The Anonymous Widower

What Will Be The Fastest Times Possible Between London King’s Cross And Leeds?

According to media reports, it is likely that the Eastern Leg of High Speed Two will be scrapped on kicked into the long grass.

So out of curiosity, what times can be achieved between London King’s Cross and Leeds.

Wikipedia says this about digital signalling on the line.

Increasing maximum speeds on the fast lines between Woolmer Green and Dalton-on-Tees up to 140 mph (225 km/h) in conjunction with the introduction of the Intercity Express Programme, level crossing closures, ETRMS fitments, OLE rewiring and the OLE PSU – est. to cost £1.3 billion (2014). This project is referred to as “L2E4” or London to Edinburgh (in) 4 Hours. L2E4 examined the operation of the IEP at 140 mph on the ECML and the sections of track which can be upgraded to permit this, together with the engineering and operational costs.


  1. Woolmer Green is 23.8 miles North of King’s Cross and a short distance to the North of the Digswell Viaduct.
  2. Dalton-on-Tees is North of Doncaster, where the line to Leeds leaves the East Coast Main Line.

The 186 mile journey to Leeds can be broken down into these sections.

  • King’s Cross and Woolmer Green – 23.8 miles – 16 minutes – 89.3 mph
  • Woolmer Green and Doncaster – 132.2 miles – 85 minutes – 93.3 mph
  • Doncaster and Leeds – 29.9 miles – 32 minutes – 56 mph

In Will Avanti West Coast’s New Trains Be Able To Achieve London Euston and Liverpool Lime Street In Two Hours?, I estimated that each stop in an electric Hitachi Class 802 train takes eight minutes, which includes six minutes accelerating and decelerating and a two minute dwell time in the station.

  • Services between London Euston and Leeds typically stop three times, so this means there are four acceleration/deceleration cycles, if you add in the one split between London Kings Cross and Leeds.
  • There are also three dwell times of perhaps two minutes in the intermediate stations.
  • This would mean that a total of thirty minutes must be added to calculate the journey time.

If the train averaged these speeds over 186 miles, the following times would be achieved.

  • 125 mph – 89 minutes
  • 130 mph – 86 minutes
  • 140 mph – 80 minutes
  • 150 mph – 74 minutes
  • 160 mph – 70 minutes

Adding in the thirty minutes for stops gives some reasonable timings for between London King’s Cross and Leeds.

There are ways that times could be reduced.

Removal Of Level Crossings

This course of action always brings results, but is hated by the local users.

This article in The Times is entitled HS2 Eastern Leg To Leeds Axed, where there is said.

The government’s long-awaited Integrated Rail Plan also commits to full electrification of the Midland Main Line from London St Pancras to Sheffield, as well as upgrades to the East Coast Main Line. The Times understands this includes removing level crossings, which will help reduce journey times.

Every little helps!

More Running At Higher Speeds

From my figures, it appears that roughly a ten mph increase in average speed reduces journey time by up to six minutes.

So the more running at 140 mph or even faster the better.

It should be noted that the Selby Diversion on the East Coast Main Line was designed by British Rail for 160 mph The Wikipedia entry says this.

The line was the first purpose-built section of high-speed railway in the UK having a design speed of 125 mph; however, research by British Rail in the 1990s indicated that the route geometry would permit up to 160 mph operation, subject to the necessary overhead line equipment and signalling upgrades.

Upgrading the line for higher speeds would be a way of reducing the journey time.

  • Curves could be better profiled.
  • Full digital signalling with perhaps even some degree of automatic control could be introduced.
  • More robust overhead line equipment could be installed.
  • Some sections of slab track could be laid.
  • Level crossing removal.

I wouldn’t be surprised if one of the new Hitachi trains within a few years could be able to average 140 mph between London King’s Cross and Leeds, with a possible 160 mph average speed in the future.

Faster Acceleration And Deceleration

If the three-minute acceleration and deceleration times can be reduced to two minutes this will save eight minutes on the journey.

Quicker Dwell Times

Why not?

High-Speed Two Classic Compatible Trains

These faster trains could bring the time down further, if they were to run the service.

Sample Times

I wouldn’t be surprised to see with full digital signalling and a 125 mph average between London King’s Cross and Leeds.

  • 125 mph Base Time – 89 minutes.
  • Four Acceleration/Deceleration section at 6 minutes each – 24 minutes.
  • Three Dwell Times at 2 minutes each – 6 minutes

This would mean a total time of one hour and 59 minutes.

Uprate that to 140 mph and faster acceleration and deceleration.

  • 140 mph Base Time – 80 minutes.
  • Four Acceleration/Deceleration section at 4 minutes each – 16 minutes.
  • Three Dwell Times at 2 minutes each – 6 minutes

This would mean a total time of one hour and 42 minutes.

Up that to 160 mph.

Uprate that to 140 mph and faster acceleration and deceleration.

  • 160 mph Base Time – 70 minutes.
  • Four Acceleration/Deceleration section at 4 minutes each – 16 minutes.
  • Three Dwell Times at 2 minutes each – 6 minutes

This would mean a total time of one hour and 32 minutes.

These compare with a proposed time of one hour and 21 minutes on the original plan to High Speed Two.

November 18, 2021 - Posted by | Transport/Travel | , , , , , , ,


  1. I do wonder when people will question whether the amount of energy required to push a train through the air a bit faster is actually a sensible use of limited resources given the marginally time benefits that will be gained. That aside I don’t believe the OLE is upto 140mph in its current configuration and there are too many geometry constraints to get continuous running over many sections below Doncaster to warrant 140mph. North of Doncaster as you suggest up Selby diversion and there is good stretch North of York as well.
    My personal view is very little more will be done except getting rid of Newark flat crossing.

    Comment by Nicholas Lewis | November 19, 2021 | Reply

    • I am by training a Control Engineer and I believe that when full digital signalling is installed on the route, that this can be used to speed trains over the Newark crossing and over Digswell.

      In the early 1970s, I worked in a computer section at ICI, where colleagues were accurately sequencing complex chemical plants and similar techniques could be used to sequence the trains through these sections.

      I could envisage expresses going through these sections at 125 mph, if not at 140 mph.

      There could also be flighting where two or three fast trains ran together a safe distance apart.

      As an example a Leeds train with a first stop at Doncaster might be following an Edinburgh train, with the first stop at York perhaps two or three minutes behind. Behind the Leeds train there could be a Lincoln train following at a safe distance. There could even be a Cambridge Cruiser behind the Lincoln train.

      I suspect that Thameslink may already use these techniques to align trains for the central tunnel.

      Comment by AnonW | November 19, 2021 | Reply

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.

%d bloggers like this: