The Anonymous Widower

An Advance Single From London To York For £32.90 Bought An Hour Before The Train Left

I went to York and Manchester yesterday.

I had been planning to do this trip for a week or so, but as I have lots of other things to do, I didn’t want to decide on a date.

So on Monday, I went to King’s Cross and investigated how much a London to York single ticket would cost.

I was surprised to find, that if I bought it last minute from a ticket machine with a Senior Railcard, that travelling about eleven in the morning I could get a ticket for £55 on the 11:06, which is a service that terminates at York, but is a few minutes slower.

Everything was clear for a trip yesterday and just after ten, I turned up at King’s Cross.

The machine offered me tickets at £81.90 on the 10:30 and 11:00 services, but I was able to get a ticket for £32.90 on the 11:06.

I was also able to ask for and get a forward-facing window seat with a table.

It looks like LNER are trying to sell as many seats as possible and they have developed, an algorithm that does this.

If I look at buying a ticket for today on the 11:06 on the Internet, I’m offered the following prices.

  • Advance Single – £32.90
  • Super Off-Peak Single – £81.90
  • Anytime Single – £94.35

There is even a First Class Advance Single at £45.90.

Conclusion

It pays to do your research.

It looks like a one-way journey by an electric car would take four hours and cost around £20.

August 10, 2022 Posted by | Transport/Travel | , , , | 5 Comments

‘Upgrade East Coast Main Line Before HS2’ If Leeds And Yorkshire Want Faster Rail Links To London

The title of this post, is the same as that of this letter to the Yorkshire Post.

This is the opening paragraph.

The decision to scrap HS2 running to Leeds is controversial but those who travel to London should not despair.

The writer makes these points.

  • High Speed Two will probably charge a premium fare because of the speed.
  • The current journey time to the capital is two hours 13 minutes at a cost of £28-60, if purchased in advance.
  • Planned improvements on the East Coast Main Line will reduce the journey time to London King’s Cross to one hour 56 minutes.
  • High Speed Two will take one hour 22 minutes.
  • If the line between Doncaster and Leeds were to be improved, the journey time could be reduced to one hour 45 minutes.

The writer finishes by saying that if the government ‘four tracked’ the entire East Coast route, 140mph LNER’s Azuma trains would match the times of High Speed Two.

In What Will Be The Fastest Times Possible Between London King’s Cross And Leeds?, I came to this conclusion.

It looks like a non-stop service between London and Leeds running at 140 mph, with perhaps some sections at perhaps a bit faster, could be able to match the High Speed Two times.

Running non-stop saves a total of eighteen minutes.

In an hour, I would give Leeds one non-stop and one stopping service to London.

March 9, 2022 Posted by | Transport/Travel | , , , , , , | 13 Comments

LNER Launches International Website Making Travel Simpler For Overseas Tourists

The title of this post, is the same as that of this press release on LNER.

These four paragraphs describe the new website.

The new website coincides with the removal of pre-departure testing and quarantine rules for vaccinated people arriving in England or Scotland from 11 February 2022.

In a move that expands LNER’s global market, customers in 10 countries, including China, Japan, Spain, South Korea and Italy, are among the first to benefit when booking directly online.

LNER’s new search and booking engine offers international customers in those countries an option to purchase train tickets using their language and currency. The LNER.co.uk website will automatically detect those customers who are searching outside of the UK and will redirect them to the customised site to improve their online booking experience. The website launch comes as LNER reintroduces its full timetable, excluding pre-planned engineering works, meaning customers can discover destinations across the full 956-miles of East Coast route.

LNER has been working with travel tech company and rail retailer, Omio, to develop the site, which has the capability to operate in up to 20 languages and 26 currencies, including Euros, Korean Won and Japanese Yen or by using a payment method recognised in the home country.

Surely, if you run a travel company, your web site must be accessible to buy tickets from everywhere.

February 20, 2022 Posted by | Transport/Travel | , , , | 5 Comments

Should The Great Northern And Great Eastern Joint Line Be Electrified?

The Great Northern And Great Eastern Joint Line was created in the Nineteenth Century by the Great Northern Railway and the Great Eastern Railway.

  • The main purpose was to move freight like coal, agricultural products and manufactured goods between Yorkshire and Eastern England.
  • It originally ran between Doncaster and Huntington via Gainsborough, Lincoln, Sleaford, Spalding and March.
  • It had a full length of almost 123 miles.
  • There was a large marshalling yard at Whitemoor near March.

Over the years the line has been pruned a bit and now effectively runs between Doncaster and Peterborough.

  • Trains between Lincoln and March are now routed via Peterborough.
  • It carries upwards of twenty freight trains per day in both directions through Lincoln Central station.
  • Many of the freight trains are going to and from the East Coast ports.
  • The distance between Doncaster and Peterborough is 93.7 miles, as opposed to the 79.6 miles on the East Coast Main Line.
  • The line is not electrified, but it connects to the electrified East Coast Main Line at both ends.

There have been some important developments in recent years.

2015 Freight Upgrade

Wikipedia says this about the major 2015 freight upgrade.

In 2015 a £280 million upgrade of the Joint Line by Network Rail was substantially complete, enabling two freight trains per hour to be diverted from the congested East Coast Main Line; gauge enhancements to enable the passage of 9 ft 6 in (2.90 m) containers were included in the work.

The Sleaford avoiding line had been substantially downgraded since the 1980s and was reinstated to double track as part of the 2015 scheme. Resignalling and modernisation of level crossings was included.

This means that freight trains have an alternative route, that avoids the East Coast Main Line.

Doncaster iPort

Over the last few years the Doncaster iPort has been developed, which is an intermodal rail terminal.

  • It has a size of around 800 acres.
  • The site opened in early 2018.
  • There is a daily train to the Port of Southampton and two daily trains to both Teesport and Felixstowe.
  • The Felixstowe trains would appear to use the Joint Line.

I feel that as the site develops, the Doncaster iPort will generate more traffic on the Joint Line.

This Google Map shows the Doncaster iPort.

There would appear to be plenty of space for expansion.

The Werrington Dive Under

The Werrington Dive Under has been built at a cost of £ 200 million, to remove a bottleneck at the Southern end of the Joint Line, where it connects to the East Coast Main Line.

The Werrington Dive Under was built, so that it could be electrified in the future.

LNER To Lincolnshire

LNER appear to have made a success of a one train per two hours (tp2h) service between London King’s Cross and Lincoln station.

  • LNER have stated, that they want to serve Grimsby and Cleethorpes in the North of the county.
  • North Lincolnshire is becoming important in supporting the wind energy industry in the North Sea.
  • Lincoln is becoming an important university city.
  • Several towns in Lincolnshire probably need a service to Peterborough and London.
  • In 2019, the Port of Grimsby & Immingham was the largest port in the United Kingdom by tonnage.

I can see an expanded Lincolnshire service from LNER.

Full Digital Signalling Of The East Coast Main Line To The South Of Doncaster

This is happening now and it will have a collateral benefits for the Joint Line.

Most passenger and freight trains will also use the East Coast Main Line, if only for a few miles, which will mean they will need to be fitted for the digital signalling.

This could mean that extending full digital signalling to Lincolnshire will not be a challenging project.

Arguments For Electrification

These are possible arguments for electrification.

Electric Freight Trains To And From The North

It would be another stretch of line, that could accommodate electric freight trains.

An Electrified Diversion Route For East Coast Main Line Expresses

Currently, when there is engineering blockades between Doncaster and Peterborough on the East Coast Main Line, the Hitachi Class 800 and Class 802 trains of Hull Trains and LNER are able to divert using their diesel power.

But the electric trains of LNER and Lumo have to be cancelled.

An electrified diversion route would be welcomed by passengers and train companies.

It would also mean that any trains running from King’s Cross to electrified destinations would not to have any diesel engines.

An Electrified Spine Through Lincolnshire

If there was an electrified spine between Doncaster and Peterborough via Gainsborough, Lincoln, Sleaford and Spalding, these stations would be these distances from the spine.

  • Boston – 16.8 miles
  • Cleethorpes – 47.2 miles
  • Grimsby Town – 43.9 miles
  • Market Rasen – 14.8 miles
  • Skegness – 40.7 miles

Note.

  1. These distances are all possible with battery-electric trains.
  2. Charging would be on the electrified spine and at Skegness and Cleethorpes stations.

All of South Lincolnshire and services to Doncaster would use electric trains.

London Services

London services would be via Spalding and join the East Coast Main Line at Werrington.

  • Boston and Skegness would be served from Sleaford, where the train would reverse.
  • Market Rasen, Grimsby Town and Cleethorpes would be served from Lincoln, where the train would reverse.

This would enable Cleethorpes and Skegness to have at least four trains per day to and from London King’s Cross.

North Lincolnshire Services

There are two train services in North Lincolnshire.

Cleethorpes and Barton-on-Humber.

Cleethorpes and Manchester Airport via Grimsby Town, Scunthorpe, Doncaster, Sheffield and Manchester Piccadilly.

Note.

  1. Cleethorpes would need to have a charger or a few miles of electrification, to charge a train from London.
  2. Doncaster, which is fully electrified is 52.1 miles from Cleethorpes.
  3. Barton-on-Humber is 22.8 miles from Cleethorpes.

Battery-electric trains should be able to handle both services.

Arguments Against Electrification

The only possible arguments against electrification are the disruption that the installation might cause and the unsightly nature of overhead gantries.

Conclusion

The Great Northern and Great Eastern Joint Line should be electrified.

 

 

 

 

February 15, 2022 Posted by | Energy, Transport/Travel | , , , , , , , , , , , | 1 Comment

Talgo To Begin Fuel Cell Loco Trials

The title of this post, is the same as that of this article on Railway Gazette.

These are the first two paragraphs.

Trials are to begin shortly with the TPH2 fuel cell test locomotive developed by Talgo as part of its hydrogen traction programme. This forms part of a low-carbon research and development strategy which is being supported by a green hydrogen supply alliance and financing from the European Investment Bank.

The TPH2 loco has been produced by fitting fuel cells and traction batteries to the Travca L-9202 ‘Virgen del Buen Camino’ prototype multi-system and variable gauge locomotive which was built by Talgo in 2005.

This page on the Talgo web site describes the Travca locomotive like this.

Travca: Traction Without Borders

Travca is a locomotive that stops at nothing; not at different power supplies, track gauges nor signalling systems all of which makes Travca Talgo’s most advanced development in the field of traction.

This is the specification of the electric locomotive from the Talgo web site.

  • Operating speed – Up to 250km/h (passenger version)
  • Configuration – Bo-Bo
  • Track gauge (mm) -1435-1668
  • Length (m) – 19400
  • Bodyshell width (mm) – 2950
  • Unladen weight (tonnes) – 72 (passenger version)
  • Number of axles – 4
  • Power – 2,400 kW (25kV, 50Hz) / 2,000kW (3kV dc)
  • Brakes – Regenerative, rheostatic and air brakes

Notes.

  1. It is a variable-gauge and variable-voltage locomotive.
  2. 1435 mm is standard gauge
  3. It is lighter and wider than a Class 90 locomotive.

It does seem to be the basis of a very useful locomotive.

This article on Railway News is entitled University Of Extremadura To Work With Talgo On Its Hydrogen Train, says this about the test train.

During the first stage of the hydrogen train project, Talgo is developing the necessary engineering for the assembly and commissioning of hydrogen traction in a test train. The train will comprise a Talgo Travca MS locomotive, which can change gauges and run under different electrification systems, and five Talgo hauled cars that will house the hydrogen fuel cell system. One of the cars will be a laboratory car.

This would appear to be an experimental train with the hydrogen power station in four of the coaches.

It also appears that Extremadura is developing a hydrogen infrastructure.

Applications In The UK

The obvious application in the UK, is as a Class 66 diesel locomotive replacement, for some of the light to medium duties.

The Class 66 locomotives have a power of 2400 kW, which could be within the range of the Talgo locomotive.

In LNER Seeks 10 More Bi-Modes, I speculated that Talgo, with all their experience of high speed trains might like to bid for the extra ten trains, that LNER requires.

They could be ideal to allow electric trains to run between London and Aberdeen and Inverness.

  • The Travca locomotive running on electricity could certainly handle 140 mph between London and Edinburgh.
  • The power requirements North of Edinburgh would be less, as speeds would be lower.
  • Ranges on hydrogen would be under two hundred miles.

It would be a flagship service for both LNER and Talgo.

 

 

February 7, 2022 Posted by | Hydrogen, Transport/Travel | , , , , | 2 Comments

More Train Companies Are Advertising Now

At the end of October, I posted Hull Trains Are Mounting A Big Advertising Campaign.

Today LNER are also advertising in The Times and these follow other companies like Avanti West Coast, East Midlands Railway, Grand Central and Great Western Railway.

It looks like the Hull Trains campaign must have been successful.

January 2, 2022 Posted by | Transport/Travel | , , , , , , , | Leave a comment

To Middlesbrough By LNER

Today, I took the new LNER service to Middlesbrough.

It left at 15:25 and should have arrived in just under three hours. But it was eighteen minutes late.

I took these pictures of our arrival in Middlesbrough.

Note.

  1. The train wasn’t full at Middlesbrough.
  2. Quite a few passengers left and joined at York.
  3. There were also a good number of leavers at Thornaby.
  4. The train was five cars.

As it is only the third day of the new service, passenger numbers seem to me to be on-line with what I’ve seen for other new services.

I have a few thoughts.

Is A London and Middlesbrough Service Needed?

In the 1970s, when I worked at ICI, I would regularly travel to Middlesbrough from London for a day’s work at their Wilton site.

In those days there was no direct train and you had to change at Darlington.

Since then I’ve also travelled to Middlesbrough to see football matches and visit the local countryside.

I suspect I’ve done well over fifty trips between the town and London, but today’s trip was my first one that was direct.

Will More Services Be Added?

If you look at LNER’s service patterns to Harrogate and Lincoln, they started with a single service and have quietly grown to between five and seven trains per day (tpd) in both directions.

