The Anonymous Widower

Should All High Speed Long Distance Services To Newcastle Extend To Edinburgh?

Look at this Google Map of Newcastle station.

Note.

  1. It is built on a curve.
  2. It is on a cramped site.
  3. Platforms are numbered from 1 at the top to 8 at the bottom.
  4. Platform 2 seems to be used for all express services going North.
  5. Platforms 3 and 4 seem to be used for all express services going South.
  6. Not all platforms would appear to be long enough for nine-car Class 80x trains.

I am certain, that any nation with a sophisticated railway system wouldn’t build a station on a curve with no avoiding lines like Newcastle these days.

Network Rail have a plan to sort out Darlington station and I’m sure they’d like to sort out Newcastle as well!

Current Long Distance Trains Through And To Newcastle

These include.

  • CrossCountry – Plymouth and Edinburgh or Glasgow via Alnmouth, Berwick-upon-Tweed and Dunbar.
  • CrossCountry – Southampton Central or Reading and Newcastle.
  • LNER – King’s Cross and Edinburgh via Berwick-upon-Tweed
  • LNER – King’s Cross and Edinburgh via Alnmouth
  • TransPennine Express – Liverpool Lime Street and Edinburgh via Morpeth
  • TransPennine Express – Manchester Airport and Newcastle.

Note.

  1. All have a frequency of one train per hour (tph)
  2. All trains call at Newcastle.
  3. Two tph terminate at Newcastle and four tph terminate at Edinburgh or beyond.

There is also a new and Edinburgh service from East Coast Trains, that will start this year.

  • It will run five trains per day (tpd).
  • It will call at Newcastle.
  • It will stop at Morpeth between Newcastle and Edinburgh.

There will also be High Speed Two services to Newcastle in a few years.

  • There will be two tph between Euston and Newcastle
  • There will be one tph between Birmingham Curzon Street and Newcastle.

Note.

  1. All services will be run by 200 metre long High Speed Two Classic-Compatible trains.
  2. There is no High Speed Two service to Newcastle, that calls at Leeds.
  3. Only one High Speed Two service to Newcastle calls at East Midlands Hub.

I suspect High Speed Two services need a dedicated platform at Newcastle, especially, if another High Speed Two service were to be added.

Extra Paths For LNER

In the December 2020 Edition of Modern Railways, there is an article, which is entitled LNER Seeks 10 More Bi-Modes.

This is the last paragraph.

Infrastructure upgrades are due to prompt a timetable recast in May 2022 (delayed from December 2021), from which point LNER will operate 6.5 trains per hour out of King’s Cross, compared to five today. As an interim measure  LNER is retaining seven rakes of Mk. 4 coaches hauled by 12 Class 91 locomotives to supplement the Azuma fleet and support its timetable ambitions until new trains are delivered.

There would certainly appear to be a path available if LNER wanted to increase the frequency of trains between King’s Cross and Edinburgh from the current two trains per hour (tph) to three.

I laid out how I would use this third path to Edinburgh in A New Elizabethan.

The Possible Long Distance Trains Through And To Newcastle

These trains can be summed up as follows.

  • 1 tph – CrossCountry – Plymouth and Edinburgh or Glasgow via Alnmouth, Berwick-upon-Tweed and Dunbar.
  • 1 tph – CrossCountry – Southampton Central or Reading and Newcastle.
  • 1 tph – LNER – King’s Cross and Edinburgh via Berwick-upon-Tweed
  • 1 tph – LNER – King’s Cross and Edinburgh via Alnmouth
  • 1 tph – TransPennine Express – Liverpool Lime Street and Edinburgh via Morpeth
  • 1 tph – TransPennine Express – Manchester Airport and Newcastle.
  • 5 tpd – East Coast Trains – King’s Cross and Edinburgh via Morpeth
  • 2 tph – High Speed Two – Euston and Newcastle
  • 1 tph – High Speed Two – Birmingham Curzon Street and Newcastle
  • 1 tph – LNER – King’s Cross and Edinburgh – Extra service

This is ten tph and the five tpd of East Coast Trains.

Capacity Between Newcastle And Edinburgh

I wonder what capacity and linespeed would be possible on the East Coast Main Line between Newcastle and Edinburgh.

There are a few freight trains and some suburban electrics at the Northern end, but I suspect that the route could handle ten tph with some upgrades.

Edinburgh As A Terminal

Consider.

  • Not all trains terminate at Edinburgh, but several tpd go through to places like Aberdeen, Glasgow, Inverness and Stirling.
  • Edinburgh has several shorter East-facing bay platforms, that can take five-car Class 802 trains.
  • Edinburgh has undergone a lot of reconstruction in recent years, so that it can turn more trains.

I very much feel that Edinburgh could handle, at least ten tph from the South.

Conclusion

I think it would be possible to extend all trains to Newcastle to at least Edinburgh.

Would it increase passenger capacity between the two capitals?

It would certainly avoid the difficult and expensive rebuilding at Newcastle station.

 

 

 

May 30, 2021 Posted by | Transport | , , , , , , , , , , , , | 5 Comments

A New Elizabethan

I can remember The Elizabethan, which was a steam-hauled non-stop express between London and Edinburgh between 1953 and 1961.

  • The steam-hauled train took six-hours-and-a-half.
  • It used to be the longest non-stop railway service in the world.
  • Today, the service could be run by the current or refurbished Azumas or perhaps a new flagship train, built for the service.
  • It could be easily under four hours.

It could be an interesting concept, to increase capacity between London and Edinburgh.

The Fastest Rail Journey Between London King’s Cross And Edinburgh

This section in the Wikipedia entry for the Class 91 locomotive is entitled Speed Record. This is the first paragraph.

A Class 91, 91010 (now 91110), holds the British locomotive speed record at 161.7 mph (260.2 km/h), set on 17 September 1989, just south of Little Bytham on a test run down Stoke Bank with the DVT leading. Although Class 370s, Class 373s and Class 374s have run faster, all are EMUs which means that the Electra is officially the fastest locomotive in Britain. Another loco (91031, now 91131), hauling five Mk4s and a DVT on a test run, ran between London King’s Cross and Edinburgh Waverley in 3 hours, 29 minutes and 30 seconds on 26 September 1991. This is still the current record. The set covered the route in an average speed of 112.5 mph (181.1 km/h) and reached the full 140 mph (225 km/h) several times during the run.

Seconds under three-and-a-half-hours was an amazing time nearly thirty years ago, from a short-formation InterCity 225, that went on to become the mainstay of the services on the route.

It makes High Speed Two’s proposed time of three hours and forty-eight minutes appear to lack ambition.

But to be fair to High Speed Two, train services have historically been faster on the the East side of Great Britain.

What Time Could Be Possible Between London King’s Cross And Edinburgh?

In What Is Possible On The East Coast Main Line?, I took a hard look at times on the route, taking into account improvements of the last thirty years and those that will happen in the next few.

This was my conclusion.

I started by asking what is possible on The East Coast Main Line?

As the time of three-and-a-half hours was achieved by a short-formation InterCity 225 train in 1991 before Covids, Hitchin, Kings Cross Remodelling, Power Upgrades, Werrington and lots of other work, I believe that some journeys between Kings Cross and Edinburgh could be around this time within perhaps five years.

To some, that might seem an extraordinary claim, but when you consider that the InterCity 225 train in 1991 did it with only a few sections of 140 mph running, I very much think it is a certainly at some point.

As to the ultimate time, earlier I showed that an average of 120 mph between  King’s Cross and Edinburgh gives a time of 3:16 minutes.

Surely, an increase of fourteen minutes in thirty years is possible?

I believe that timings will decrease significantly on the East Coast Main Line with the current trains.

Extra Paths For LNER

In the December 2020 Edition of Modern Railways, there is an article, which is entitled LNER Seeks 10 More Bi-Modes.

This is the last paragraph.

Infrastructure upgrades are due to prompt a timetable recast in May 2022 (delayed from December 2021), from which point LNER will operate 6.5 trains per hour out of King’s Cross, compared to five today. As an interim measure  LNER is retaining seven rakes of Mk. 4 coaches hauled by 12 Class 91 locomotives to supplement the Azuma fleet and support its timetable ambitions until new trains are delivered.

There would certainly appear to be a path available if LNER wanted to increase the frequency of trains between London King’s Cross and Edinburgh from the current two trains per hour (tph) to three.

What Would Be The Route?

I feel there could be three possible simple routes.

  1. A direct non-stop London King’s Cross and Edinburgh service.
  2. A London King’s Cross and Edinburgh service with a single stop at Newcastle.
  3. A London King’s Cross and Edinburgh service with stops at Leeds and Newcastle.

Each route would have its own advantages and drawbacks.

Route 1

My thoughts about Route 1.

  • This would be the fastest route.
  • It would be a serious challenge to the airlines on the London and Edinburgh route.

It would be a marketing man’s dream.

Route 2

My thoughts about Route 2.

  • This would be the second fastest route.
  • It would be a serious challenge to the airlines on the London and Edinburgh route.
  • It would give Newcastle a third hourly service to the capital.
  • It would give Newcastle a non-stop train to London every hour.
  • It would probably be the fastest train between King’s Cross and Newcastle.
  • It would beef up the challenge to the airlines on the London and Newcastle route.

Serving Newcastle may generate extra passengers.

Route 3

My thoughts about Route 3.

  • This would be the slowest route as it is 23 miles longer.
  • It would be a challenge to the airlines on the London and Edinburgh route.
  • It would give Newcastle and Leeds a third hourly service to the capital.
  • It would give Leeds a non-stop train to London every hour.
  • It would probably be the fastest train between London and Leeds.
  • It would beef up the challenge to the airlines on the London and Newcastle and London and Leeds routes.
  • There could be an extra call at York

Serving Leeds and Newcastle may generate extra passengers.

Obviously, passenger numbers will determine the best route.

Conclusion

I very much feel that properly thought through, this service could be a success.

 

 

May 16, 2021 Posted by | Transport | , , , , , , | 4 Comments

Thoughts On Faster Trains On Thameslink

The Class 700 trains used by Thameslink only have an operating speed of 100 mph.

I do wonder, if that is a fast enough operating speed for all Thameslink routes.

Sharing The Midland Main Line With 125 mph Trains

A couple of years ago, I travelled back into St. Pancras with a group of East Midlands drivers in a Class 222 train.

They told me several things about the route including that the bridge at the South of Leicester station would be difficult to electrify, as it was low and the track couldn’t be lowered as one of Leicester’s main sewers was under the tracks at the bridge. Perhaps, this is one place, where discontinuous electrification could be used on the Midland Main Line.

They also told me, that sometimes the Thameslink trains were a nuisance, as because of their 100 mph operating speed, the 125 mph Class 222 trains had to slow to 100 mph.

Upgrading Of The Midland Main Line South Of Bedford

The electrification of the Midland Main Line South of Bedford is being updated, so that it is suitable for 125 mph running.

