shall add more as I find them!

March 10, 2019 Posted by | Transport | , , , | 1 Comment