The Anonymous Widower

My First Rides In A Class 755 Train

Today, I had my first rides in a Class 755 train. I use rides, as it was three separate timetabled journeys.

  • 12:36 – Norwich to Great Yarmouth
  • 13:17 – Great Yarmouth to Norwich
  • 14:05 – Norwich to Lowestoft

But it was only one train!

Although, I did see at least one other train in service.

These are my observations.

The Overall Style

These are a few pictures of the outside of the train.

The train certainly looks impressive from the front, but then it has a similar profile to a Bombardier Aventra or a member of Hitachi’s Class 800 family of trains.

The open nose is reminiscent of front-engined Formula One racing cars of the 1950s, with an added sloping front to apply downforce.

I would suspect that the similarity of the trains  is driven by good aerodynamic design.

If all the current Formula One cars were painted the same colour, could you tell the apart?

Trains seem to be going the same way. Only Siemens Class 700/707/717 design doesn’t seem to be rounded and smooth.

The PowerPack

The unique feature of these bi-mode trains is the diesel PowerPack in the middle of the train.

Stadler first used a PowerPack in the GTW, which I described in The Train Station At The Northern End Of The Netherlands.

  • GTWs date from 1998.
  • Over five hundred GTWs have been built.
  • You see GTWs in several countries in Europe.
  • GTWs have a maximum speed of between 115 and 140 kph.

The concept of the train with a PowerPack is certainly well-proven.

I have deliberately ridden for perhaps twenty seconds in the corridor through the PowerPack on both trains! Although I didn’t measure it with a sound meter, I’m fairly certain, that the more modern Class 755 train is better insulated against the noise of the engines.

But you would expect that with progress!

There could be another significant difference between the bi-mode Flirt and the GTW. This picture shows the connection between the PowerPack and the next car.

It looks like it could be a damper to improve the performance of the train on curves. It is not visible on this picture of a GTW PowerPack.

As an engineer, this says to me, that Stadler have taken tremendous care  to make the unusual concept of the PowerPack work perfectly.

Train Power On Diesel

Consider.

  • This four-car Class 755 train has installed diesel power of 1920 kW.
  • At 100 mph, the train will travel a mile in thirty-six seconds.
  • In that time, 19.2 kWh would be generated by the engines at full-power.

This means that a maximum power of 4.6 kWh per vehicle mile is available, when running on diesel power.

In How Much Power Is Needed To Run A Train At 125 mph?, I answered the question in the title of the post.

This was my conclusion in that post.

I know this was a rather rough and ready calculation, but I can draw two conclusions.

  • Trains running at 125 mph seem to need between three and five kWh per vehicle mile.
  • The forty year old InterCity 125 has an efficient energy use, even if the engines are working flat out to maintain full speed.

The only explanation for the latter is that Terry Miller and his team, got the aerodynamics, dynamics and structures of the InterCity 125 almost perfect. And this was all before computer-aided-design became commonplace.

In future for the energy use of a train running at 125 mph, I shall use a figure of three kWh per vehicle mile.

These figures leave me convinced that the design of the Class 755 train can deliver enough power to sustain the train at 125 mph, when running on diesel power

Obviously, as the maximum speed in East Anglia, is only the 100 mph of the Great Eastern Main Line, they won’t be doing these speeds in the service of Greater Anglia.

I also  had a quick word with a driver and one of my questions, was could the train design be good for 125 mph? He didn’t say no!

This 125 mph capability  could be useful for Greater Anglia’s sister company; Abellio East Midlands Trains, where 125 mph running is possible, on some  routes with and without electrification.

With respect to the Greater Anglia application, I wonder how many engines will be used on various routes? Many of the routes without electrification are almost without gradients, so I can see for large sections of the routes, some engines will just be heavy passengers.

I’ve read somewhere, that the train’s computer evens out use between engines, so I suspect, it gives the driver the power he requires, in the most efficient way possible.

Remember that these Greater Anglia Class 755 trains, are the first bi-mode Stadler Flirts to go into service, so the most efficient operating philosophy has probably not been fully developed.

Train Weight

These pictures show the plates on the train giving the details of each car.

 

I only photographed one side of the train and I will assume that the other two cars are similar. They won’t be exactly the same, as this  intermediate car has a fully-accessible toilet.

The weight of each car is as follows.

  • PowerPack – PP – 27.9 tonnes
  • Intermediate Car – PTSW – 16.0 tonnes
  • Driving Car – DMS2 – 27.2 tonnes

Adding these up gives a train weight of 114.3 tonnes.

Note that the formation of the train is DMS+PTS+PP+PYSW+DMS2, which means that heavier and lighter cars alternate along the train.

Train Length

The previous pictures give the  length of each  car is as follows.

  • PowerPack – PP – 6.69 metres
  • Intermediate Car – PTSW – 15.22 metres
  • Driving Car – DMS2 – 20.81 metres

Adding these up gives a train length of 78.75 metres.

This is very convenient as it fits within British Rail’s traditional limit for a four-car multiple unit like a Class 319 train.

Train Width

The previous pictures give the width of each  car is as follows.

  • PowerPack – PP – 2.82 metres
  • Intermediate Car – PTSW – 2.72 metres
  • Driving Car – DMS2 – 2.72 metres

The PowerPack is wider than the other cars and it is actually wider than the 2.69 metres of the Class 170 train, that the Class 755 train will replace. However, Greater Anglia’s electric Class 321 trains also have a width of 2.82 metres.

It looks to me, that Stadler have designed the PowerPack to the largest size that the UK rail network can accept.

The other cars are narrower by ten centimetres, which is probably a compromise between fitting platforms, aerodynamics and the needs of articulation.

Seats

The previous pictures give the number of seats in each  car as follows.

  • PowerPack – PP – 0
  • Intermediate Car – PTSW – 32
  • Driving Car – DMS2 – 52

This gives a total of 168 seats. Wikipedia gives 229.

Perhaps the car without the toilet has more or Wikipedia’s figure includes standees.

Kinetic Energy Of The Train

I will use my standard calculation.

The basic train weight is 114.3 tonnes.

If each of the 229 passengers weighs 90 kg with Baggage, bikes and buggies, this gives a passenger weight of 20.34 tonnes.

This gives a total weight of 134.64 tonnes.

Using Omni’s Kinetic Energy Calculator gives these figures for the Kinetic energy.

  • 60 mph – 13.5 kWh
  • 100 mph – 37.4 kWh
  • 125 mph – 58.4 kWh

If we are talking about the Greater Anglia C;lass 755 train, which will be limited to 100 mph, this leads me to believe, that by replacing one diesel engine with a plug compatible battery of sufficient size, the following is possible.

  • On all routes, regenerative braking will be available under both diesel and electric power.
  • Some shorter routes could be run on battery power, with charging using existing electrification.
  • Depot and other short movements could be performed under battery power.

The South Wales Metro has already ordered tri-mode Flirts, that look like Class 755 trains.

InterCity Quality For Rural Routes

The title of this section is a quote from the Managing Director of Greater Anglia; Jamie Burles about the Class 755 trains in this article on Rail Magazine.

This is the complete paragraph.

Burles said of the Class 755s: “These will be the most reliable regional train in the UK by a country mile – they had better be. They will be InterCity quality for rural routes, and will exceed expectations.”

I shall bear that quote in mind in the next few sections.

Seats And Tables

The seats are better than some I could name.

The seats are actually on two levels, as some are over the bogies. However |Stadler seem to managed to keep the floor flat and you step-up into the seats, as you do in some seats on a London New Routemaster bus.

Seat-Back Tables

I particular liked the seat-back tables, which weren’t the usual flimsy plastic, but something a lot more solid.

They are possibly made out of aluminium or a high class engineering plastic. You’d certainly be able to put a coffee on them, without getting it dumped in your lap.

It is the sort of quality you might get on an airliner, flown by an airline with a reputation for good customer service.

Step-Free Access

Stadler are the experts, when it comes to getting between the train and the platform, without a step. As I travel around Europe, you see little gap fillers emerge from trains built by Stadler, which have now arrived in East Anglia.

There was a slight problem at Great Yarmouth with a wheelchair, but it was probably something that can be easily sorted.

Some platforms may need to be adjusted.

Big Windows

The train has been designed with large windows, that are generally aligned with the seats.

There is no excuse for windows not aligning with most of the seats, as you find on some fleets of trains.

Low Flat Floor

The train has been designed around a low, flat floor.

The floor also improves the step-free access and gives more usable height inside the train.

Litter Bins

The train has well-engineered litter bins in  between the seats and in the lobbies.

This bin is in the lobby, next to a comfortable tip-up seat.

Too many trains seem to be built without bins these days and the litter just gets thrown on the floor.

Conclusion

It is certainly a better class of rural train and I think it fulfils Jamie Burles’ ambition of InterCity Quality For Rural Routes.

But then services between Cambridge, Ipswich and Norwich are as important to East Anglia, as services between Hull, Leeds and Sheffield are to Yorkshire.

They are all services that can take a substantial part of an hour, so treating passengers well, might lure them out of their cars and off crowded roads.

In My First Ride In A Class 331 Train, I wrote about Northern’s new Class 331 trains.

If I was going to give the Greater Anglia train a score of eight out of ten, I’d give the Class 331 train, no more than two out of ten.

 

 

 

 

 

August 6, 2019 - Posted by | Transport | , , , , , ,

3 Comments »

  1. All sounds really good. Very impressed with the low floor design and gap filler. Cant wait to see them down in South Wales.

    The seat numbers on the stickers only show fixed seats and not flip ones.

    The seats for the 4 Car Unit as followed i have show flip down seats in brackets:
    DMS 60 + (4)
    PTS 58 + (4)
    PP 0
    PYSW 32 + (7)
    DMS2 52 + (12)
    TOTAL 202 + (27) = 229

    For a 3 car unit you lose the PTS so the totals are 144 + (23) = 167

    The reason for the 2 types of DMS is that 1 has bike storage \ 8 flip down seats

    Can i re-post the images and details on a South Wales Facebook forum giving you credit?

    Comment by Michael Fox | August 6, 2019 | Reply

    • Thanks for that!
      Of course you can repost with a link.
      Having ridden these trains and CAF’s Class 195 and Class 331 trains, I think that TfW might regret not buying more Flirts, when they see them flying up the hill to Rhymney. and Ebbw Vale. The big question must be, will the Maesteg and Cheltenham service stretch its legs on the South Wales Main Line, when using the electrification to the East of Cardiff.

      I’m getting more and more certain, that these are 125 mph trains under both electricity and diesel, that have no fast lines on which to run at that speed in East Anglia.

      Comment by AnonW | August 6, 2019 | Reply

  2. Just got the spec sheets from Stadler for all the new rolling stock for TFW.

    There are quite a few changes to Greater Anglian version. Top speed is down depending on variant and there is only 50% tractive effort under battery power so it will be interesting to see how it handle the non electrified part of the rhymney line.

    Have emailed you the 3 data sheets.

    Comment by Mike Fox | August 8, 2019 | Reply


Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.