I suspect that an early and a late train are essential to allow a full day in London or Middlesbrough.

Could This Route Be Run By A Nine-Car Train?

I suspect normally, a five-car train would be sufficient, but suppose one of the big London football clubs was playing Middlesbrough in an FA Cup quarter final, LNER might like to add capacity for the match.

King’s Cross and York stations regularly handle nine-car Azuma trains and from my pictures, it looks like Middlesbrough can too! The only other stop is Thornaby station, which is shown in this Google Map.

I suspect that it might just be possible, if Thornaby passengers were told to get in the first six cars.

Could This Route Be Run By A Battery-Electric Train?

Consider.

  • The trains run on diesel power North of Longlands junction, where they leave and join the East Coast Main Line.
  • It is a distance of only 22.2 miles.

With some form of charging at Middlesbrough, I think that within a few years, this could be an all-electric service.

It would be very handy for Hitachi, as any possible customers for battery-electric trains could be given a demo to or from London.

I Think The Stop At York Is A Good Idea

It could be argued that LNER’s King’s Cross and Middlesbrough service is two services in one.

  • A direct service between London King’s Cross and Thornaby and Middlesbrough.
  • A fast non-stop service between London King’s Cross and York, that takes several minutes under two hours.

Hence my view, that the York stop is a good idea.

Could The Middlesbrough Service Split And Join With Another Service At York?

The Middlesbrough service takes five minutes for the stop at York, but other services only take three minutes.

Has the longer stop been inserted into the timetable, so that the Middlesbrough timetable can be split to serve two separate destinations?

  • Secondary destinations would have to be North of York or York station itself.
  • These could include Bishops Auckland, Edinburgh, Newcastle, Scarborough and Sunderland.
  • Given the arguments, there have been over the new timetable not calling at smaller stations, could these be served by a train to Newcastle?

There are quite a few sensible possibilities.

An alternative could be to split and join at Thornaby to serve both Middlesbrough and Sunderland.

December 15, 2021 Posted by | Transport/Travel | , , , , , , , , | 1 Comment

Gift-Wrapping Service On Board LNER Trains This Christmas

The title of this post, is the same as that of this article on Rail Advent.

This article may seem a bit like an April Fool.

But the publicity might just get more people to travel by train.

December 15, 2021 Posted by | Transport/Travel | , | 5 Comments

Rail Minister Officially Opens Werrington Tunnel

The title of this post, is the same as that of this article on Rail Technology Magazine.

This is the first two paragraphs.

Werrington Tunnel, an underground freight tunnel running beneath the East Coast Main Line near Peterborough, has been formally opened by Rail Minister Chris Heaton-Harris.

A key step in the £1.2bn East Coast upgrade, the opening of the tunnel allows for freight services to be ran underneath the main rail artery, significantly improving passenger service reliability on the East Coast Main Line.

I also think, that the tunnel will be used creatively by passenger and freight operators.

Electrification

There is a possibility that the Great Northern and Great Eastern Joint Line (GNGE) between Werrington and Doncaster via Lincoln could be electrified.

  • It would allow the many freight trains using the route to be hauled by electric locomotives.
  • It would create a by-pass for the East Coast Main Line during engineering works, that could be used as a diversion route by electric trains.
  • Werrington and Lincoln are just over fifty miles and might be handled by battery-electric trains, if the GNGE were to be partially electrified.

According to one report, the Werrington Tunnel has been readied for electrification, should that be decided.

An Improved Peterborough And Lincoln Service

In the past, I have travelled between London and Lincoln with a change at Peterborough. In one case, I just missed my connection, as it was a long crowded walk between the two platforms.

The Werrington Tunnel will enable trains to and from Lincoln to use platforms on the West side of Peterborough station.

Train times and platform allocations could be arranged to make connections at Peterborough easier.

A London And Lincoln Service Via Spalding And Sleaford

There are two possible routes between London King’s Cross and Lincoln

  • The current LNER service leaves the East Coast Main Line at Newark.
  • An alternative route  would leave the East Coast Main Line at Peterborough and be routed via the Werrington Tunnel, Spalding and Sleaford.

These notes apply to the alternative route.

  1. The Lincoln service wouldn’t call at Grantham and Newark.
  2. Some services could also call at other stations.
  3. The current hourly Peterborough and Lincoln service via Spalding is run by a Class 153 train , which stops four times and takes fourteen minutes longer than LNER’s service via Newark.
  4. An easy connection to and from Skegness could be arranged at Spalding,

LNER also plans to extend some Lincoln services to Grimsby Town and Cleethorpes. Timings will dictate which will be the better route.

The Werrington Tunnel would add a large degree of flexibility in routing services between London King’s Cross and Lincoln and Lincolnshire.