An Analysis Of Services On The Midland Main Line South Of Bedford

The current Class 222 trains are capable of 125 mph and will be replaced by Class 810 trains capable of the same speed on both diesel and electricity.

Currently, a Class 222 train is capable of doing the following on a typical non-stop run between St. Pancras and Leicester.

  • Covering the 30 miles between St. Albans and Bedford in 17 minutes at an average speed of 106 mph.
  • Covering the 50.3 miles between Bedford and Leicester in 30 minutes at an average speed of 100.6 mph.
  • Maintaining 125 mph for long stretches of the route, once the trains is North of London commuter traffic at St. Albans

I can estimate the timings on the 79.2 miles between Leicester and St. Albans, by assuming the train runs at a constant speed.

  • 100 mph – 47.5 minutes
  • 110 mph – 43.2 minutes
  • 125 mph – 38 minutes
  • 140 mph – 34 minutes

Note.

  1. I have done the calculation for 140 mph, as that is the maximum operating speed of the Class 810 train with full in-cab digital signalling.
  2. Trains have been running at 125 mph for a couple of decades on the Midland Main Line.
  3. To get a St. Pancras and Leicester time add another 14 minutes, which is the current time between St. Pancras and St. Albans of a Class 222 train.
  4. Some Off Peak trains are timed at 62-63 minutes between St. Pancras and Leicester.
  5. A time of under an hour between St. Pancras and Leicester might be possible and the Marketing Department would like it.
  6. As Thameslink trains between Bedford and St. Albans stop regularly, they are on the slow lines of the four-track railway, to the North of St. Albans.
  7. South of St. Albans, Thameslink trains often run on the fast lines.

I can expect that East Midlands Railway will want to be running their new Class 810 trains as far as far South as they can at 125 mph, to speed up their services. When the signalling allows it, they’ll want to run at 140 mph.

So they won’t want to see Thameslink’s slow trains on the fast lines.

  • But if you look at the Thameslink trains that do run on the fast lines between St. Albans and St. Pancras, they appear to be the four trains per hour (tph) that run to and from Bedford.
  • Of these trains, two tph terminate at Brighton and two tph terminate at Gatwick Airport.
  • The average speed of a Class 222 train between St. Albans and St. Pancras assuming 14 minutes for the 19.7 miles is 84.4 mph.

So it looks to me that a 100 mph Thameslink train could be able to get away without slowing the East Midland Railway expresses.

But then that is not surprising, as for many years, the Class 222 trains worked happily with 100 mph Class 319 trains.

Is There Scope For Extra And Faster Services Into St. Pancras?

I have only done a simple calculation, but I do wonder if there is scope for the following.

  • Increasing the frequency of trains for both Thameslink and East Midlands Railway.
  • Saving a few minutes on East Midlands Railway services.

Consider.

  • The new Class 810 electric trains will probably have better acceleration and deceleration than the current Class 222 diesel trains, when working using electric power.
  • East Midlands Railway is introducing Class 360 trains that were built as 100 mph trains by Siemens, who are now upgrading them to 110 mph trains.
  • Can Siemens do the same for the Class 700 trains and create a sub-fleet capable of 110 mph running?
  • All trains will be running under full in-cab digital signalling with a large degree of automatic train control.

I feel that if the Class 700 trains had the extra speed, they would make the planning of services South of St. Albans easier and allow the Class 810 trains to both run faster and provide more services.

Sharing The East Coast Main Line With 125 mph Trains

The following Thameslink services run up the East Coast Main Line past Stevenage.

  • Cambridge And Brighton – Two tph – Stops at Royston, Ashwell and Morden (1 tph), Baldock, Letchworth Garden City, Hitchin, Stevenage, Finsbury Park, London St Pancras International, Farringdon, City Thameslink, London Blackfriars, London Bridge, East Croydon, Gatwick Airport, Three Bridges, Balcombe, Haywards Heath and Burgess Hill
  • Cambridge and Kings Cross – Two tph – Stops at Foxton, Shepreth, Meldreth, Royston, Ashwell and Morden, Baldock, Letchworth Garden City, Hitchin, Stevenage, Knebworth, Welwyn North, Welwyn Garden City, Hatfield, Potters Bar and Finsbury Park
  • Peterborough and Horsham – Two tph – Stops at Huntingdon, St Neots, Sandy, Biggleswade, Arlesey, Hitchin, Stevenage, Finsbury Park, London St Pancras International, Farringdon, City Thameslink, London Blackfriars, London Bridge, East Croydon, Coulsdon South, Merstham, Redhill, Horley, Gatwick Airport, Three Bridges, Crawley, Ifield, Faygate (limited) and Littlehaven

Note.

  1. Services are generally run by Class 700 trains, although lately the Kings Cross service seems to use Class 387 trains, which have a maximum speed of 110 mph and a more comfortable interior with tables.
  2. It is intended that the Cambridge and Kings Cross service will be extended to Maidstone East by 2021.

In addition there are two Cambridge Express and Fen Line services.

  • Kings Cross and Ely – One tph – Stops at Cambridge and Cambridge North.
  • Kings Cross and King’s Lynn – One tph – Stops at Cambridge, Cambridge North, Waterbeach, Ely, Littleport, Downham Market and Watlington

Note.

  1. These services are generally run by Class 387 trains.
  2. Cambridge and King’s Cross is timetabled at around fifty minutes.

Adding all of this together means that slower services on the East Coast Main Line are comprised of the following in both directions.

  • Three tph – 110 mph – Class 387 trains
  • Four tph – 100 mph – Class 700 trains

These seven trains will have to be fitted in with the 125 mph trains running services on the East Coast Main Line, for LNER, Grand Central, Hull Trains and East Coast Trains.

There are also the following problems.

  • All trains must navigate the double-track section of the East Coast Main Line over the Digswell Viaduct and through Welwyn North station.
  • The King’s Cross and Cambridge service stops in Welwyn North station.
  • Full in-cab digital signalling is being installed on the East Coast Main Line, which could increase the speed of the expresses through the double-track section.

Could the introduction of the Class 387 trains on the Cambridge and King’s Cross service have been made, as it easier to fit in all the services if this one is run by a 110 mph train?

However, the full in-cab digital signalling with a degree of automatic train control could be the solution to this bottleneck on the East Coast Main Line.

  • Trains could be controlled automatically and with great precision between perhaps Hatfield and Stevenage.
  • Some expresses might be slowed to create gaps for the Cambridge and Peterborough services.
  • The Hertford Loop Line is also getting full in-cab digital signalling, so will some services be sent that way?

In Call For ETCS On King’s Lynn Route, I talked about a proposal to improve services on the Fen Line. This was my first three paragraphs.

The title of this post, is the same as that on an article in Edition 849 of Rail Magazine.

The article is based on this document on the Fen Line Users Aoociation web site, which is entitled Joint Response To Draft East Coast Main Line Route Study.

In addition to ETCS, which could improve capacity on the East Coast Main Line, they would also like to see journey time reductions using trains capable of running at 125 mph or faster on the King’s Lynn to Kings Cross route.

My scheduling experience tells me that a better solution will be found, if all resources are similar.

Hence the proposal to run 125 mph trains between King’s Cross and King’s Lynn and probably Ely as well, could be a very good and logical idea.

If the Class 700 trains were increased in speed to 110 mph, the trains through the double-track section of the East Coast Main Line would be.

  • One tph – 110 mph – Class 387 trains
  • Four tph – 110 mph – Class 700 trains
  • Two tph – 125 mph – New trains

Note.

  1. This would probably be an easier mix of trains to digest with the high speed services, through the double-track section.
  2. I like the idea of extending the Ely service to Norwich to give Thetford, Attleborough and Wymondham an improved service to London, Cambridge and Norwich.

The new trains would probably be a version of Hitachi’s Regional Battery Train.

  • It would need to be capable of 125 mph on the East Coast Main Line.
  • If the Ely service were to be extended to Norwich, this section would be on battery power.

There are certainly a lot of possibilities.

But as with on the Midland Main Line, it looks like for efficient operation, the operating speed of the Class 700 trains on the route needs to be increased to at least 110 mph.

Could Faster Class 700 trains Improve Services To Brighton?

These are the Thameslink services that serve Bedford, Cambridge and Peterborough, that I believe could be run more efficiently with trains capable of at running at speeds of at least 110 mph.

  • Bedford and Brighton – Two tph
  • Bedford and Gatwick Airport – Two tph
  • Cambridge and Brighton – Two tph
  • Cambridge and Maidstone East – Two tph
  • Peterborough and Horsham – Two tph

Note.

  1. I have assumed that the Cambridge and King’s Cross service has been extended to Maidstone East as planned.
  2. Eight tph serve Gatwick Airport.
  3. Four tph serve Brighton.

The Gatwick Express services have a frequency of two tph between London Victoria and Brighton calling at Gatwick Airport is already run by 110 mph Class 387 trains.

It would appear that if the Bedford, Cambridge and Peterborough were run by uprated 110 mph Class 700 trains, then this would mean that more 110 mph trains would be running to Gatwick and Brighton and this must surely improve the service to the South Coast.

But it’s not quite as simple as that, as the Cambridge and Maidstone East services will be run by eight-car trains and all the other services by twelve-car trains.

Conclusion

There would appear to be advantages in uprating some or possibly all of the Class 700 trains, so that they can run at 110 mph, as it will increase capacity on the Brighton Main Line, East Coast Main Line and Midland Main Line.

 

 

April 6, 2021 Posted by | Transport | , , , , , , , , , , , , , , , , , , | Leave a comment

Will Hitachi Announce A High Speed Metro Train?

As the UK high speed rail network increases, we are seeing more services and proposed services, where local services are sharing tracks, where trains will be running at 125 mph or even more.

London Kings Cross And Cambridge/Kings Lynn

This Great Northern service is run by Class 387 trains.

  • Services run between London Kings Cross and Kings Lynn or Cambridge
  • The Class 387 trains have a maximum operating speed of 110 mph.
  • The route is fully electrified.
  • The trains generally use the fast lines on the East Coast Main Line, South of Hitchin.
  • Most trains on the fast lines on the East Coast Main Line are travelling at 125 mph.
  • When in the future full digital in-cab ERTMS signalling is implemented on the East Coast Main Line, speeds of up to 140 mph should be possible in some sections between London Kings Cross and Hitchin.

I also believe that digital signalling may be able to provide a solution to the twin-track bottleneck over the Digswell Viaduct.

Consider.

  • Airliners have been flown automatically and safely from airport to airport for perhaps four decades.
  • The Victoria Line has been running automatically and safely at over twenty trains per hour (tph) for five decades. It is now running at over 30 tph.
  • I worked with engineers developing a high-frequency sequence control system for a complicated chemical plant in 1970.

We also can’t deny that computers are getting better and more capable.

For these reasons, I believe there could be an ERTMS-based solution to the problem of the Digswell Viaduct, which could be something like this.

  • All trains running on the two track section over the Digswell Viaduct and through Welwyn North station would be under computer control between Welwyn Garden City and Knebworth stations.
  • Fast trains would be slowed as appropriate to create spaces to allow the slow trains to pass through the section.
  • The driver would be monitoring the computer control, just as they do on the Victoria Line.

Much more complicated automated systems have been created in various applications.

The nearest rail application in the UK, is probably the application of digital signalling to London Underground’s Circle, District, Hammersmith & City and Metropolitan Lines.

This is known at the Four Lines Modernisation and it will be completed by 2023 and increase capacity by up to twenty-seven percent.

I don’t think it unreasonable to see the following maximum numbers of services running over the Digswell Viaduct by 2030 in both directions in every hour.

  • Sixteen fast trains
  • Four slow trains

That is one train every three minutes.

Currently, it appears to be about ten fast and two slow.

As someone, who doesn’t like to be on a platform, when a fast train goes through, I believe that some form of advanced safety measures should be installed at Welwyn North station.

It would appear that trains between London Kings Cross and King’s Lynn need to have this specification.

  • Ability to run at 125 mph on the East Coast Main Line
  • Ability to run at 140 mph on the East Coast Main Line, under control of full digital in-cab ERTMS signalling.

This speed increase could reduce the journey time between London Kings Cross and Cambridge to just over half-an-hour with London Kings Cross and King’s Lynn under ninety minutes.

The only new infrastructure needed would be improvements to the Fen Line to King’s Lynn to allow two tph, which I think is needed.

Speed improvements between Hitchin and Cambridge could also benefit timings.

London Kings Cross And Cambridge/Norwich

I believe there is a need for a high speed service between London Kings Cross and Norwich via Cambridge.

  • The Class 755 trains, that are capable of 100 mph take 82 minutes, between Cambridge and Norwich.
  • The electrification gap between Ely and Norwich is 54 miles.
  • Norwich station and South of Ely is fully electrified.
  • Greater Anglia’s Norwich and Cambridge service has been very successful.

With the growth of Cambridge and its incessant need for more space, housing and workers, a high speed train  between London Kings Cross and Norwich via Cambridge could tick a lot of boxes.

  • If hourly, it would double the frequency between Cambridge and Norwich until East-West Rail is completed.
  • All stations between Ely and Norwich get a direct London service.
  • Cambridge would have better links for commuting to the city.
  • London Kings Cross and Cambridge would be less than an hour apart.
  • If the current London Kings Cross and Ely service were to be extended to Norwich, no extra paths on the East Coast Main Line would be needed.
  • Trains could even split and join at Cambridge or Ely to give all stations a two tph service to London Kings Cross.
  • No new infrastructure would be required.

The Cambridge Cruiser would become the Cambridge High Speed Cruiser.

London Paddington And Bedwyn

This Great Western Railway service is run by Class 802 trains.

  • Services run between London Paddington and Bedwyn.
  • Services use the Great Western Main Line at speeds of up to 125 mph.
  • In the future if full digital in-cab ERTMS signalling is implemented, speeds of up to 140 mph could be possible on some sections between London Paddington and Reading.
  • The 13.3 miles between Newbury and Bedwyn is not electrified.

As the service would need to be able to run both ways between Newbury and Bedwyn, a capability to run upwards of perhaps thirty miles without electrification is needed. Currently, diesel power is used, but battery power would be better.

London Paddington And Oxford

This Great Western Railway service is run by Class 802 trains.

  • Services run between London Paddington and Oxford.
  • Services use the Great Western Main Line at speeds of up to 125 mph.
  • In the future if full digital in-cab ERTMS signalling is implemented, speeds of up to 140 mph could be possible on some sections between London Paddington and Didcot Parkway.
  • The 10.3 miles between Didcot Parkway and Oxford is not electrified.

As the service would need to be able to run both ways between Didcot Parkway and Oxford, a capability to run upwards of perhaps thirty miles without electrification is needed. Currently, diesel power is used, but battery power would be better.

Local And Regional Trains On Existing 125 mph Lines

In The UK, in addition to High Speed One and High Speed Two, we have the following lines, where speeds of 125 mph are possible.

  • East Coast Main Line
  • Great Western Main Line
  • Midland Main Line
  • West Coast Main Line

Note.

  1. Long stretches of these routes allow speeds of up to 125 mph.
  2. Full digital in-cab ERTMS signalling is being installed on the East Coast Main Line to allow running up to 140 mph.
  3. Some of these routes have four tracks, with pairs of slow and fast lines, but there are sections with only two tracks.

It is likely, that by the end of the decade large sections of these four 125 mph lines will have been upgraded, to allow faster running.

If you have Hitachi and other trains thundering along at 140 mph, you don’t want dawdlers, at 100 mph or less, on the same tracks.

These are a few examples of slow trains, that use two-track sections of 125 nph lines.

  • East Midlands Railway – 1 tph – Leicester and Lincoln – Uses Midland Main Line
  • East Midlands Railway – 1 tph – Liverpool and Norwich – Uses Midland Main Line
  • Great Western Railway – 1 tph – Cardiff and Portsmouth Harbour – Uses Great Western Main Line
  • Great Western Railway – 1 tph – Cardiff and Taunton – Uses Great Western Main Line
  • Northern – 1 tph – Manchester Airport and Cumbria – Uses West Coast Main Line
  • Northern – 1 tph – Newcastle and Morpeth – Uses East Coast Main Line
  • West Midlands Trains – Some services use West Coast Main Line.

Conflicts can probably be avoided by judicious train planning in some cases, but in some cases trains capable of 125 mph will be needed.

Southeastern Highspeed Services

Class 395 trains have been running Southeastern Highspeed local services since 2009.

  • Services run between London St. Pancras and Kent.
  • Services use Speed One at speeds of up to 140 mph.
  • These services are planned to be extended to Hastings and possibly Eastbourne.

The extension would need the ability to run on the Marshlink Line, which is an electrification gap of 25.4 miles, between Ashford and Ore.

Thameslink

Thameslink is a tricky problem.

These services run on the double-track section of the East Coast Main Line over the Digswell Viaduct.

  • 2 tph – Cambridge and Brighton – Fast train stopping at Hitchin, Stevenage and Finsbury Park.
  • 2 tph – Cambridge and Kings Cross – Slow train stopping at Hitchin, Stevenage, Knebworth, Welwyn North, Welwyn Garden City, Hatfield, Potters Bar and Finsbury Park
  • 2 tph – Peterborough and Horsham – Fast train stopping at Hitchin, Stevenage and Finsbury Park.

Note.

  1. These services are run by Class 700 trains, that are only capable of 100 mph.
  2. The fast services take the fast lines South of the Digswell Viaduct.
  3. South of Finsbury Park, both fast services cross over to access the Canal Tunnel for St, Pancras station.
  4. I am fairly certain, that I have been on InterCity 125 trains running in excess of 100 mph in places between Finsbury Park and Stevenage.

It would appear that the slow Thameslink trains are slowing express services South of Stevenage.

As I indicated earlier, I think it is likely that the Kings Cross and King’s Lynn services will use 125 mph trains for various reasons, like London and Cambridge in well under an hour.

But if 125 mph trains are better for King’s Lynn services, then they would surely improve Thameslink and increase capacity between London and Stevenage.

Looking at average speeds and timings on the 25 miles between Stevenage and Finsbury Park gives the following.

  • 100 mph – 15 minutes
  • 110 mph – 14 minutes
  • 125 mph – 12 minutes
  • 140 mph – 11 minutes

The figures don’t appear to indicate large savings, but when you take into account that the four tph running the Thameslink services to Peterborough and Cambridge stop at Finsbury Park and Stevenage and have to get up to speed, I feel that the 100 mph Class 700 trains are a hindrance to more and faster trains on the Southern section of the East Coast Main Line.

It should be noted, that faster trains on these Thameslink services would probably have better acceleration and and would be able to execute faster stops at stations.

There is a similar less serious problem on the Midland Main Line branch of Thameslink, in that some Thameslink services use the fast lines.

A couple of years ago, I had a very interesting chat with a group of East Midlands Railway drivers. They felt that the 100 mph Thameslink and the 125 mph Class 222 trains were not a good mix.

The Midland Main Line services are also becoming more complicated, with the new EMR Electric services between St. Pancras and Corby, which will be run by 110 mph Class 360 trains.

Hitachi’s Three Trains With Batteries

Hitachi have so far announced three battery-electric trains. Two are based on battery packs being developed and built by Hyperdrive Innovation.

Hyperdrive Innovation

Looking at the Hyperdrive Innovation web site, I like what I see.

Hyperdrive Innovation provided the battery packs for JCB’s first electric excavator.

Note that JCB give a five-year warranty on the Hyperdrive batteries.

Hyperdrive have also been involved in the design of battery packs for aircraft push-back tractors.

The battery capacity for one of these is given as 172 kWh and it is able to supply 34 kW.

I was very surprised that Hitachi didn’t go back to Japan for their batteries, but after reading Hyperdrive’s web site about the JCB and Textron applications, there would appear to be good reasons to use Hyperdrive.

  • Hyperdrive have experience of large lithium ion batteries.
  • Hyperdrive have a design, develop and manufacture model.
  • They seem to able to develop solutions quickly and successfully.
  • Battery packs for the UK and Europe are made in Sunderland.
  • Hyperdrive are co-operating with Nissan, Warwick Manufacturing Group and Newcastle University.
  • They appear from the web site to be experts in the field of battery management, which is important in prolonging battery life.
  • Hyperdrive have a Taiwanese partner, who manufactures their battery packs for Taiwan and China.
  • I have done calculations based on the datasheet for their batteries and Hyperdrive’s energy density is up with the best

I suspect, that Hitachi also like the idea of a local supplier, as it could be helpful in the negotiation of innovative applications. Face-to-face discussions are easier, when you’re only thirty miles apart.

Hitachi Regional Battery Train

The first train to be announced was the Hitachi Regional Battery Train, which is described in this Hitachi infographic.

Note.

  1. It is only a 100 mph train.
  2. The batteries are to be designed and manufactured by Hyperdrive Innovation.
  3. It has a range of 56 miles on battery power.
  4. Any of Hitachi’s A Train family like Class 800, 802 or 385 train can be converted to a Regional Battery Train.

No orders have been announced yet.

But it would surely be very suitable for routes like.

  • London Paddington And Bedwyn
  • London Paddington And Oxford

It would also be very suitable for extensions to electrified suburban routes like.

  • London Bridge and Uckfield
  • London Waterloo and Salisbury
  • Manchester Airport and Windermere.
  • Newcastle and Carlisle

It would also be a very sound choice to extend electrified routes in Scotland, which are currently run by Class 385 trains.

Hitachi InterCity Tri-Mode Battery Train

The second train to be announced was the Hitachi InterCity Tri-Mode Battery Train, which is described in this Hitachi infographic.

Note.

  1. Only one engine is replaced by a battery.
  2. The batteries are to be designed and manufactured by Hyperdrive Innovation.
  3. Typically a five-car Class 800 or 802 train has three diesel engines and a nine-car train has five.
  4. These trains would obviously be capable of 125 mph on electrified main lines and 140 mph on lines fully equipped with digital in-cab ERTMS signalling.

