The Anonymous Widower

East Coast Main Line South Bi-Directional Capability

London has a rail capacity problem, for both freight and passenger trains.

This report from Network Rail is entitled The London Rail Freight Strategy (LRFS).

One of the secondary recommendations of the report is to use the bi-directional capability of the East Coast Main Line to create another freight route through London.

The report explains it like this.

The southern end of the East Coast Main Line, from Kings Cross to Stoke Tunnel (about five miles south of Grantham), is due to be the first part of a national main line to be fully converted to European Train Control System (ETCS) digital signalling.ETCS, because it does not rely on fixed lineside equipment facing one way or another, is bi-directional by nature.

This presents an opportunity for freight to make use of a new routeing at the southern end of the East Coast Main Line, which current signalling and track layout do not permit.

This strategy therefore proposes installing new track layout features that would facilitate this routeing for freight trains, enabling them to take advantage of the bi-directional capability brought about through ETCS deployment.

The main expected change would be the creation of a facing crossover at Bowes Park, to enable southbound freight trains to run onto the Down Enfield Viaduct in the up direction, before continuing onwards to the terminal at Ferme Park or accessing the Gospel Oak-Barking Line at Harringay.

This example shows an advantage of digital in-cab signalling.

This map from cartometro, shows the lines between Bowes Park and Alexandra Palace stations.

Freight trains coming from the North regularly take the Hertford Loop Line and arrive in North London at Bowes Park

Currently, they sneak down the Eastern side of the East Coast Main Line and then take a route across London, which probably uses the North London Line.

What is proposed is that with an extra crossover just South of Bowes Park station, freight trains will crossover and take Enfield Viaduct the wrong way to the Western side Alexandra Palace station.

The Enfield Viaduct is the track taken from Alexandra Palace station to Bowes Park station, by trains going to Enfield. It takes a bit of a loop to the West.

This second map from cartometro, shows the lines South of Alexandra Palace stations.

Note.

  1. Hornsey is the next station to the South of Alexandra Palace.
  2. The Eastern side of the East Coast Main Line is crowded with maintenance depots for trains.
  3. The orange line is the Gospel Oak to Barking Line.

By the use of digital signalling a new freight route through North London can been created.

Conclusion

How many other places can this technique be used?

Related Posts

These are related posts about the London Rail Freight Strategy (LRFS).

Decarbonisation Of London’s Freight Routes

Doubling Harlesden Junction

Gauge Improvements Across London

Gospel Oak Speed Increases

Headway Reductions On The Gospel Oak To Barking, North London and West London Lines

Heavy Axle Weight Restrictions

Kensal Green Junction Improvement

Longhedge Junction Speed Increases

Moving The West London Line AC/DC Switchover To Kensington Olympia

Moving The West London Line AC/DC Switchover To Shepherd’s Bush

Nunhead Junction Improvement

Stratford Regulating Point Extension

Will Camden Road Station Get A Third Platform?

Will Clapham Junction Station Get A Platform 0?

June 27, 2021 Posted by | Transport | , , , , , , | 14 Comments

Headway Reductions On The Gospel Oak To Barking, North London and West London Lines

London has a rail capacity problem, for both freight and passenger trains.

This report from Network Rail is entitled The London Rail Freight Strategy (LRFS).

One of the recommendations of the report is to reduce headway on the Gospel Oak To Barking, North London and West London Lines.It says this about the reducing the headway.

These are improvements on which this strategy is dependent, but are expected to be realised through wider
enhancement programmes, so are not being directly proposed by the LRFS.

Later in the report, this paragraph is expanded.

Signalling enhancements to facilitate consistent 3-minute headways on the three orbital lines where these are not currently feasible will be necessary, if growth akin to the timetable solution identified by the capacity analysis for this study is to be realised.

It is not the role of the LRFS to specify the nature of these upgrades, however it is expected that the required headway reductions are most likely to be achieved in a more manageable and cost-effective way through the deployment of European Train Control System (ETCS) digital signalling.

Currently, in the UK, this type of signalling is working successfully on Thameslink and is currently being rolled out on Crossrail and the Southern section of the East Coast Main Line.

Conclusion

Full digital signalling would appear to be the solution.

But then it is to many capacity problems around the UK rail network.

Related Posts

These are related posts about the London Rail Freight Strategy (LRFS).

Decarbonisation Of London’s Freight Routes

Doubling Harlesden Junction

East Coast Main Line South Bi-Directional Capability

Gauge Improvements Across London

Gospel Oak Speed Increases

Heavy Axle Weight Restrictions

Kensal Green Junction Improvement

Longhedge Junction Speed Increases

Moving The West London Line AC/DC Switchover To Kensington Olympia

Moving The West London Line AC/DC Switchover To Shepherd’s Bush

Nunhead Junction Improvement

Stratford Regulating Point Extension

Will Camden Road Station Get A Third Platform?

Will Clapham Junction Station Get A Platform 0?

June 22, 2021 Posted by | Transport | , , , , , , , , , | 17 Comments

London To Glasgow Train Journey Record Bid Fails By Just 21 Seconds

The title of this post, is the same as that of this article on ITV.com.