Splitting And Joining At Peterborough

If the Werrington Tunnel makes Lincoln timings via Spalding and Sleaford viable, I wonder if it would be possible for trains to split and join at Peterborough.

  • One train would go to Lincoln via the Werrington Tunnel, Spalding and Sleaford.
  • The other might go North to Bradford, Hull, Middlesbrough, Scarborough or York.

The Werrington Tunnel again adds flexibility.

A Round-The-Wash Service Between Doncaster And Ipswich/Norwich

In Is There A Case For A Round-The-Wash Service Between Doncaster And Ipswich/Norwich?, I suggested this service, which would be an hourly Doncaster and Cambridge service via Scunthorpe, Grimsby Town Cleethorpes, Lincoln, Sleaford, Spalding, Werrington Tunnel and Peterborough that would alternatively extend to Ipswich or Norwich.

The Werrington Tunnel again opens up possibilities.

Conclusion

I’m sure that the Werrington Tunnel and the technology that built it will be imitated elsewhere.

 

 

December 9, 2021 Posted by | Transport/Travel | , , , , , , , , | 1 Comment

Hitachi And Eversholt Rail To Develop GWR Intercity Battery Hybrid Train – Offering Fuel Savings Of More Than 20%

The title of this post is the same as that of this press release from Hitachi.

The press release starts with these bullet points.

  • Batteries replacing an engine to cut fuel usage and reduce carbon emissions
  • First time a modern UK intercity train, in passenger service, will use alternative fuel
  • Tri-mode train can improve air quality and reduce noise across South West route’s non-electrified stations

They follow these with this introductory paragraph.

In a UK-first, Hitachi Rail and Eversholt Rail have signed an exclusive agreement aimed at bringing battery power – and fuel savings of more than 20% – to the modern Great Western Railway Intercity Express Trains that carry passengers between Penzance and London.

After a couple more paragraphs, the press return returns to the Penzance theme.

GWR’s Intercity Express Train fleet currently calls at 15 non-electrified stations on its journey between Penzance and London, all of which could benefit from trains running on battery-only power.

The press release then sets out their aims.

The projected improvements in battery technology – particularly in power output and charge – create opportunities to replace incrementally more diesel engines on long distance trains. With the ambition to create a fully electric-battery intercity train – that can travel the full journey between London and Penzance – by the late 2040s, in line with the UK’s 2050 net zero emissions target.

Penzance gets another mention, but the late 2040s for a fully electric-battery intercity train between Penzance and London, is not an ambitious target.

Hitachi Intercity Tri-Mode Battery Train

Hitachi have called the train the Intercity Tri-Mode Battery Train and the specification is shown in this infographic.

Note that fuel & carbon savings of at least 20 % are claimed.

Penzance To London In A Class 802 Train

It would appear that Penzance and London has been chosen as the trial route.

These figures were obtained from Real Time Trains figures for the 1015 from Penzance on the 14th December 2020.

  • Penzance to St. Erth – 5.65 miles – 8 mins – 42.4 mph – 1 mins stop
  • St. Erth to Camborne – 7.2 miles – 10 mins – 43.2 mph – 1 mins stop
  • Camborne to Redruth – 3.65 miles – 5 mins – 43.8 mph – 2 mins stop
  • Redruth to Truro – 9 miles – 10 mins – 54 mph – 2 mins stop
  • Truro to St. Austell  – 14.7 miles – 15 mins – 58.8 mph – 1 mins stop
  • St. Austell to Par – 4.5 miles – 6 mins – 45 mph – 1 mins stop
  • Par to Bodmin Parkway – 8 miles – 11 mins – 43.6 mph – 1 mins stop
  • Bodmin Parkway to Liskeard – 9.2 miles – 12 mins – 46 mph – 1 mins stop
  • Liskeard to Plymouth – 17.8 miles – 25 mins – 42.7 mph – 9 mins stop
  • Plymouth to Totnes – 23.1 miles – 25 mins – 55.4 mph – 1 mins stop
  • Totnes to Newton Abbot – 8.8 miles – 9 mins – 59.3 mph – 2 mins stop
  • Newton Abbot to Exeter St. Davids – 20.2 miles – 18 mins – 71.3 mph – 2 mins stop
  • Exeter St. Davids to Tiverton Parkway – 16.5 miles – 14 mins – 70.7 mph – 1 mins stop
  • Tiverton Parkway to Taunton – 14.2 miles – 11 mins – 77.4 mph – 2 mins stop
  • Taunton to Reading – 106.7 miles – 76 mins – 84.2 mph – 5 mins stop
  • Reading to Paddington – 36 miles – 25 mins – 86.4 mph

The route can be broken neatly into four very different sections.

  • Penzance and Plymouth – 79.5 miles – 112 mins – 42.5 mph – 75 mph operating speed
  • Plymouth and Exeter St. Davids – 52 miles – 57 mins – 54.7 mph – 100 mph operating speed
  • Exeter St. Davids and Newbury – 120.4 miles – 95 mins – 76 mph – 100 mph operating speed
  • Newbury and Paddington – 53 miles – 36 mins – 88.3 mph – 100-125 mph operating speed

Note.

  1. The speed builds up gradually as the journey progresses.
  2. Only between Newbury and Paddington is electrified.

How does Penzance and Paddington stand up as a trial route?

  • Penzance and Plymouth has eight intermediate stops about every nine-ten miles.
  • The nine minute stop at Plymouth, is long enough to charge the batteries, should that be incorporated in the trial.
  • The Cornish Main Line is generally double track, with an operating speed of 75 mph.
  • Plymouth and Exeter includes the running by the sea, through Dawlish.
  • Exeter could be given an extended stop to charge the batteries.
  • Exeter and Newbury is a faster run and the batteries may help with performance.
  • The Reading and Taunton Line has an operating speed of 110 mph.
  • Remember the trains are designed for 140 mph and they achieve nothing like that on diesel.
  • At each of the fifteen stops, the performance, noise and customer reaction can be evaluated. Strange, but my experience of battery trains, says that they are very much quieter than similar electric trains.

The route has a good selection of the types of routes, that Great Western Railway has in its network.

It would appear to be a good route to sort out the good and bad points of the train.

I have a few thoughts.

Possible Destinations For A Intercity Tri-Mode Battery Train

Currently, the following routes are run or are planned to be run by Hitachi’s Class 800, 802, 805 and 810 trains, where most of the route is electrified and sections do not have any electrification.

  • GWR – Paddington and Bedwyn – 13.3 miles
  • GWR – Paddington and Bristol Temple Meads- 24.5 miles
  • GWR – Paddington and Cheltenham – 43.3 miles
  • GWR – Paddington and Great Malvern – 76 miles
  • GWR – Paddington and Oxford – 10.4 miles
  • GWR – Paddington and Penzance – 252 miles
  • GWR – Paddington and Swansea – 45.7 miles
  • Hull Trains – Kings Cross and Hull – 36 miles
  • LNER – Kings Cross and Harrogate – 18.5 miles
  • LNER – Kings Cross and Huddersfield – 17 miles
  • LNER – Kings Cross and Hull – 36 miles
  • LNER – Kings Cross and Lincoln – 16.5 miles
  • LNER – Kings Cross and Middlesbrough – 21 miles

Note.

  1. The distance is the length of line on the route without electrification.
  2. Five of these routes are under twenty miles
  3. Many of these routes have very few stops on the section without electrification.

I suspect that GWR and LNER have plans for other destinations.

What Is The Kinetic Energy Of A Five-Car Class 802 Train At Various Speeds?

I will do my standard calculation.

  • Empty train weight – 243 tonnes (Wikipedia for Class 800 train!)
  • Passenger weight – 302 x 90 Kg (Includes baggage, bikes and buggies!)
  • Train weight – 270.18 tonnes

Using Omni’s Kinetic Energy Calculator, the kinetic energy at various speeds are.

  • 60 mph – 27 kWh
  • 75 mph – 42 kWh
  • 80 mph – 48 kWh
  • 90 mph – 61 kWh
  • 100 mph – 75 kWh
  • 110 mph – 91 kWh
  • 125 mph – 117 kWh – Normal cruise on electrified lines.
  • 140 mph – 147 kWh – Maximum cruise on electrified lines.

A battery must be large enough to capture this kinetic energy, which will be generated, when the train stops.

Acceleration And Deceleration Of A Five-Car Class 802 Train

The first Intercity Tri-Mode Battery Trains will be conversions of Class 802 trains.

This page on the Eversholt Rail web site, has a data sheet for a Class 802 train.

The data sheet shows the following for a five-car Class 802 train.

  • It can accelerate to 120 kph/75 mph in 100 seconds in electric mode.
  • It can accelerate to 160 kph/100 mph in 160 seconds in electric mode.
  • It can accelerate to 120 kph/75 mph in 140 seconds in diesel mode.
  • It can decelerate from 120 kph/75 mph in 50 seconds in electric mode.
  • It can decelerate from 160 kph/100 mph in 90 seconds in electric mode.

Note.

  1. 75 mph is the operating speed of the Cornish Main Line and possibly the Highland Main Line.
  2. 100 mph is the operating speed for a lot of routes in the UK.
  3. It would appear that trains accelerate to 75 mph forty second faster in electric mode, compared to diesel mode.
  4. In diesel mode acceleration slows markedly once 100 kph is attained.

Can we assume that performance in battery mode, will be the same as in electric mode? I will assume that this is valid.