Nothing is said about battery range away from electrification.

Routes currently run from London with a section without electrification at the other end include.

  • London Kings Cross And Harrogate – 18.3 miles
  • London Kings Cross And Hull – 36 miles
  • London Kings Cross And Lincoln – 16.5 miles
  • London Paddington And Bedwyn – 13.3 miles
  • London Paddington And Oxford – 10.3 miles

In the March 2021 Edition of Modern Railways, LNER are quoted as having aspirations to extend the Lincoln service to Cleethorpes.

  • With all energy developments in North Lincolnshire, this is probably a good idea.
  • Services could also call at Market Rasen and Grimsby.
  • Two trains per day, would probably be a minimum frequency.

But the trains would need to be able to run around 64 miles each way without electrification. Very large batteries and/or charging at Cleethorpes will be needed.

Class 803 Trains For East Coast Trains

East Coast Trains have ordered a fleet of five Class 803 trains.

  • These trains appear to be built for speed and fast acceleration.
  • They have no diesel engines, which must save weight and servicing costs.
  • But they will be fitted with batteries for emergency power to maintain onboard  train services in the event of overhead line failure.
  • They are planned to enter service in October 2021.

Given that Hyperdrive Innovation are developing traction batteries for the other two Hitachi battery trains, I would not be the least bit surprised if Hyperdrive were designing and building the batteries for the Class 803 trains.

  • Hyperdrive batteries are modular, so for a smaller battery you would use less modules.
  • If all coaches are wired for a diesel engine, then they can accept any power module like a battery or hydrogen pack, without expensive redesign.
  • I suspect too, that the battery packs for the Class 803 trains could be tested on an LNER Class 801 train.

LNER might also decide to replace the diesel engines on their Class 801 trains with an emergency battery pack, if it were more energy efficient and had a lighter weight.

Thoughts On The Design Of The Hyperdrive innovation Battery Packs

Consider.

  • Hitachi trains have a sophisticated computer system, which on start-up can determine the configuration of the train or whether it is more than one train running as a longer formation or even being hauled by a locomotive.
  • To convert a bi-mode Class 800 train to an all-electric Class 801 the diesel engines are removed. I suspect that the computer is also adjusted, but train formation may well be totally automatic and independent of the driver.
  • Hyperdrive Innovation’s battery seem to be based on a modular system, where typical modules have a capacity of 5 kWh, weighs 32 Kg and has a volume of 0.022 cu metres.
  • The wet mass of an MTU 16V 1600 R80L diesel engine commonly fitted to AT-300 trains of different types is 6750 Kg or nearly seven tonnes.
  • The diesel engine has a physical size of 1.5 x 1.25 x 0.845 metres, which is a volume of 1.6 cubic metres.
  • In How Much Power Is Needed To Run A Train At 125 mph?, I calculated that a five-car Class 801 electric train, needed 3.42 kWh per vehicle-mile to maintain 125 mph.
  • It is likely, than any design of battery pack, will handle the regenerative braking.

To my mind, the ideal solution would be a plug compatible battery pack, that the train’s computer thought was a diesel engine.

But then I have form in the area of plug-compatible electronics.

At the age of sixteen, for a vacation job, I worked in the Electronics Laboratory at Enfield Rolling Mills.

It was the early sixties and one of their tasks was at the time replacing electronic valve-based automation systems with new transistor-based systems.

The new equipment had to be compatible to that which it replaced, but as some were installed in dozens of places around the works, they had to be able to be plug-compatible, so that they could be quickly changed. Occasionally, the new ones suffered infant-mortality and the old equipment could just be plugged back in, if there wasn’t a spare of the new equipment.

So will Hyperdrive Innovation’s battery-packs have the same characteristics as the diesel engines that they replace?

  • Same instantaneous and continuous power output.
  • Both would fit the same mountings under the train.
  • Same control and electrical power connections.
  • Compatibility with the trains control computer.

I think they will as it will give several advantages.

  • The changeover between diesel engine and battery pack could be designed as a simple overnight operation.
  • Operators can mix-and-match the number of diesel engines and battery-packs to a given route.
  • As the lithium-ion cells making up the battery pack improve, battery capacity and performance can be increased.
  • If the computer, is well-programmed, it could reduce diesel usage and carbon-emissions.
  • Driver conversion from a standard train to one equipped with batteries, would surely be simplified.

As with the diesel engines, all battery packs could be substantially the same across all of Hitachi’s Class 80x trains.

What Size Of Battery Would Be Possible?

If Hyperdrive are producing a battery pack with the same volume as the diesel engine it replaced, I estimate that the battery would have a capacity defined by.

5 * 1.6 / 0.022 = 364 kWh

In an article in the October 2017 Edition of Modern Railways, which is entitled Celling England By The Pound, Ian Walmsley says this in relation to trains running on the Uckfield Branch, which is not very challenging.

A modern EMU needs between 3 and 5 kWh per vehicle mile for this sort of service.

As a figure of 3.42 kWh per vehicle-mile to maintain 125 mph, applies to a Class 801 train, I suspect that a figure of 3 kWh or less could apply to a five-car Class 800 train trundling at around 80-100 mph to Bedwyn, Cleethorpes or Oxford.

  • A one-battery five-car train would have a range of 24.3 miles
  • A two-battery five-car train would have a range of 48.6 miles
  • A three-battery five-car train would have a range of 72.9 miles

Note.

  1. Reducing the consumption to 2.5 kWh per vehicle-mile would give a range of 87.3 miles.
  2. Reducing the consumption to 2 kWh per vehicle-mile would give a range of 109.2 miles.
  3. Hitachi will be working to reduce the electricity consumption of the trains.
  4. There will also be losses at each station stop, as regenerative braking is not 100 % efficient.

But it does appear to me, that distances of the order of 60-70 miles would be possible on a lot of routes.

Bedwyn, Harrogate, Lincoln and Oxford may be possible without charging before the return trip.

Cleethorpes and Hull would need a battery charge before return.

A Specification For A High Speed Metro Train

I have called the proposed train a High Speed Metro Train, as it would run at up to 140 mph on an existing high speed line and then run a full or limited stopping service to the final destination.

These are a few thoughts.

Electrification

In some cases like London Kings Cross and King’s Lynn, the route is already electrified and batteries would only be needed for the following.

  • Handling regenerative braking.
  • Emergency  power in case of overhead line failure.
  • Train movements in depots.

But if the overhead wires on a branch line. are in need of replacement, why not remove them and use battery power? It might be the most affordable and least disruptive option to update the power supply on a route.

The trains would have to be able to run on both types of electrification in the UK.

  • 25 KVAC overhead.
  • 750 VDC third rail.

This dual-voltage capability would enable the extension of Southeastern Highspeed services.

Operating Speed

The trains must obviously be capable of running at the maximum operating speed on the routes they travel.

  • 125 mph on high speed lines, where this speed is possible.
  • 140 mph on high speed lines equipped with full digital in-cab ERTMS signalling, where this speed is possible.

The performance on battery power must be matched with the routes.

Hitachi have said, that their Regional Battery trains can run at up to 100 mph, which would probably be sufficient for most secondary routes in the UK and in line with modern diesel and electric multiple units.

Full Digital In-cab ERTMS Signalling

This will be essential and is already fitted to some of Hitachi’s trains.

Regenerative Braking To Batteries

Hitachi’s battery electric  trains will probably use regenerative braking to the batteries, as it is much more energy efficient.

It also means that when stopping at a station perhaps as much as 70-80% of the train’s kinetic energy can be captured in the batteries and used to accelerate the train.

In Kinetic Energy Of A Five-Car Class 801 Train, I showed that at 125 mph the energy of a full five-car train is just over 100 kWh, so batteries would not need to be unduly large.

Acceleration

This graph from Eversholt Rail, shows the acceleration and deceleration of a five-car Class 802 electric train.

As batteries are just a different source of electric power, I would think, that with respect to acceleration and deceleration, that the performance of a battery-electric version will be similar.

Although, it will only achieve 160 kph instead of the 200 kph of the electric train.

I estimate from this graph, that a battery-electric train would take around 220 seconds from starting to decelerate for a station to being back at 160 kph. If the train was stopped for around eighty seconds, a station stop would add five minutes to the journey time.

London Kings Cross And Cleethorpes

As an example consider a service between London Kings Cross and Cleethorpes.

  • The section without electrification between Newark and Cleethorpes is 64 miles.
  • There appear to be ambitions to increase the operating speed to 90 mph.
  • Local trains seem to travel at around 45 mph including stops.
  • A fast service between London Kings Cross and Cleethorpes would probably stop at Lincoln Central, Market Rasen and Grimsby Town.
  • In addition, local services stop at Collingham, Hykeham, Barnetby and Habrough.
  • London Kings Cross and Newark takes one hour and twenty minutes.
  • London Kings Cross and Cleethorpes takes three hours and fifteen minutes with a change at Doncaster.

I can now calculate a time between Kings Cross and Cleethorpes.

  • If a battery-electric train can average 70 mph between Newark and Cleethorpes, it would take 55 minutes.
  • Add five minutes for each of the three stops at Lincoln Central, Market Rasen and Grimsby Town
  • Add in the eighty minutes between London Kings Cross and Newark and that would be  two-and-a-half hours.

That would be very marketing friendly and a very good start.

Note.

  1. An average speed of 80 mph would save seven minutes.
  2. An average speed of 90 mph would save twelve minutes.
  3. I suspect that the current bi-modes would be slower by a few minutes as their acceleration is not as potent of that of an electric train.

I have a feeling London Kings Cross and Cleethorpes via Lincoln Central, Market Rasen and Grimsby Town, could be a very important service for LNER.

Interiors

I can see a new lightweight and more energy efficient interior being developed for these trains.

In addition some of the routes, where they could be used are popular with cyclists and the current Hitachi trains are not the best for bicycles.

Battery Charging

Range On Batteries

I have left this to last, as it depends on so many factors, including the route and the quality of the driving or the Automatic Train Control

Earlier, I estimated that a five-car train with all three diesel engines replaced by batteries, when trundling around Lincolnshire, Oxfordshire or Wiltshire could have range of up to 100 miles.

That sort of distance would be very useful and would include.

  • Ely and Norwich
  • Newark and Cleethorpes
  • Salisbury and Exeter

It might even allow a round trip between the East Coast Main Line and Hull.

The Ultimate Battery Train

This press release from Hitachi is entitled Hitachi And Eversholt Rail To Develop GWR Intercity Battery Hybrid Train – Offering Fuel Savings Of More Than 20%.

This is a paragraph.

The projected improvements in battery technology – particularly in power output and charge – create opportunities to replace incrementally more diesel engines on long distance trains. With the ambition to create a fully electric-battery intercity train – that can travel the full journey between London and Penzance – by the late 2040s, in line with the UK’s 2050 net zero emissions target.

Consider.

  • Three batteries would on my calculations give a hundred mile range.
  • Would a train with no diesel engines mean that fuel tanks, radiators and other gubbins could be removed and more or large batteries could be added.
  • Could smaller batteries be added to the two driving cars?
  • By 2030, let alone 2040, battery energy density will have increased.

I suspect that one way or another these trains could have a range on battery power of between 130 and 140 miles.

This would certainly be handy in Scotland for the two routes to the North.

  • Haymarket and Aberdeen, which is 130 miles without electrification.
  • Stirling and Inverness, which is 111 miles without electrification, if the current wires are extended from Stirling to Perth, which is being considered by the Scottish Government.

The various sections of the London Paddington to Penzance route are as follows.

  • Paddington and Newbury – 53 miles – electrified
  • Newbury and Taunton – 90 miles – not electrified
  • Taunton and Exeter – 31 miles – not electrified
  • Exeter and Plymouth – 52 miles – not electrified
  • Plymouth and Penzance – 79 miles – not electrified

The total length of the section without electrification between Penzance and Newbury  is a distance of 252 miles.

This means that the train will need a battery charge en route.

I think there are three possibilities.

  • Trains can take up to seven minutes for a stop at Plymouth. As London and Plymouth trains will need to recharge at Plymouth before returning to London, Plymouth station could be fitted with comprehensive recharge facilities for all trains passing through. Perhaps the ideal solution would be to electrify all lines and platforms at Plymouth.
  • Between Taunton and Exeter, the rail line runs alongside the M5 motorway. This would surely be an ideal section to electrify, as it would enable battery electric trains to run between Exeter and both Newbury and Bristol.
  • As some trains terminate at Exeter, there would probably need to be charging facilities there.

I believe that the date of the late 2040s is being overly pessimistic.

I suspect that by 2040 we’ll be seeing trains between London and Aberdeen, Inverness and Penzance doing the trips without a drop of diesel.

But Hitachi are making a promise of London and Penzance by zero-carbon trains, by the late-2040s, because they know they can keep it.

And Passengers and the Government won’t mind the trains being early!

Conclusion

This could be a very useful train to add to Hitachi’s product line.

 

 

 

March 9, 2021 Posted by | Transport | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a comment

Roger Ford’s Cunning Plan

In the February 2020 of Modern Railways, there is an article called LNER Procurement, which has been written by Roger Ford.

It is Roger’s reply to an article in the December 2020 Edition of Modern Railways, which was entitled LNER Seeks 10 More Bi-Modes.

He starts by describing the requirement and then says this.

Would any fleet engineer in his or her right mind want to add a unique sub-fleet of 10 high speed trains to an existing successful fleet, even if they were hydrogen-electric tri-modes from the respected Kim Chong t’ae Electric Locomotive Works?

In my analysis of the December 2020 article, I wrote this post with the same name, where I said this, under a heading of More Azumas?

Surely, It would require a very innovative train at perhaps a rock-bottom price from another manufacturer, for LNER to not acquire extra Azumas.

So it would appear that Roger and myself are vaguely in agreement on the subject of more Azumas.

The last section of the article has a title of Cunning.

Roger puts forward, the view that the procurement process, as well as being compatible with EU law, could be a warning to Hitachi, to make sure that LNER get a good deal.

It certainly could be, and I remember a similar maneuver by ICI around 1970.

The company was buying a lot of expensive IBM 360 computers.

ICI needed a new computer to do scientific calculations at their Central Instrument Research Establishment (CIRL) at Pangbourne in Berkshire.

  • English Electric had just released a clone of an IBM 360 and were keen to sell it to ICI.
  • As it would do everything that ICI wanted, they bought one.
  • It worked well and did everything that CIRL wanted at a cheaper price.

IBM’s reaction was supposedly quick and dramatic. The salesman who dealt with ICI, was immediately fired!

But as ICI had about a dozen large IBM computers, there wasn’t much they could do to one of the most important and largest UK companies.

IBM also made sure, that ICI got their next computer at a good price.

I’m with Roger that all the shenanigans are a warning to Hitachi.

Roger finishes the article with these two paragraphs.

A genuine bluff would have been to seek bids for the long-term deployment of remanufactured IC225s. Which in these straitened times could still turn out to be a more viable option.

I rather fancy the idea of a hydrogen-electric Class 91. Owner Eversholt Rail might even have played along on the understanding that it funded the inevitable hybrid Azumas.

Note that IC225s are InterCity 225 trains.

  • The 31 trains, were built for  British Rail in the 1980s.
  • They are hauled by a 4.83 MW Class 91 locomotive, which is usually at the Northern end of the train.
  • Nine Mark 4 coaches and a driving van trailer complete the train.
  • As with the Hitachi Azumas (Class 800 and Class 801 trains), they are capable of operating at 140 mph on lines where digital in-cab ERTMS signalling has been installed.

I just wonder, if a Class 91 locomotive could be to the world’s first 140 mph hydrogen-electric locomotive.

Consider the following.

Dynamics

The wheels, bogies and traction system were designed by British Rail Engineering Ltd, who were the masters of dynamics. This is a sentence from the locomotive’s Wikipedia entry.

Unusually, the motors are body mounted and drive bogie-mounted gearboxes via cardan shafts. This reduces the unsprung mass and hence track wear at high speeds.

That is a rather unique layout. But it obviously works, as otherwise these locomotives would have been scrapped decades ago.

I believe the quality dynamics are because BREL owned a PACE 231R for a start, which was an analogue computer, that was good enough for NASA to use two computers like this to calculate how to put a man on the moon.

London and Edinburgh is a slightly shorter distance, run at a somewhat slower speed.

Space

This picture shows a Class 91 locomotive.

What is in the space in the rear end of the nearly twenty metre-long locomotive?

This sentence from the Wikipedia entry for the locomotive gives a clue.

The locomotive also features an underslung transformer, so that the body is relatively empty compared to contemporary electric locomotives.

It also states that much of the layout came from the APT-P, which was a version of the tilting Advanced Passenger Train.

Would the space be large enough for a tank of hydrogen and some form of generator that used the hydrogen as fuel?

It should be noted that one version of the APT used a gas-turbine engine, so was the locomotive designed for future use as a bi-mode?

Fuel Cells

I’ve ignored fuel cells, as to get the amount of power needed, the fuel cells could be too large for the locomotive.

Class 91 Locomotive Performance

The performance of a Class 91 locomotive is as follows.

  • Power output – 4.83 MW
  • Operating speed – 140 mph
  • Record Speed – 161 mph

Not bad for a 1980s locomotive.

Required Performance Using Hydrogen Fuel

If the locomotives were only needed to use hydrogen to the North of the electrification from London, the locomotive would need to be able to haul a rake of coaches twice on the following routes.

  • Aberdeen and Edinburgh Haymarket – 130 miles
  • Inverness and Stirling – 146 miles

A range of three hundred miles would be sufficient.

The locomotive would need refuelling at Aberdeen and Inverness.

The operating speed of both routes is nowhere near 140 mph and I suspect that a maximum speed of 100 mph on hydrogen, pulling or pushing a full-size train, would probably be sufficient.

When you consider that a nine-car Class 800 train has five 560 kW diesel engines, that give a total power of 2.8 MW, can carry 611 passengers and an InterCity 225 can only carry 535, I don’t think that the power required under hydrogen will be as high as that needed under electricity.

Rolls-Royce

Rolls-Royce have developed a 2.5 MW generator, that is the size of a beer keg. I wrote about it in Our Sustainability Journey.

Could one of these incredibly-powerful generators provide enough power to speed an InterCity 225 train, through the Highlands of Scotland to Aberdeen and Inverness, at speeds of up to 100 mph.

I would give it a high chance of being a possible dream.

Application Of Modern Technology

I do wonder, if the locomotive’s cardan shaft drive could be improved by modern technology.

These pictures show Joseph Bazalgette’s magnificent Abbey Mills Pumping station in East London.

A few years ago, Thames Water had a problem. Under the pumping station are Victorian centrifugal pumps that pump raw sewage to Beckton works for treatment. These are connected to 1930s electric motors in Dalek-like structures on the ground floor, using heavy steel shafts. The motors are controlled from the control panel in the first image.

The shafts were showing signs of their age and needed replacement.

So Thames Water turned to the experts in high-power transmission at high speed – Formula One.

The pumps are now connected to the electric motors, using high-strength, lower-weight carbon-fibre shafts.

Could this and other modern technology be used to update the cardan shafts and other parts of these locomotives?

Could The Locomotives Use Regenerative Braking To Batteries?

I’ll start by calculating the kinetic energy of a full InterCity 225 train.

  • The Class 91 locomotive weighs 81.5 tonnes
  • Nine Mark 4 coaches weigh a total of 378 tonnes
  • A driving van trailer weighs 43.7 tonnes.
  • This gives a total weight of 503.2 tonnes.

Assuming that each of the 535 passengers, weighs 90 Kg with babies, baggage, bikes and buggies, this gives a passenger weight of 48.15 tonnes or a total train weight of 551.35 tonnes.

Using Omni’s Kinetic Energy Calculator, gives the following values at different speeds.

  • 100 mph – 153 kWh
  • 125 mph – 239 kWh
  • 140 mph – 300 kWh

I think, that a 300 kWh battery could be fitted into the back of the locomotive, along with the generator and the fuel tank.

With new traction motors, that could handle regenerative braking, this would improve the energy efficiency of the trains.

Sustainable Aviation Fuel

Sustainable aviation fuel produced by companies like Altalto would surely be an alternative to hydrogen.

  • It has been tested by many aerospace companies in large numbers of gas turbines.
  • As it has similar properties to standard aviation fuel, the handling rules are well-known.

When produced from something like household waste, by Altalto, sustainable aviation fuel is carbon-neutral and landfill-negative.

ERTMS Signalling And Other Upgrades

Full ERTMS digital signalling will needed to be fitted to the trains to enable 140 mph running.

Conclusion

I believe it is possible to convert a Class 91 locomotive into a hydrogen-electric locomotive with the following specification.

  • 4.83 MW power on electricity.
  • 140 mph on electrification
  • 2.5 MW on hydrogen power.
  • 100 mph on hydrogen
  • Regenerative braking to battery.

If it were easier to use sustainable aviation fuel, that may be a viable alternative to hydrogen, as it is easier to handle.

 

February 3, 2021 Posted by | Hydrogen, Transport | , , , , , , , , , , , | 1 Comment

WYCA To Discuss Latest Plans For £24.2m White Rose Rail Station

The title of this post, is the same as that of this article on Rail Technology Magazine.

I briefly commented on this proposed station in Is There Going To Be Full Electrification Between Leeds And Huddersfield?, where I said this.

White Rose Station

There are plans to build a new White Rose station in the next couple of years at the White Rose Centre..

This would be between Morley and Cottingley stations.

This station will surely increase the passenger numbers on the Huddersfield Line.

This Google Map shows the White Rose Centre.

The Huddersfield Line runs North-South alongside the Centre and there must be plenty of space for a new White Rose station.

From Wikipedia and other sources, the following seems to be on the agenda for the station.

  • Two platforms.
  • Ability to take six-car trains, with a possibility to extend to eight-cars.
  • Two trains per hour (tph) in both directions.
  • Up to 340,000 passengers per year.

These are my thoughts.

Will White Rose Station Be Electrified?

The Rail Technology Magazine article has a visualisation of the new White Road station and very swish it looks too!

But it doesn’t show any electrification through the station.

This document on the Network Rail web site is entitled Overhead Line Electrification – Huddersfield to Westtown (Dewsbury).

This is the first paragraph.

We’re proposing to electrify the railway between Huddersfield and Westtown (Dewsbury) – and right through to Leeds.

This will enable train operators to use electric – or bi-mode (hybrid) trains – along this section of the route.

I am pretty certain, this paragraph can be interpreted, as saying that Leeds and Huddersfield will be connected by a fully-electrified railway.

This Google Map shows the current Ravensthorpe station, where the line to and from Wakefield joins the Huddersfield and Leeds Line.

This document on the Network Rail web site is entitled Scheme Proposals – Huddersfield to Westtown (Dewsbury).

It indicates that the triangle of land between the two lines will be used for a sub-station to provide power for the electrification.

It says this.

We propose to build an electricity substation within the Ravensthorpe and Westtown area, to provide power for the electrification of the railway (known as traction power). To facilitate this work, a temporary construction compound which will provide essential welfare facilities for staff will be established in an area of land occupying the current landfill site to the east of Ravensthorpe Station. Access to the facilities will be made via Forge Lane or the existing Thornhill Power Station access road. In addition, Northern Powergrid will be undertaking extensive works to their overhead network within the Ravensthorpe area.

This looks like a convenient place to build a sub-station.

  • Northern Powergrid would be able to combine one of their projects, with one for Network Rail.
  • It looks like the location of the sub-station gives both good road and rail access.

It would also be ideal to provide power to the line to Wakefield Kirkgate station, which is only ten miles away.

Services At White Rose Station

Currently, the following services would appear to go through the site of White Rose station.

  • Northern Trains – Wigan Wallgate and Leeds
  • TransPennine Express – Huddersfield and Leeds
  • TransPennine Express – Liverpool Lime Street and Edinburgh
  • TransPennine Express – Liverpool Lime Street and Scarborough
  • TransPennine Express – Manchester Airport and Newcastle
  • TransPennine Express – Manchester Airport and Redcar Central
  • TransPennine Express – Manchester Piccadilly and Hull

Note.

  1. All services are one tph.
  2. The first two services are stopping services, that stop at the two stations, that will be either side of White Rose station; Cottingley and Morley.
  3. Dewsbury station, which will be three stations away, has a service of three tph.

There may also be an LNER service between London and Huddersfield via Leeds, which might go through White Rose station.

When sources like Wikipedia, say the station will get two tph, they are probably basing this on the two stopping services.

Does White Rose Station Need A Direct Manchester Airport Service?

I think if the station becomes important, it will certainly need a direct service to Manchester Airport.

If one of TransPennine’s Manchester Airport services stopped at White Rose station it would give a direct fast hourly service to Manchester Airport.

  • It would take about eighty minutes on current timings.
  • In addition the service would call at Manchester Piccadilly, Leeds and York.

In my view it would be a very useful service.

Does White Rose Station Need A Direct London Service?

The reasoning for Manchester Airport, would probably apply to London.

Consider.

  • Leeds currently has a two tph LNER service to London.
  • I believe that LNER’s Leeds and London service could be uprated to three tph.
  • Huddersfield should be getting a daily service or perhaps better to London.
  • White Rose station is only planned to have a two tph service to Leeds.

I think there is scope to improve the service between White Rose and London.

  • Stopping services between Leeds and Huddersfield should connect conveniently with the London trains at Leeds.
  • If a third tph between Leeds and Huddersfield stopped at White Rose, that might help.
  • Perhaps, some or all services between Huddersfield and London, should stop at White Rose.

It would all depend on the needs of passengers, once the station opened.

White Rose Station And Elland Road Stadium

This Google Map shows the distance between the White Rose Centre and Elland Road stadium.

Note.

  1. Elland Road stadium is in the North-East of the map
  2. The White Rose Shopping Centre is towards the South of the map.
  3. The Huddersfield Line runs down the Western side of the White Rose shopping centre.
  4. Cottingley station in North-West corner of the map is the nearest station to Elland Road stadium.
  5. I estimate it is about a mile-and-a-half walk, which is typical for many football grounds.

Would it be sensible on match days to run longer trains to White Rose station?

I also feel, that thought be given to the walking route between White Rose Station and Elland Road Stadium.

Would it also be better, if the new station was towards the North of the shopping centre?

Platform Length At White Rose Station

Platform length at White Rose station is stated that it will initially take six-car trains, with a possibility to extend to eight-cars.

Consider the lengths of trains likely to call at White Rose station.

To handle pairs of three-car Class 185, Class 195 and Class 331 trains, it looks like 150 metre long platforms will be needed.

But to handle pairs of four-car  Class 195 and Class 331 trains, it looks like 200 metre long platforms will be needed.

I suspect that because of the proximity of Elland Road and there is a lot of shopping in the build up to Christmas, that a thorough analysis of platform length should be done, before White Rose station is built.

Will A Cross-Leeds Service Serve White Rose Station?

If you look at Birmingham, Cardiff, Glasgow, Liverpool, London, Manchester and Newcastle, suburban lines fan out all around the city.

If you look at Leeds, you find the following routes.

  • Bradford – West – Electrified
  • Harrogate -North – No Electrification
  • Dewsbury and Huddersfield – South-West – Electrification planned
  • Ilkley – North – Electrified
  • Skipton – North-West – Electrified
  • Wakefield – South-East – Electrified
  • York and Selby – North-East and East – No Electrification

It appears to me, that the suburban routes are better on the Western side of the City, with more electrification in operation or planned.

The planned electrification between Leeds and Huddersfield via White Rose station can only make matters more uneven.

The Rail Technology Magazine article also says this.

The Investment Committee will also consider plans for a new £31.9m parkway rail station at Thorpe Park on the Leeds to York section of the Transpennine route.

Wikipedia says that proposed Thorpe Park station, will be built on the Selby Line to the East of Leeds, in the Thorpe Park are of the city. Wikipedia also says this about the operation of the station.

It would be served by trains from the west of Leeds which would normally terminate at Leeds station; by continuing eastwards to this station, it is hoped that extra capacity for through trains would be created at Leeds. The station would also form the first phase of electrifying the railway line to the east of Leeds. As a parkway station (an early name was East Leeds Parkway), the intention would be to allow for a park-and-ride service and the plans include parking for 500 cars.

This Google Map shows the area where the station could be built.

Note.

  1. The Selby Line curving across the Northern side of the map.
  2. Cross Gates station is the next station to the West.
  3. Going East on the Selby Line, you pass through Garforth, East Garforth and Micklefield stations before the line divides for York to the North and Selby and Hull to the East.
  4. The M1 Motorway passing to the East of Leeds.

Other features of the proposed station and the area include.

  • Wikipedia says that the station will have two island platforms and the ability to handle inter-city trains.
  • The route through the station would be electrified.
  • High Speed Two could be routed to go close to the station.

Currently, the following services would appear to go through the site of Thorpe Park station.

  • CrossCountry – Plymouth and Edinburgh/Glasgow
  • LNER – Leeds and Edinburgh
  • Northern Trains – Blackpool North and York
  • Northern Trains – Halifax and Hull
  • Northern Trains – Leeds and York
  • TransPennine Express – Liverpool Lime Street and Edinburgh
  • TransPennine Express – Liverpool Lime Street and Scarborough
  • TransPennine Express – Manchester Airport and Newcastle
  • TransPennine Express – Manchester Airport and Redcar Central
  • TransPennine Express – Manchester Piccadilly and Hull

Note.

  1. Most of these trains are one tph.
  2. I believe that LNER, when they get extra paths on the East Coast Main Line, could run a London, Leeds and Edinburgh service to increase frequency to the two Northern destinations to three tph.
  3. All the TransPennine Express services will pass through White Rose, Leeds and Thorpe Park stations.

I can see a high-capacity Leeds Crossrail service emerging.

These could be some example frequencies.

  • Leeds and York – 6 tph
  • Leeds and Thorpe Park – 10 tph
  • Leeds and Hull – 2 tph
  • Leeds and Huddersfield – 6 tph
  • Leeds and Manchester Victoria/Piccadilly – 6 tph
  • Leeds and Manchester Airport – 2 tph
  • Leeds and White Rose – 4 tph

A four-track electrified route could be developed through Leeds station.

Are Two Platforms Enough At White Rose Station?

Superficially White Rose and Thorpe Park stations seem aimed at similar purposes in different parts of Leeds.

But White Rose station will only have two platforms and it appears that Thorpe Park could have four.

So does White Rose station need more platforms?

Conclusion

White Rose and Thorpe Park stations could be the start of something very big in Leeds.

 

 

February 2, 2021 Posted by | Transport | , , , , , , , , , | 3 Comments

Approaching Kings Cross – 6th January 2021

I took these pictures approaching Kings Cross.

Note.

  1. There is still track to be laid.
  2. The electrification is still to be erected.

But everything seems to be getting there.

This Google Map shows the section between the two tunnels.

Both tunnels have three double-track bores, where in this massive project, the Eastern bores are being brought back into use to add capacity to Kings Cross station.

Note.

  1. The East Coast Main Line runs North-South across the map.
  2. The quadruple track crossing East-West at the top of the map is the North London Line.
  3. Below it, is the Channel Tunnel Rail Link into |St. Pancras.
  4. The link to the Canal Tunnels take Thameslink trains to the deep level platforms in St. Pancras.
  5. The two new tracks will be on the Eastern side of the East Coast Main Line.

This second Google Map shows the track and platform layout at Kings Cross station.

Note.

  1. There are twelve platforms, which are numbered from 0 to 11, with Platform 0 in the East.
  2. The various islands are numbered as follows from East to West; 0/1, 2/3, 4/5, 6/7, 8/9 and 10/11.
  3. The six tracks through the tunnels may be bi-directional, so will each track be linked to a pair of platforms?
  4. Platforms 0 to 4 are in the Eastern half of the station
  5. Platforms 5 to 0 are in the Western half of the station
  6. Platforms 9, 10 and 11 are short platforms  in the old suburban station, which is mainly used by suburban services to Cambridge and Kings Lynn.

When I arrived there was a five-car Azuma in Platform 9, as these pictures show.

I’ve seen Grand Central’s Class 180 trains in these short platforms before, so is this going to be a regular occurrence.

Services Into Kings Cross

When the remodelling at Kings Cross is complete, current plans say the following trains will be running into Kings Cross station.

  • LNER – Two tph – Edinburgh – Long train
  • LNER – Two tph – Leeds – Long train
  • LNER – One tph – Lincoln or York – Long or short train
  • Great Northern – Two tph – Cambridge (stopping) – Short train
  • Great Northern – Two tph – Cambridge (fast) – Short train
  • Hull trains – Seven tpd – Hull and Beverley – Short train
  • East Coast Trains – Five tpd – Edinburgh – Short train
  • Grand Central – Four tpd – Bradford Interchange – Long or short train
  • Grand Central – Five tpd – Sunderland – Long or short train

Note,

  1. tph is trains per hour and tpd is trains per day.
  2. There is a mixture of short and long trains.
  3. Short trains can fit all platforms, but long trains can only use platforms 0-8.
  4. There are nine tph and a total of 21 tpd in various less-frequent services.

My scheduling experience in other fields, says that ten platforms will be needed for a full service, with each of the ten platforms handling just one tph.

Conclusion

Wjen all the work is completed, Kings Cross station will have room for a few extra trains.

 

 

January 12, 2021 Posted by | Transport | , , , , , , , , | 1 Comment

Possible Destinations For An Intercity Tri-Mode Battery Train

Currently, the following routes are run or are planned to be run by Hitachi’s Class 800, 802, 805 and 810 trains, where most of the route is electrified and sections do not have any electrification.

  • Avanti West Coast – Euston and Chester – 21 miles
  • Avanti West Coast – Euston and Shewsbury – 29.6 miles
  • Avanti West Coast – Euston and Wrexham General – 33 miles
  • Grand Central – Kings Cross and Sunderland – 47 miles
  • GWR – Paddington and Bedwyn – 13.3 miles
  • GWR – Paddington and Bristol Temple Meads- 24.5 miles
  • GWR – Paddington and Cheltenham – 43.3 miles
  • GWR – Paddington and Great Malvern – 76 miles
  • GWR – Paddington and Oxford – 10.4 miles
  • GWR – Paddington and Penzance – 252 miles
  • GWR – Paddington and Swansea – 45.7 miles
  • Hull Trains – Kings Cross and Hull – 36 miles
  • LNER – Kings Cross and Harrogate – 18.5 miles
  • LNER – Kings Cross and Huddersfield – 17 miles
  • LNER – Kings Cross and Hull – 36 miles
  • LNER – Kings Cross and Lincoln – 16.5 miles
  • LNER – Kings Cross and Middlesbrough – 21 miles
  • LNER – Kings Cross and Sunderland – 47 miles

Note.

  1. The distance is the length of line on the route without electrification.
  2. Five of these routes are under twenty miles
  3. Many of these routes have very few stops on the section without electrification.

I suspect that Avanti West Coast, Grand Central, GWR and LNER have plans for other destinations.

A Battery Electric Train With A Range of 56 Miles

Hitachi’s Regional Battery Train is deescribed in this infographic.

The battery range is given as 90 kilometres or 56 miles.

This battery range would mean that of the fifteen destinations I proposed, the following could could be achieved on a full battery.

  • Chester
  • Shewsbury
  • Wrexham General
  • Bedwyn
  • Bristol Temple Meads
  • Cheltenham
  • Oxford
  • Swansea
  • Hull
  • Harrogate
  • Huddersfield
  • Lincoln
  • Middlesbrough

Of these a return trip could probably be achieved without charging to Chester, Shrewsbury, Bedwyn, Bristol Temple Meads, Oxford, Harrogate, Huddersfield, Lincoln and Middlesbrough.

  • 86.7 % of destinations could be reached, if the train started with a full battery
  • 60 % of destinations could be reached on an out and back basis, without charging at the destination.

Only just over a quarter of the routes would need, the trains to be charged at the destination.

Conclusion

It looks to me, that Hitachi have done some analysis to determine the best battery size. But that is obviously to be expected.

 

 

 

December 30, 2020 Posted by | Transport | , , , , , , , , , | Leave a comment

Station Stop Performance Of The Intercity Tri-Mode Battery Train

Hitachi have stated that the their Intercity Tri-Mode Battery Trains will not use their diesel engines in stations and to leave the station.

The first Intercity Tri-Mode Battery Trains will be conversions of Class 802 trains.

This page on the Eversholt Rail web site, has a data sheet for a Class 802 train.

The data sheet shows the following for a five-car Class 802 train.

  • It can accelerate to 120 kph/75 mph in 100 seconds in electric mode.
  • It can accelerate to 160 kph/100 mph in 160 seconds in electric mode.
  • It can accelerate to 120 kph/75 mph in 140 seconds in diesel mode.
  • It can decelerate from 120 kph/75 mph in 50 seconds in electric mode.

Note.

  1. 75 mph is the operating speed of the Cornish Main Line and possibly the Highland Main Line.
  2. 100 mph is the operating speed for a lot of routes in the UK.
  3. It would appear that trains accelerate to 75 mph forty second faster in electric mode, compared to diesel mode.
  4. In diesel mode acceleration slows markedly once 100 kph is attained.

Can we assume that performance in battery mode, will be the same as in electric mode?

I am always being told by drivers of electric cars, trains and buses, that they have sparkling performance and my experience of riding in battery electric trains, indicates to me, that if the battery packs are well-engineered, then it is likely that performance in battery mode could be similar to electric mode, although acceleration and operating speed my be reduced to enable a longer range.

If this is the case, then the following times for a station call with a 75 mph operating speed are possible.

  • Electric mode – 50 + 60 + 100  = 210 seconds
  • Diesel mode – 50 + 60 + 140  = 250 seconds
  • Battery mode – 50 + 60 + 100  = 210 seconds

Note.

  1. The three figures for each mode are deceleration time, station dwell time and acceleration time.
  2. Times are measured from the start of deceleration from 75 mph, until the train accelerates back to 75 mph.
  3. I have assumed the train is in the station for one minute.

I suspect with a stop from 100 mph, that there are greater savings to be made than the forty seconds at 75 mph, due to the reduced acceleration in diesel mode past 100 kph.

Savings Between London Paddington And Penzance

There are fifteen stops between London Paddington and Penzance, which could mean over ten minutes could be saved on the journey.

This may not seem that significant, but it should be born in mind, that the fastest journey times between London and Penzance are between five hours and eight minutes and five hours and fourteen minutes.

So these small savings could bring a London Paddington and Penzance journey much closer to five hours.

Savings Between London Kings Cross And Inverness

There are probably not as great savings to be made on this route.

  • The electrification runs as far as Stirling.
  • There are only five intermediate stops between Stirling and Inverness
  • Stirling and Inverness are 151 miles apart.

On the other hand, the route has a lot of gradients, which may give opportunities to use the batteries to boost power on climbs and save fuel and emissions.

Conclusion

Replacing one or more of the diesel engines on a Class 800, 802, 805 or 810 train, on a route, where the full complement of diesel engines is not required, may well result in time savings on the journey, simply by reducing the time taken to accelerate back to operating speed.

I have indicated two routes, where savings can be made, but there may be other routes, where savings are possible.

December 20, 2020 Posted by | Transport | , , , , , , , | 2 Comments

Beeching Reversal – Ferryhill Station Reopening

This is one of the Beeching Reversal projects that the Government and Network Rail are proposing to reverse some of the Beeching cuts. There used to be a Ferryhill station on the East Coast Main Line. It closed in 1967 and burnt down in 1969, before being demolished.

I first noted the station in Boris Johnson Backs Station Opening Which Could See Metro Link To County Durham, after Boris promised it would be built in PMQs.

I then mentioned the station in Northern Powerhouse Rail – Significant Upgrades Of The East Coast Main Line From Leeds To Newcastle (Via York And Darlington) And Restoration Of The Leamside Line.

Last night, I read this document from Railfuture, which talks about rail improvements in the North East and on the East Coast Main Line.

In the document, Ferryhill station is mentioned eighteen times.

Reopening Ferryhill station would appear to have support at all levels.

The Location Of Ferryhill Station

This Google Map shows the general area of the proposed Ferryhill station.

 

Note.

  1. Ferryhill is the village in the North-West corner of the map.
  2. The lion-shaped quarry in the North-East is destined to become a landfill site.
  3. Below this is Thrislington Plantation, which is a National Nature Reserve.
  4. The East Coast Main Line runs North-South between the village and the quarry.

South of the village the line splits, as is shown in detail in this second Google Map.

Note.

  • Ferryhill South junction by Denhamfields Garage, with the nearby Ferryhill Station Primary School
  • The line going South-East is the Stillington freight line to Teesside.
  • The other line going in a more Southerly direction is the electrified East Coast Main Line to Darlington and the South.
  • Between Ferryhill South junction and Tursdale Junction with the Leamside Line is a 2.5 mile four-track electrified railway.

I suspect the station could be any convenient location, to the North of the junction.

Railfuture have strong opinions on the station and feel it should be a Park-and-Ride station for the settlements in the former North Durham coalfield, with frequent services to Newcastle.

Current Passenger Train Services Through Ferryhill

These services currently pass the location of the proposed Ferryhill station.

  • LNER – London Kings Cross and Edinburgh via York, Darlington. Newcastle and Berwick-upon-Tweed
  • LNER – London Kings Cross and Edinburgh via Peterborough, Newark North Gate, Doncaster, York, Darlington, Durham and Newcastle
  • CrossCountry – Plymouth and Edinburgh via Totnes, Newton Abbot, Exeter St Davids, Tiverton Parkway, Taunton, Bristol Temple Meads, Bristol Parkway, Cheltenham Spa, Birmingham New Street, Derby, Chesterfield, Sheffield, Wakefield Westgate, Leeds, York, Darlington, Durham and Newcastle
  • CrossCountry – Southampton and Newcastle via Birmingham New Street, Derby, Sheffield, Doncaster, York, Darlington and Durham
  • TransPennine Express – Liverpool Lime Street and Edinburgh via Newton-le-Willows, Manchester Victoria, Huddersfield, Leeds, York, Darlington, Durham, Newcastle and Morpeth
  • TransPennine Express – Manchester Airport and Newcastle via Manchester Piccadilly, Manchester Oxford Road, Manchester Victoria, Huddersfield, Dewsbury, Leeds, York, Northallerton, Darlington and Durham

Note.

  1. All trains have a frequency of one train per hour (tph)
  2. All trains call at York, Darlington and Newcastle.
  3. I have missed out some of the intermediate stations, where trains don’t call at least hourly.
  4. I have missed out stations South of Birmingham New Street.
  5. A few Northern Trains services pass through at Peak times or to go to and from depots.

I suspect some of these services could stop and to encourage commuters to Newcastle, Durham and Darlington to swap from car to train,

I also suspect that Ferryhill station needs a frequency of at least two tph and if possible four! Four tph would give a Turn-up-and-Go service to Darlington, Newcastle and York.

Planned And Possible Future Passenger Train Services Through Ferryhill

From various sources, these services are either planned or possible.

High Speed Two

High Speed Two are planning the following services, that will pass through.

  • Birmingham Curzon Street and Newcastle via East Midlands Hub, York, Darlington and Durham.
  • London Euston and Newcastle via Old Oak Common, East Midlands Hub and York.
  • London Euston and Newcastle via Old Oak Common, East Midlands Hub, York and Darlington.

Note.

  1. All trains have a frequency of one tph.
  2. All trains call at York, East Midlands Hub, York and Newcastle.
  3. All trains will be 200 metres long.

I feel that Ferryhill station should have platforms long enough to accommodate these trains and other long trains, to future-proof the design and to cater for possible emergencies.

The longest trains on the route would probably be one of the following.

  • A pair of five-car Class 800 trains or similar, which would be 260 metres long.
  • A High Speed Two Classic-Compatible train, which would be 200 metres long.

Unless provision needed to be made for pairs of High Speed Two Classic-Compatible trains.

East Coast Trains

From next year, East Coast Trains, intend to run a five trains per day (tpd) service between London and Edinburgh via Stevenage, Newcastle and Morpeth.

Note that in Thoughts On East Coast Trains, I said this service would stop at Durham, as that was said in Wikipedia at the time.

Northern Powerhouse Rail

Northern Powerhouse Rail has an objective to to run four tph between Leeds and Newcastle in 58 minutes.

At present there are only three tph on this route, two tph from TransPennine Express and one tph from CrossCountry. All three services stop at Leeds, York, Darlington, Durham and Newcastle.

I believe that the best way to provide the fourth service between Leeds and Newcastle would be to run a third LNER service between London Kings Cross and Edinburgh, when upgrades to the East Coast Main Line give the train operating company another path.

  • The service would only stop en route at Leeds and Newcastle.
  • It would increase the frequency between London Kings Cross and Leeds to three tph
  • It would increase the frequency between London Kings Cross and Newcastle to three tph
  • It would increase the frequency between London Kings Cross and Edinburgh to three tph
  • It would increase the frequency between London Leeds and Newcastle to four tph
  • It would run non-stop between London Kings Cross and Leeds, in under two hours.

I believe that, when all the upgrades to the East Coast Main Line are complete, that such a service could match or even better High Speed Two’s time of three hours and forty-eight minutes between London and Edinburgh.

Ferryhill And Teesside Via The Stillington Freight Line

The Clarence Railway is described in this paragraph in its Wikipedia entry.

The Clarence Railway was an early railway company that operated in north-east England between 1833 and 1853. The railway was built to take coal from mines in County Durham to ports on the River Tees and was a competitor to the Stockton and Darlington Railway (S&DR). It suffered financial difficulty soon after it opened because traffic was low and the S&DR charged a high rate for transporting coal to the Clarence, and the company was managed by the Exchequer Loan Commissioners after July 1834.

But it has left behind a legacy of useful rail lines, that connect important factories, ports, towns, works on other railways on Teesside.

This Google Map shows the triangle between Eaglescliffe, Stockton-on-Tees and Thornaby stations.

Note.

  1. Eaglescliffe station is in the South-West corner of the map and lines from the station lead to Darlington and Northallerton stations.
  2. Thornaby station is in the North-East corner of the map and connects to Middlesbrough station.
  3. Stockton station is at the North of the map.

Tracks connect the three stations.

This Google Map shows the connection between Thornaby and Stockton stations.

Note.

  1. Stockton station is at the North of the map.
  2. Thornaby station is at the East of the map.
  3. In the South-Western corner of the map is a triangular junction, that links Eaglescliffe, Stockton-on-Tees and Thornaby stations.

Currently, this triangular junction, allows trains to go between.

  • Middlesbrough and Newcastle via Thornaby, Stockton, Hartlepool and Sunderland.
  • Middlesbrough and Darlington via Thornaby and Eaglescliffe.
  • Middlesbrough and Northallerton via Thornaby and Eaglescliffe.

But it could be even better.

This Google Map shows another triangular junction to the North of Stockton station.

Note.

  1. The Southern junction of the triangle leads to Stockton station and ultimately to Darlington, Eaglescliffe, Middlesbrough, Northallerton and Thornaby.
  2. The Eastern junction leads to Hartlepool, Sunderland and Newcastle.

So where does the Western Junction lead to?

The railway is the Stillington Branch Line.

  • It leads to Ferryhill.
  • It is about ten miles long.
  • It is double-track.
  • There used to be intermediate stations at Radmarshall, Stillington and Sedgefield.

Looking at timings for trains on the various sections of the route gives.

  • Middlesbrough and Stockton – 11 minutes
  • Stockton and Ferryhill South Junction – 23 minutes
  • Ferryhill South Junction and Newcastle – 20 minutes

This gives a timing of 54 minutes compared with up to 78 minutes for the current service on the Durham Coast Line.

In their document, Railfuture gives this as one of their campaigns.

Providing Faster Journeys Teesside to Tyneside by running passenger services from
Middlesbrough, Thornaby and Stockton via the 10 mile Stillington freight only line and then via the
East Coast Main Line to Newcastle. Our aim is to reduce overall journey time on direct train
between Middlesbrough to Newcastle from 1 hour 15 minutes to 55 minutes and so open up many
additional job opportunities to the residents of both areas.

My calculations say that it should be possible, to run a useful service between Middlesbrough and Newcastle, via the Stillington freight line.

  • The route is used regularly for freight trains and by LNER for what look to be testing or empty stock movements.
  • Will any station be built at Radmarshall, Stillington or Sedgefield?
  • I estimate that between Ferryhill South Junction and Middlesbrough, is about fifteen miles, so it might be possible to run a Middlesbrough and Newcastle service using battery electric trains, like Hitachi’s Regional Battery Trains, which would be charged on the East Coast Main Line.

Activating the route, doesn’t look to be the most expensive passenger reopening on the cards.

I suspect though, that if passenger services were to be run on the Stillington Line, that Ferryhill station, will need platforms on both the East Coast Main Line and the Stillington Line.

Services could include.

  • Newcastle and Middlesbrough via Ferryhill
  • Newcastle and Hartlepool via Ferryhill
  • Newcastle and York via Eaglescliffe and Ferryhill, with a reverse at Middlesbrough.

 

Note.

  1. The Northern terminus could be Ferryhill for some trains.
  2. Two tph between Stockton and Ferryhill would be a useful service.
  3. Would a Newcastle and Middlesbrough service call at the poorly-served Chester-le-Street station to improve services?

I also feel that as some of these services will be running on the East Coast Main Line between Ferryhill and Newcastle, it probably would be desirable for these services to be run by Hitachi’s Regional Battery Trains, which would be capable of maintaining the maximum speed for the route, as all the other passenger services can at present!

Ferryhill And Tyneside Via The Leamside Line

The reopening of the Leamside Line is a high priority of Northern Powerhouse Rail, which I wrote about in Northern Powerhouse Rail – Significant Upgrades Of The East Coast Main Line From Leeds To Newcastle (Via York And Darlington) And Restoration Of The Leamside Line.

In their document, Railfuture gives this as one of their campaigns.

Reopening the rail line from Ferryhill to Pelaw (the Leamside Line) with the aim of providing
services that will improve local connections and open new opportunities to people living in this part
of County Durham, as well as providing relief for congestion on the existing line through Durham.

This reopening has been talked about for years, so I suspect that Network Rail know the problems and at least have a rough estimate for what needs to be done and how much it will cost.

The Wikipedia entry for the Leamside Line has a section, which is entitled Proposed Re-Opening, Upgrade and Development, where this is the first paragraph.

Since the line’s closure in the early 1990s, a number of proposals to re-open the Leamside Line were put forward, including plans by AECOM, ATOC, Durham County Council, Railtrack and Tyne and Wear PTE. The line has been considered for a number of potential uses, including a regional suburban rail service linking Tyneside and Teesside, a diversionary freight route for the East Coast Main Line, and an extension to the Tyne and Wear Metro network.

Wikipedia also states that an application to the Restoring Your Railway Fund for money for a feasibility study was unsuccessful.

All that could change with the developments needed between Leeds and Newcastle for High Speed Two and Northern Powerhouse Rail.

  • High Speed Two are planning to run at least three tph to and from Newcastle.
  • Northern Powerhouse Rail are planning to run an extra service between Leeds and Newcastle.
  • LNER will have an extra path on the East Coast Main Line, that could be used through the area.

Using the Leamside Line as a diversion for freight and slower passenger trains would appear to be a possibility.

It could also be combined with the Stillington Line and Northallerton and Stockton to create a double-track diversion, alongside the double-track section of the East Coast Main Line between Northallerton and Newcastle.

Extending The Tyne And Wear Metro Along The Leamside Line

This has been talked about for some time.

In the Wikipedia entry for the Tyne and Wear Metro. there is a section, which is entitled Extension To Washington IAMP, where this is said.

There have been a number of proposals looking in to the possibility of re-opening the former Leamside Line to Washington, including a 2009 report from the Association of Train Operating Companies (ATOC), and a 2016 proposal from the North East Combined Authority (NECA), as well as the abandoned Project Orpheus programme, from the early 2000s. Most recently, proposals are being put forward to link the current network at Pelaw and South Hylton, with the International Advanced Manufacturing Park in Washington, using part of the alignment of the former Leamside Line.

If the Tyne and Wear Metro were to be extended to the Southern end of the Leamside Line, Ferryhill station could be a Southern terminal.

  • There is space to create a line alongside the East Coast Main Line between Tursdale Junction, where it connects with the Leamside Line and Ferryhill station.
  • The new Tyne and Wear trains have been designed to share tracks with other trains on Network Rail tracks.
  • This would enable interchange between East Coast Main Line, Stillington Line and Metro services, without going North to Newcastle.

At the present time, all that would be needed would be for the Metro connection to be safeguarded.

Railfuture’s Campaigns In The North East

This is a tidying up of several improvements, which are campaigns of Railfuture, that are outlined in this document.

They will be covered in separate posts.

Conclusions

I can separate conclusions into sections.

The Design Of Ferryhill Station

These are my conclusions about the design of Ferryhill station.

  • It should be built as a Park-and-Ride station.
  • It should have platforms long enough for any train that might stop at the station. I suspect this would be a pair of Class 800 trains, which would be 260 metres long.
  • Platforms should be on both the East Coast Main Line and the Stillington Line.
  • There should be safeguarding of a route, so that Metro trains could access the station from the Leamside Line.

As the station could be a Park-and-Ride station, I will assume the station will need good road access.

Train Services At Ferryhill Station

These are my conclusions about the services calling at Ferryhill station.

There should be four tph between Leeds and Newcastle, all of which would stop at York, Darlington, Ferryhill and Durham, with some services calling at Northallerton and Chester-le-Street.

There should also be less frequent services at Ferryhill to Scotland and London. Perhaps a frequency of around six tpd would be sufficient, as changes could be made at Leeds, Newcastle of York.

Two tph would probably be ideal for services on the Stillington Line to Hartlepool, Middlesbrough and Redcar.

It would certainly be a busy and well-connected station.

 

December 13, 2020 Posted by | Design, Transport | , , , , , , , , , , , , , , , , , , | 5 Comments