These are the first three paragraphs.

An attempt to break the 36-year-old record for the fastest train journey between London and Glasgow has failed.

Avanti West Coast’s Royal Scot train arrived at Glasgow Central 21 seconds behind the record of three hours, 52 minutes and 40 seconds set by British Rail in December 1984, according to rail expert Mark Smith, who was onboard.

Mr Smith, founder of Seat61.com, wrote on Twitter that a temporary speed limit on the track in Carstairs, South Lanarkshire, “cost us 90 seconds”.

It appears to be a valiant attempt that failed by a small margin.

I have a few thoughts.

The Trains

The British Rail 1984 record was set by an Advanced Passenger Train (APT) and today’s run was by a nine-car Class 390 train.

  • The design speed of the APT was 155 mph and that of a Class 390 train is 140 mph.
  • Service speed of both trains was and is 125 mph.
  • Record speed of the APT was 162 mph and that of a Class 390 train is 145 mph.
  • Both trains employ similar tilt technology to go faster.

At a brief look the performance of these two trains is very similar.

The InterCity 225

The InterCity 225 train is the ringer in this race to the North.

  • The design speed is 140 mph.
  • The service speed is 125 mph
  • The record speed of an InterCity 225 is 161.7 mph.
  • The train doesn’t use tilting technology.
  • The train was built after the APT around 1990.
  • The train holds the record between London Kings Cross and Edinburgh at thirty seconds under three-and-a-half hours.
  • To rub things in, one of these trains, even holds the London Euston and Manchester Piccadilly record.

But there can’t be much wrong with the InterCity 225 trains as a few are being brought back into service, whilst LNER are waiting for ten new bi-mode trains to be delivered.

Hitachi Class 80x Trains

The various variants of Class 800 trains run to Edinburgh and I’m sure they will run to Glasgow.

  • The design speed is 140 mph.
  • The service speed is 125 mph

If an InterCity 225 can go between Edinburgh and London in around three-and-a-half hours, I can’t see why these trains can’t.

Especially, as Hitachi seem to be able to produce versions like the Class 803 and Class 807 trains, which appear to be lighter and more efficient, as they don’t have any diesel engines.

A Small Margin

I said earlier that it was only a small margin between the times of the APT and the Class 390 train. But why was the InterCity 225 able to run between Kings Cross and Edinburgh at thirty seconds under three-and-a-half hours?

This section in the Wikipedia entry for the Class 91 locomotive is entitled Speed Record. This is the first paragraph.

A Class 91, 91010 (now 91110), holds the British locomotive speed record at 161.7 mph (260.2 km/h), set on 17 September 1989, just south of Little Bytham on a test run down Stoke Bank with the DVT leading. Although Class 370s, Class 373s and Class 374s have run faster, all are EMUs which means that the Electra is officially the fastest locomotive in Britain. Another loco (91031, now 91131), hauling five Mk4s and a DVT on a test run, ran between London King’s Cross and Edinburgh Waverley in 3 hours, 29 minutes and 30 seconds on 26 September 1991. This is still the current record. The set covered the route in an average speed of 112.5 mph (181.1 km/h) and reached the full 140 mph (225 km/h) several times during the run.

It looks from the last sentence of this extract, that the record run of the InterCity 225 train ran up to 140 mph in places, whereas the record run of the APT and today’s run by a Class 390 train were limited to 125 mph.

The Signalling

In the Wikipedia entry for the InterCity 225 train, the following is said.

Thus, except on High Speed 1, which is equipped with cab signalling, British signalling does not allow any train, including the InterCity 225, to exceed 125 mph (201 km/h) in regular service, due to the impracticality of correctly observing lineside signals at high speed.

Note.

  1. I have regularly flown my Cessna 340 safely at altitude, with a ground speed of around two hundred miles per hour.
  2. High Speed One has an operating speed of 186 mph.
  3. Grant Schapps, who is Secretary of State for Transport has a pilot’s licence. So he would understand flight instruments and avionics.

So why hasn’t a system been developed in the thirty years since trains capable of running at 140 mph started running in the UK, to allow them to do it?

It is a ridiculous situation.

We are installing full digital ERTMS in-cab signalling on the East Coast Main Line, but surely a system based on aviation technology could be developed until ERTMS  is ready. Or we could install the same system as on High Speed One.

After all, all we need is a system, to make sure the drivers don’t misread the signals.

But then the EU says that all member nations must use ERTMS signalling.

Didn’t we just leave the EU?

Conclusion

By developing our own in-cab digital signalling we could run trains between London and Scotland in around three-and-a-half hours.

The Japanese could even have an off-the-shelf system!

ERTMS sounds like a closed shop to give work to big European companies, who have lobbied the European Commission.

June 17, 2021 Posted by | Transport | , , , , , , , , | 5 Comments

Thoughts On Train Times Between London Paddington And Cardiff Central

I went to Cardiff from Paddington on Tuesday.

These were the journey details.