Battery Use In A Station Stop

Suppose the train is travelling at 75 mph with a full load of passengers and makes a station stop, without the use of the diesel engines.

  • If the train is decelerating from 75 mph, there must be space for 42 kWh in the battery.
  • Because regenerative braking is not 100 % efficient, only perhaps 80 % would be stored in the battery. This is 33.6 kWh.
  • To accelerate the train to 75 mph, the battery must supply 42 kWh, as diesel power will not be used for this purpose.
  • The train will take 50 seconds to decelerate, 100 seconds to accelerate and perhaps 60 seconds in the station or 210 seconds in total.
  • Let’s say the battery will need to supply 2 kWh per minute per car for hotel power, that will be 35 kWh for the 210 seconds.

Adding and subtracting inputs and outputs to the battery gives this equation 33.6 – 35 – 42 = -43.4 kWh

The energy in the battery has been reduced by 43.4 kWh, at each 75 mph stop.

Repeating the calculation for a 100 mph stop, which takes 310 seconds, gives an equation of 60 -51.7 – 75 = -66.7 kWh.

Note that in this calculation, I have assumed that the efficiency of regenerative braking is 80 %. These are a selection of figures.

  • For 60 % efficiency, the stops would cost 51.8 kWh from 75 mph and 81.7 kWh from 100 mph.
  • For 80 % efficiency, the stops would cost 43.4 kWh from 75 mph and 66.7 kWh from 100 mph.
  • For 90 % efficiency, the stops would cost 39.2 kWh from 75 mph and 59.2 kWh from 100 mph.

So it is important to raise the efficiency of regenerative braking to as near to 100 % as possible.

It should also be noted that with an 80 % efficiency of regenerative braking, hotel power has an effect.

  • With 1 kWh per minute per car, the stops would cost 25.9 kWh from 75 mph and 40.8 kWh from 100 mph.
  • With 2 kWh per minute per car, the stops would cost 43.4 kWh from 75 mph and 66.7 kWh from 100 mph.
  • With 3 kWh per minute per car, the stops would cost 60.9 kWh from 75 mph and 92.6 kWh from 100 mph.

It is important to reduce the hotel power of the train, as low as possible.

With a 90 % regeneration efficiency and hotel power of 1 kWh per car per minute, the figures are 21.7 kWh from 75 mph and 33.3 kWh from 100 mph.

London Paddington And Penzance By Intercity Tri-Mode Battery Train

Listing the stops between London Paddington and Penzance and their speeds gives the following.

  • St. Erth – 75 mph
  • Camborne – 75 mph
  • Redruth – 75 mph
  • Truro – 75 mph
  • St. Austell – 75 mph
  • Par – 75 mph
  • Bodmin Parkway – 75 mph
  • Liskeard – 75 mph
  • Plymouth – 75 mph
  • Totnes – 100 mph
  • Newton Abbot – 100 mph
  • Exeter St. Davids – 100 mph
  • Tiverton Parkway – 100 mph
  • Taunton – 100 mph
  • Reading – Electrified

This is nine stops from 75 mph, five from 100 mph and one where the electrification is used.

  • Each 75 mph stop needs 43.4 kWh from the battery.
  • Each 100 mph stop needs 66.7 kWh from the battery.

To achieve Hitachi’s aim of low noise and pollution-free station stops between London Paddington and Penzance will need 724.1 kWh of power from the battery.

With 80 % regeneration efficiency and hotel power of 2 kWh per minute per car gives a figure of 724.1 kWh.

With 90 % regeneration efficiency and hotel power of 1 kWh per minute per car gives a figure of 361.8 kWh.

The battery must also have sufficient capacity to handle the regenerative braking. I would suspect that provision will be made for a stop from 125 mph, which is 117 kWh.

So will the battery for the route be somewhere between 500 and 1000 kWh?

Note that each of the three MTU 12V 1600 diesel engines, fitted to a Class 800 train, weigh around two tonnes and Tesla claim an energy density of 250 Wh/Kg for their batteries.

This would mean a battery the weight of one of the diesel engines would have a capacity of 500 kWh.

A train with a full 500 kWh battery at Newbury could arrive in Penzance with some juice in the battery, if regenerative braking could be efficient and the demands of the train to run internal systems were at a low level.

Hitachi’s Increasing Efficiency Of Class 80x Trains

The next variant of the Class 80x trains to come into service, should be the Class 803 trains for East Coast Trains.

  • These trains will be all-electric like LNER’s Class 801 trains.
  • They are designed for a four-hour limited-stop service between London Kings Cross and Edinburgh.
  • They will be one-class and average single fares will be £25,

This sentence from Wikipedia, describes a big difference between Class 803 and Class 801 trains.

Unlike the Class 801, another non-bi-mode AT300 variant which despite being designed only for electrified routes carries a diesel engine per unit for emergency use, the new units will not be fitted with any, and so would not be able to propel themselves in the event of a power failure. They will however be fitted with batteries to enable the train’s on-board services to be maintained, in case the primary electrical supplies would face a failure.

I wouldn’t be surprised to find out that the Class 803 trains have been put on a diet to increase their acceleration to meet the demanding schedule, which has been promised by East Coast Trains.

Hitachi has also given out clues to other efficiency improvements.

  • Class 807 trains for Avanti West Coast, will have no diesel engines or batteries.
  • Class 810 trains for East Midlands Railway will have a revised nose and different headlights. Is this for better aerodynamics?
  • Class 810 trains, also have slots for four diesel engines. I can’t see why they would need all this power on the relatively-flat Midland Main Line. Will two of the slots be used by batteries to reduce fuel consumption and/or increase efficiency?

Hitachi are only doing, what all good engineers would do.

Low-Carbon Between Plymouth and Penzance

In How Much Power Is Needed To Run A Train At 125 mph?, I estimated that an all-electric Class 801 train needs around 3.42 kWh per vehicle mile to maintain 125 mph.

It will need less power to maintain the 75 mph of the Cornish Main Line. I would suspect that as air resistance is based on the square of the speed, that the energy consumption of the Class 802 train could be something under 2 kWh per vehicle. Or even less!

The Cornish Main Line is 79.5 miles between Plymouth and Penzance, but the Intercity Tri-Mode Battery Train, will not be on diesel all the way.

  • At each station stop deceleration and acceleration, the train will not be using diesel. This could take a mile away for each station.
  • All braking will be regenerative to the battery.

I suspect that by using the gradients on the route to advantage and by using diesel in selected areas, that a good driver or a well-written driver assistance system giving advice could safely navigate an Intercity Tri-Mode Battery Train all the way to Penzance on a minimum amount of diesel.

It’s not as if the train will be stranded, as they would have two onboard diesel engines.

I have a suspicion, that with a top-up at Plymouth, if Hitachi can raise efficiencies to a maximum and power consumption to a minimum, that on one battery, the train might be able to run between Plymouth and Penzance for much of the way, without using diesel.

The question also has to be asked, as to what would be the performance of the train with two diesel engines replaced by batteries?

I suspect this is something else to be determined in the trial.

Will Hitachi’s Intercity Tri-Mode Battery Train And Regional Battery Train Have The Same Battery Packs?

The specification of Hitachi’s closely-related Regional Battery Train is described in this Hitachi infographic.

The Regional Battery Train is stated to have a battery range of 90 km/56 miles at 162 kph/100 mph.

Operating speed and battery range have not been disclosed yet for the Intercity Tri-Mode Battery Train. I await them with great interest.

I would expect that it is likely, that Hitachi’s two battery trains and others that follow, will use identical battery packs for ease of manufacture, services and operation.

In their press release, which announced the Battery Regional Train, Hitachi said this.

Hitachi has identified its fleets of 275 trains as potential early recipients of the batteries for use in the UK, as well as installing them on new metro and intercity trains that will be needed in the coming years to replace ageing diesel fleets.

Battery trains produce no greenhouse gases, air pollution and are a far quieter, offering passengers cleaner air in stations, less noise disruption and a carbon-free way to travel. Installing batteries on to existing fleets can also extend their range and allow passengers to reach stations on non-electrified branch lines without having to change train.

They didn’t exactly say all battery packs will be the same, but they were close to it, by saying that they can already be fitted to 275 trains. I would read those paragraphs to say, that a series of trains would use the same technology for different purposes.

What Will Be The Battery Range Of A Hitachi Intercity Tri-Mode Battery Train?

This page on the Eversholt Rail web site, has a data sheet for a Class 802 train, which says that a five-car Class 802 train has  an operating speed of 110 mph on diesel power.

According to Wikipedia and other sources, a Class 802 train has three diesel engines.

If the Regional Battery Train has replaced three diesel engines with battery packs in a five-car train like a Class 802 train to get the 90 km/56 mile range, would this mean?

  • Replacing one diesel engine with a battery pack, give a range of thirty kilometres or about nineteen miles.
  • Replacing two diesel engines with battery packs double the range to sixty kilometres or thirty-eight miles.

It looks like a Hitachi Intercity Tri-Mode Battery Train with one of the same battery-packs should easily reach several of the destinations in my list.

But they would need charging before return or some assistance from the two remaining diesel engines.

I talk about charging the Intercity Tri-Mode Battery Train in Charging The Batteries On An Intercity Tri-Mode Battery Train.

Conclusion

It sounds like a worthwhile train to me and I await the results of the trial with interest.

 

 

 

 

 

November 26, 2021 Posted by | Transport/Travel | , , , , , , , , | 8 Comments