  • Distance – Paddington and Cardiff – 145.1 miles
  • Time – Paddington and Cardiff – 110 minutes – 79.1 mph
  • Time – Cardiff and Paddington- 114 minutes – 76.4 mph

There were four stops. Each seemed to take between two and three minutes.

I do feel though, that the trains are still running to a timetable, that could be run by an InterCity 125.

I watched the Speedview app on my phone for a lot of both journeys.

  • There was quite an amount of 125 mph running on the route.
  • Some stretches of the route seemed to be run at a line speed of around 90 mph.
  • The Severn Tunnel appears to have a 90 mph speed.
  • Coming back to London the train ran at 125 mph until the Wharncliffe Viaduct.

These are my thoughts.

Under Two Hour Service

The current service is under two hours, which is probably a good start.

Improving The Current Service

It does strike me that the current timetable doesn’t take full advantage of the performance of the new Hitachi Class 80x trains.

  • Could a minute be saved at each of the four stops?
  • Could more 125 mph running be introduced?
  • Could the trains go faster through the Severn Tunnel?
  • If two trains per hour (tph) were to be restored, would that allow a more efficient stopping pattern?
  • The route has at least four tracks between Paddington and Didcot Parkway and the Severn Tunnel and Cardiff.

I would reckon that times of between one hour and forty minutes and one hour and forty-five minutes are possible.

These times correspond to average speeds of between 87 and 83 mph.

Application of In-Cab Digital Signalling

Currently, a typical train leaving Paddington completes the 45.7 miles between Hanwell and Didcot Parkway with a stop at Reading in 28 minutes, which is an average speed of 97.9 mph.

This busy section of the route is surely an obvious one for In-cab digital signalling., which would allow speeds of up to 140 mph.

  • Services join and leave the route on branches to Bedwyn, Heathrow, Oxford and Taunton.
  • The Heathrow services are run by 110 mph Class 387 trains.
  • There are slow lines for local services and freight trains.

If an average speed of 125 mph could be attained between Hanwell and Didcot Parkway, this would save six minutes on the time.

Would any extra savings be possible on other sections of the route, by using in-cab digital signalling?

I suspect on the busy section between Bristol Parkway and Cardiff Central stations several minutes could be saved.

Would A Ninety Minute Time Between Paddington And Cardiff Be Possible?

To handle the 145.1 miles between Paddington and Cardiff Central would require an average speed including four stops of 96.7 mph.

This average speed is in line with the current time between Hanwell and Didcot Parkway with a stop at Reading, so I suspect that with improvements to the timetable, that a ninety minute service between Paddington and Cardiff Central is possible.

It may or may not need in-cab digital signalling.

My Control Engineer’s nose says that this signalling upgrade will be needed.

Would A Sixty Minute Time Between Paddington And Cardiff Be Possible?

A journey time of an hour between Paddington and Cardiff Central would surely be the dream of all politicians the Great Western Railway and many of those involved with trains.

To handle the 145.1 miles between Paddington and Cardiff Central would require an average speed including four stops of 145.1 mph.

It would probably be difficult to maintain a speed a few mph above the trains current maximum speed for an hour.

  • How many minutes would be saved with perhaps a single intermediate stop at Bristol Parkway station?
  • Perhaps the Cardiff service could be two tph in ninety minutes and one tph in sixty minutes.
  • Full in-cab digital signalling would certainly be needed.
  • Faster trains with a maximum speed of up to 155-160 mph would certainly be needed.
  • There may be a need for some extra tracks in some places on the route.

A journey time of an hour will be a few years coming, but I feel it is an achievable objective.

The Extended Route To Swansea

Cardiff Central and Swansea is a distance of 45.7 miles

A typical service takes 55 minutes with three stops, at an average speed of 49.8 mph.

This would be an ideal route for a Hitachi Intercity Tri-Mode Battery Train, which is described in this Hitachi infographic.

It would probably be needed to be charged at Swansea station, to both enable return to Cardiff Central or extend the service to the West of Swansea.

Conclusion

Big improvements in journey times between Paddington and Cardiff Central are possible.

 

June 10, 2021 Posted by | Transport | , , , , , , , , | 6 Comments

The Cambridge Re-signalling, Relock and Recontrol Project

This project is Network Rail’s big signalling project in the Cambridge area and it is fully described in this document on the Network Rail web site.

The project is called the C3R Project for short and its scope is described in this Network Rail infographic.

Note.

  1. 125 miles of track are to be resignalled.
  2. Seventeen stations are likely to be resignalled.
  3. Eight level-crossings are to be upgraded.

Network Rail’s document splits the project into five sections.

  • Cambridge Power Signal Box – This will be upgraded.
  • Safety Interlocking Equipment – This will be upgraded with a computer-based system.
  • Closure Of Three Signal Boxes – Control will be relocated to Cambridge Power Signal Box.
  • Seven Level Crossing Upgrades – These will be upgraded to full barrier crossings.
  • Land Acquisition – As necessary to complete the works.

Upon completion the project will have replaced around 690 signalling assets.

Network Rail also say that the outline design contract to Alstom and it is expected to be completed in the last quarter of 2021.

Network Rail also says this about completion.

Subject to obtaining the necessary consents and design approvals, the detailed design and delivery of the signalling upgrade could begin by end of 2021 and be complete around the end of 2024.

My experience of project management and the railways of East Anglia, says that subject to one caveat, that this is a reasonable timescale.

The Level Crossing Problem

The problem could be the level crossings, as local interests are very protective of their supposed right to cross unhindered.

I particularly remember the Little Cornard Derailment, because a solicitor, who regularly instructed my late wife, was seriously injured in the derailment.

This is the first paragraph of the Wikipedia entry.

The Little Cornard derailment occurred on 17 August 2010 when a passenger train collided with a road vehicle on a level crossing on the Gainsborough Line near Little Cornard, Suffolk, and partly derailed. The vehicle, a tanker lorry, had begun crossing over the track when the Class 156 train from Sudbury destined for Marks Tey struck it whilst travelling at a speed of approximately 40 miles per hour (64 km/h)

Note.

Although, my late wife had died in 2007, one of her barrister colleagues told me of the link.

East Anglia and other rural parts of the UK suffer regularly from this type of accident.

This Google Map shows a 3D visualization of the site of the derailment.

It appears to be rather remote.

I am totally appalled that there was such primitive safety equipment on this crossing.

  • I have worked in seriously dangerous chemical plants, where Health and Safety rules forbade anyone entering the plant without full training.
  • As a sixteen-year-old in 1963, I was designing and installing systems on industrial guillotines, so that workers didn’t lose their hands.
  • A proportion of work, I did whilst working for ICI was about Health and Safety.
  • I have travelled extensively in tour buses in Eastern Europe and seen some appealing driving at level crossings.
  • According to a Hungarian friend, if you want to see bad driving at level crossings try Russia. He put it down to the local firewater.

This experience leeds me to believe that one of two things should be done with all level crossings on the railway.

  1. There should be a strong safety system on the crossing.
  2. The level crossing should be closed.

Will Network Rail be allowed by local interests to upgrade all the crossings they need?

The Level Crossings Network Rail Propose To Upgrade

These are the crossings Network Rail propose to upgrade.

Meldreth Road Level Crossing

This Google Map shows the Meldreth Road level crossing.

Note.

  1. Meldreth Road is the A10 between Cambridge and Royston.
  2. The double-track rail is the Cambridge Line between Cambridge and the East Coast Main Line.
  3. The line has a maximum speed of 90 mph.
  4. In every hour there are up to 10-12 passenger trains per hour (tph) through the level crossing.
  5. There are perhaps ten other trains per day, or less than one tph.

The ABC Railway Guide gives a line speed of 90 mph and adds these risk factors.

  • Sun Glare
  • Frequent Trains

It is very much a classic case of a busy railway crossing a busy road.

I also think that Network Rail has another problem here.

Pressure from train operators and passengers, could lead to more and faster trains through this level crossing.

In my view, the best solution to that problem would be to drop the railway into a cutting and put the road on a bridge over the top.

But this would be a very expensive and disruptive solution, which might mean that the road and/or railway were to be closed for several months.

The only other solution would be to run all trains between Royston and Cambridge under the control of digital signalling and Automatic Train Operation.

Trains would be timed so, that trains in opposite directions crossed on the level crossing, when the full barriers were down to stop traffic.

If this could be done, it could have various effects.

  • This would halve the number of level crossing closures in every hour.
  • The timekeeping might even impress drivers.
  • It might even train drivers to expect two trains, so if one was a minute or so late, they might be more prepared to wait.

This technique would give whole new meaning to a double cross.

This page on the My Councillor web site, gives details of opposition to the project by Councillor Susan van der Ven.

Six Mile Bottom Level Crossing

This Google Map shows the Six Mile Bottom level crossing.

Note.

  1. The road is the A1304 which is the main link between Newmarket and the South.
  2. The road can get very busy, when there is a big race meeting.
  3. The rail track is only single track.
  4. The line has a maximum speed of up to 75 mph.
  5. In every hour there are no more than one passenger tph in both directions.
  6. There are some occasional freight trains over the crossing.

The ABC Railway Guide gives a line speed of 60 mph and adds these risk factors.

  • Large Numbers Of Users
  • Sun Glare

I used to drive across this level crossing regularly, when I lived in the area and the trouble is that it is on a straight road, that encourages high speed.

Legend has it, that this was one of public roads used by Vincent to test their high performance motorcycles.

In the time I lived near the crossing, I can remember a serious accident between a car and a train, at the crossing.

It would appear that a partial solution has been applied.

This video shows how much brighter LED lights have been fitted to the crossing.

 

Let’s hope this encourages drivers to slow down, when the crossing is closed.

How many other level crossings would be improved with bright LED lights like these?

Dullingham Level Crossing

This Google Map shows the Dullingham level crossing.

Note.

  1. The current barriers are operated manually by the signalman in Dullingham signal box.
  2. The road is a local road and the small amount of traffic could probably be easily handled by an automatic crossing with full barriers.
  3. The rail line is the same at that at Six Mile Bottom, but is double-track.

The ABC Railway Guide gives a line speed of 60 mph and adds these risk factors.

  • Poor Visibility for Approaching Road Vehicles
  • Crossing is Near a Station
  • Crossing Approach
  • Sun Glare

From my local experience, I suspect that an automatic crossing with full barriers might even cause less delay to road traffic.

Milton Fen Level Crossing

This Google Map shows the Milton Fen level crossing.

Note.

  1. The road is a local road and the small amount of traffic could probably be easily handled by an automatic crossing with full barriers.
  2. The railway is the Fen Line between Cambridge and Ely.
  3. It looks like there are three passenger tph and the occasional freight trains through this crossing.
  4. The line speed of the rail line is 75 mph.

The ABC Railway Guide gives a line speed of 75 mph and adds these risk factors.

  • Sun Glare
  • Frequent Trains

It should also be noted that I can find reports of serious accidents and deaths on this crossing.

It looks to me, that an automatic crossing with full barriers could work well on this level crossing.

Waterbeach Level Crossing

This Google Map shows the Waterbeach level crossing.

Note.

  1. The road is a local road, but could the traffic be easily handled by an automatic crossing with full barriers?
  2. The railway is the Fen Line between Cambridge and Ely.
  3. It looks like there are three passenger tph and the occasional freight trains through this crossing.
  4. The line speed of the rail line is 75 mph.
  5. Waterbeach station is split with one platform either side of the level crossing, which is used by passengers to cross the line.

The ABC Railway Guide gives a line speed of 75 mph and adds these risk factors.

  • Poor Visibility for Approaching Road Vehicles
  • Crossing is Near a Station
  • Crossing Approach
  • Large Numbers of Users
  • Blocking Back
  • Frequent Trains

It should also be noted that Network Rail rate this crossing as high risk.

There is probably a long-term solution for this level crossing

Under Future Plans in the Wikipedia entry for Waterbeach station, this is said.

Plans to develop a New Town of 8,000 to 9,000 homes on the former Waterbeach Barracks site have been outlined by South Cambridgeshire District Council. As part of the proposal, there are plans to relocate the station to a new site and extend the platforms to accommodate 12 car trains.

Surely, a well-designed transport network to serve all these houses would see the level crossing closed and a new station built at a convenient location.

Dimmocks Cote Level Crossing

This Google Map shows the Dimmocks Cote level crossing.

Note.

  1. The road is the A1123, so could the traffic be easily handled by an automatic crossing with full barriers?
  2. The railway is the Fen Line between Cambridge and Ely.
  3. It looks like there are three passenger tph and the occasional freight trains through this crossing.
  4. The line speed of the rail line is 75 mph.

The ABC Railway Guide gives a line speed of 75 mph and adds these risk factors.

  • Infrequent Trains
  • Deliberate Misuse or User Error

It should also be noted that Network Rail rate this crossing as high risk.

Croxton Level Crossing

This Google Map shows the Croxton level crossing.

Note.

  1. The road is the A1075, so could the traffic be easily handled by an automatic crossing with full barriers?
  2. The railway is the Breckland Line between Norwich and Ely.
  3. It looks like there are two passenger tph and the occasional freight trains through this crossing.
  4. The line speed of the rail line is 75-90 mph.

It should also be noted that Network Rail rate this crossing as high risk.

The ABC Railway Guide gives the line speed as 40 mph and adds these risk factors.

  • Poor Visibility for Approaching Road Vehicles
  • Crossing Approach
  • Large Numbers of Users
  • Sun Glare
  • Deliberate Misuse or User Error

This crossing sounds like it could be an accident waiting to happen.

Although, I would feel that installing similar lights to those at Six Mile Bottom could be a big help!

Summarising The Proposed Level Crossing Upgrades

I can split these by topic.

Full Barrier installation

It would appear that all barriers can probably be replaced with the latest full barrier technology.

Improved Lighting

The video from Six Mile Bottom was impressive and probably shows how fairly simple improvements can increase safety.

Local Opposition

On this brief summary of all the level crossings, that Network Rail propose to upgrade to automatic crossing with full barriers, it would appear that only the Meldreth Road crossing is seeing opposition from local interests. Although, I do have doubts, that the development of all those houses at Waterbeach will ever happen because of local opposition.

Major Construction Works

It would appear that only two upgrades could require major works.

Meldreth Road – But only if it was felt that a substantial solution was needed.

Waterbeach – If a new station were to be built to cater for future housing development.

The others would only need barrier replacement and other appropriate improvements.

I would also feel that most of the work could be carried out without major disruption to train services or road traffic.

Modern Digital Signalling With Automatic Train Operation

Modern digital signalling with in-cab displays and a measure of automatic train operation offers three main gains to train operators and passengers.

  • More services can be squeezed safely into the existing network, without building controversial and expensive new lines.
  • Trains can run at higher average speeds.
  • Trains can run to timetable easier.

It should be noted that South of Doncaster the East Coast Main Line is being converted to this type of signalling and this will allow the Azumas and other trains to run at 140 mph, where the track allows, to speed up services between King’s Cross and the North.

Services Between King’s Cross and Cambridge

South of Hitchin, some services between King’s Cross and Cambridge share the lines with the expresses to and from the North.

For that reason the 100 mph Class 700 trains and the 110 mph Class 387 trains, would be out of their speed range like Morris Minors on the M1.

In 2018, I wrote Call For ETCS On King’s Lynn Route, based on an article in Rail Magazine, which called for 125 mph trains to Cambridge and King’s Lynn, so they wouldn’t slow the expresses.

It does appear to me that the digital signalling part of the C3R Project will enable 125 mph trains to run between King’s Cross and King’s Lynn via Cambridge.

  • Oxford has 125 mph non-stop local trains to London, so why not Cambridge?
  • A nine-car Class 800 train has a similar seating capacity to a twelve-car Class 700 train, but the seats are better and the train can travel at 125 mph.
  • These trains would significantly reduce the fifty minute journey time between King’s Cross and Cambridge.

This would be a real Cambridge Express.

Developing Services Around Cambridge

Just as full digital signalling is helping London to expand its railways with Crossrail and Thameslink. I believe that the C3R Project will help to squeeze more trains through Cambridge.

In a few years time, I believe Cambridge will have a core route consisting of Cambridge North, Cambridge and Cambridge South stations with much expanded services to Bury St. Edmunds, Ely, Ipswich, Kings Lynn, London, Norwich, Peterborough, Stansted Airport, Stevenage and Wisbech.

Ten years ago, I was told by one of Cambridge’s eminent thinkers, that Cambridge needed the connectivity to bring in the people that the economy needs.

The pandemic has changed things, but not Cambridge’s desire to create more businesses expand.

A Connection To Peterborough

Peterborough is the other half of Cambridgeshire’s area and shares the Cambridgeshire & Peterborough Combined Authority with Cambridge.

Peterborough station is well connected to the North and Midlands.

  • LNER’s connect the station to most stations  on the East Coast Main Line.
  • It has hourly services to Birmingham, Leicester, Liverpool, Manchester and Nottingham.

But the connection between Cambridge and Peterborough is not of the quality and frequency that the two cities need.

A Connection To Stevenage

Stevenage is an important manufacturing and technology centre, with a strong presence in aerospace.

Stevenage station is well connected to the North and South.

  • LNER and other services connect the station to most stations South of Leeds and York on the East Coast Main Line.
  • The new service from East Coast Trains will provide a direct service to Newcastle and Edinburgh with a frequency of seven trains per day (tpd).
  • It has a direct suburban line to King’s Cross.
  • It has a direct suburban line to Moorgate.

Stevenage seems to be acquiring more long distance services as time progresses.

But the connection between Cambridge and Stevenage is currently poor, at just two tph, which stop everywhere.

Improve the connection between Cambridge and Stevenage and have more calls of services to and from the North at Stevenage and Cambridge and \stevenage would benefit.

Currently, the fast Cambridge services take 27 minutes to do the 30.3 miles between Cambridge and Stevenage, which is an average speed of 67.3 mph.

A Connection To Wisbech

Progress seems to be being made on a service between Cambridge and Wisbech, which I wrote about in Hope For Wisbech Line Revival.

This was the conclusion of that post.

I very much feel that the Cambridgeshire & Peterborough Combined Authority and Network Rail can create a very useful branch line to Wisbech.

There is not much infrastructure to be built and upgraded.

    • A new station will be built at Wisbech, which I feel is likely to be a Park-and-Ride on the A47.
    • A bay platform will probably need to be reopened at March station.
    • March station will need to be step-free.
    • There may be a station and a passing loop at Coldham.
    • Track and signalling will need to be replaced.

But the big project needed is the remodelling at Ely, which will have to be done to increase capacity, through the bottleneck.

Greater Anglia’s Class 755 trains would appear to be ideal for the branch and could operate on battery power.

This connection could be a very valuable connection.

It certainly looks like there are better plans to connect Wisbech to Cambridge, than there are to improve the connections between Cambridge and Peterborough and Stevenage.

Conclusion

The C3R Project will give the Cambridge compatible signalling with the East Coast Main Line and I feel increasingly Cambridge could be treated as a series of stations just off the East Coast Main Line and we might see some services develop, that seem strange to today’s travellers.

A simple example could be a Regional Metro running between Peterborough and Stevenage.

  • It would call at March, Ely, Waterbeach, Cambridge North, Cambridge, Cambridge South, Royston and Hitchin.
  • It would run at a frequency upwards of two tph.
  • It could even connect to Lincoln.

Other North-South services through Cambridge like Thameslink and Norwich and Stansted would combine to give perhaps six tph through the three main Cambridge stations.

The C3R Project will open up lots of possibilities.

 

 

 

 

 

June 3, 2021 Posted by | Transport | , , , , , , , , , , , , | 7 Comments

Department Of Transport Claims London and Sheffield Times Could Be Cut By Thirty Minutes

In this article on the BBC, which is entitled Government Announce £401m Boost For Rail Services, this is said.

The funding announcement coincided with the completion of the first phase of the £1.5bn Midland Main Line Upgrade, which has supported the launch of East Midlands Railway’s (EMR) first electric services on the route between Corby in Northamptonshire and London St Pancras.

The project will see journey times between Sheffield and London cut by up to 30 minutes, the DfT said.

So how feasible is the claim of a thirty minute cut in London and Sheffield timings?

On Monday, the 07:30 train from London to Sheffield, covered the 164.7 miles in two hours and twelve minutes at an average speed of 74.9 mph.

If that train had done the trip in one hour and forty-two minutes, that would have been an average speed of 96.9 mph.

By the time, the new Class 810 trains arrive in a couple of years, they will be able to use the new electrification to Market Harborough, when on Monday the 82.8 miles without a stop, was covered in an hour, at an average speed of 82.8 mph.

These new trains are 125 mph electric trains under the wires and they will have two separate fast lines on which to run.

Example time savings at various average speeds to Market Harborough are as follows.

  • 100 mph – 10 minutes saving.
  • 110 mph – 14.8 minutes saving.
  • 125 mph – 20.3 minutes saving
  • 130 mph – 21.8 minutes saving
  • 140 mph – 24.6 minutes saving

Note.

  1. The faster the average, the greater the time saving.
  2. Faster than 125 mph would only be possible with full in-cab digital signalling, which is currently being installed on the East Coast Main Line.
  3. I have been to Leicester in an InterCity 125, which was running at 125 mph most of the way.

But it does look like the new Class 810 trains will be able to save around twenty minutes to Sheffield, by making full use of the electrification between London and Market Harborough.

They would need to save just ten minutes between Market Harborough and Sheffield.

The Monday Train covered the 81.9 miles between Market Harborough and Sheffield in one hour and twelve minutes, which is an average speed of 68.3 mph.

To obtain the saving of ten minutes, it would need to do the journey in one hour and two minutes, which would be an average speed of 79.3 mph.

Given that the new Class 810 trains are designed to cruise at 125 mph on diesel, I don’t think this is an impossible objective.

What Will Be The Ultimate Time Between London and Sheffield On The Midland Main Line?

I believe that the following two sections of the Midland Main Line can be easily electrified.

  • Between Leicester and Derby without the problem of the bridge at the South end of Leicester station, which would be so disruptive.
  • Clay Cross North Junction and Sheffield which will be electrified for High Speed Two. I doubt Derby and Clay Cross Junction will be electrified as it’s a World Heritage Site.

On my Monday train, the following are times North of Leicester.

  • Leicester and Derby is 29.3 miles, which is covered in 32 minutes at an average speed of 55 mph, which includes five stops. Raise this to 110 mph and the journey time is just 16 minutes or a saving of 16 minutes.
  • Derby and Clay Cross North Junction is 21.8 miles, which is covered in 13 minutes at an average speed of 100 mph. By averaging 120 mph, there would be a saving of 2.1 minutes.
  • Cross North Junction and Sheffield is 15.5 miles, which is covered in 16 minutes at an average speed of 58.2 mph.

Note.

  1. Savings would come between Leicester and Derby because of 125 mph linespeed and faster stops because of electrification.
  2. I believe that Hitachi battery-electric trains could sustain 125 mph on battery alone between Derby and Clay Cross North Junction, if they entered the section without electrification at full speed with full batteries. Now that is what I call a battery-electric train!
  3. There must be a minute or two to be saved on an electrified section into Sheffield with the stop at Chesterfield.

Add up all the savings and I feel that an hour and a half is possible between London and Sheffield.

And what time is High Speed Two claiming? One hour and twenty-seven minutes!

Could A Battery-Electric Train Cruise At 125 mph?

This may seem a silly idea, but then trains don’t care where they get their electricity from.

On the 21.8 miles between Derby and Clay Cross North, a sizeable proportion of energy will be used to accelerate the train up to the linespeed for the electrified section.

When the train enters the section without electrification, it will have two sources of energy.

  • The electricity in the full batteries.
  • The kinetic energy in the train at the required speed.

As the train runs through the section air and rolling resistance will tend to slow the train and electricity from the battery will be used to maintain speed.

In How Much Power Is Needed To Run A Train At 125 mph?. I estimated that for a Class 801 train to maintain 125 mph needs 3.42 kWh per vehicle mile.

A simple sum of 21.8 * 5 * 3.42 gives an energy need of 372.8 kWh to run between Derby and Clay Cross North Junction.

I’m sure than Hitachi can fit a 400 kWh battery in a five-car Class 810 train.

Would a slightly larger battery and in-cab signalling allow battery-electric trains to run at 140 mph? If the track allowed it, I don’t see why not!

Conclusion

I believe the Department of Transport’s statement of saving thirty minutes between London and Sheffield is feasible.

But so is a time of an hour-and-a half, which will give High Speed Two a run for its money!

 

May 26, 2021 Posted by | Transport | , , , , , , | 14 Comments

What Is Possible On The East Coast Main Line?

In the Wikipedia entry for the Class 91 locomotive, there is an amazing story.

This picture shows one of these locomotives at Kings Cross.

Note.

  1. They have a design speed of 140 mph.
  2. They have a power output of 4.8 MW.
  3. They were built around 1990 by British Rail at Crewe.

They were designed to run services between London King’s Cross and Edinburgh as fast as possible, as the motive power of the InterCity 225 trains.

This section in the Wikipedia entry for the Class 91 locomotive is entitled Speed Record. This is the first paragraph.

A Class 91, 91010 (now 91110), holds the British locomotive speed record at 161.7 mph (260.2 km/h), set on 17 September 1989, just south of Little Bytham on a test run down Stoke Bank with the DVT leading. Although Class 370s, Class 373s and Class 374s have run faster, all are EMUs which means that the Electra is officially the fastest locomotive in Britain. Another loco (91031, now 91131), hauling five Mk4s and a DVT on a test run, ran between London King’s Cross and Edinburgh Waverley in 3 hours, 29 minutes and 30 seconds on 26 September 1991. This is still the current record. The set covered the route in an average speed of 112.5 mph (181.1 km/h) and reached the full 140 mph (225 km/h) several times during the run.

Note.

  1. For the British locomotive speed record, locomotive was actually pushing the train and going backwards, as the driving van trailer (DVT) was leading.
  2. How many speed records of any sort, where the direction isn’t part of the record, have been set going backwards?
  3. I feel that this record could stand for many years, as it is not very likely anybody will build another 140 mph locomotive in the foreseeable future. Unless a maverick idea for a high speed freight locomotive is proposed.

I have a few general thoughts on the record run between Kings Cross and Edinburgh in three-and-a-half hours.

  • I would assume that as in normal operation of these trains, the Class 91 locomotive was leading on the run to the North.
  • For various reasons, they would surely have had at least two of British Rail’s most experienced drivers in the cab.
  • At that time, 125 mph InterCity 125 trains had been the workhorse of East Coast Main Line for well over ten years, so British Rail wouldn’t have been short of experienced high speed drivers.
  • It was a Thursday, so they must have been running amongst normal traffic.
  • On Monday, a typical run between Kings Cross and Edinburgh is timetabled to take four hours and twenty minutes.
  • High Speed Two are predicting a time of three hours and forty-eight minutes between Euston and Edinburgh via High Speed Two and  the West Coast Main Line.

The more you look at it, a sub-three-and-and-a-half hour time, by 1980s-technology on a less-than-perfect railway was truly remarkable.

So how did they do it?

Superb Timetabling

In Norwich-In-Ninety Is A Lot More Than Passengers Think!, I talk about how Network Rail and Greater Anglia created a fast service between Liverpool Street and Norwich.

I suspect that British Rail put their best timetablers on the project, so that the test train could speed through unhindered.

Just as they did for Norwich-in-Ninety and probably will be doing to the East Coast Main Line to increase services and decrease journey times.

A Good As ERTMS Signalling

Obviously in 1991, there was no modern digital in-cab signalling and I don’t know the standard of communication between the drivers and the signallers.

On the tricky sections like Digswell Viaduct, through Hitchin and the Newark Crossing were other trains stopped well clear of any difficult area, as modern digital signalling can anticipate and take action?

I would expect the test train got a signalling service as good as any modern train, even if parts of it like driver to signaller communication may have been a bit experimental.

There may even have been a back-up driver in the cab with the latest mobile phone.

It must have been about 1991, when I did a pre-arranged airways join in my Cessna 340 on the ground at Ipswich Airport before take-off on a direct flight to Rome. Air Traffic Control had suggested it to avoid an intermediate stop at say Southend.

The technology was arriving and did it help the drivers on that memorable run North ensure a safe and fast passage of the train?

It would be interesting to know, what other equipment was being tested by this test train.

A Possible Plan

I suspect that the plan in 1991 was to use a plan not unlike one that would be used by Lewis Hamilton, or in those days Stirling Moss to win a race.

Drive a steady race not taking any chances and where the track allows speed up.

So did British Rail drive a steady 125 mph sticking to the standard timetable between Kings Cross and Edinburgh?

Then as the Wikipedia extract indicated, at several times during the journey did they increase the speed of the train to 140 mph.

And the rest as they say was an historic time of 3 hours, 29 minutes and 30 seconds. Call it three-and-a-half-hours.

This represented a start-to-stop average speed of 112.5 mph over the 393 miles of the East Coast Main Line.

Can The Current Trains Achieve Three-And-A-Half-Hours Be Possible Today?

Consider.

  • The best four hours and twenty minutes timings of the Class 801 trains, represents an average speed of 90.7 mph.
  • The Class 801 trains and the InterCity 225 trains have similar performance.
  • There have been improvements to the route like the Hitchin Flyover.
  • Full ERTMS in-cab signalling is being installed South of Doncaster.
  • I believe ERTMS and ETC could solve the Newark Crossing problem! See Could ERTMS And ETCS Solve The Newark Crossing Problem?
  • I am a trained Control Engineer and I believe if ERTMS and ETC can solve the Newark Crossing problem, I suspect they can solve the Digswell Viaduct problem.
  • The Werrington Dive Under is being built.
  • The approaches to Kings Cross are being remodelled.

I can’t quite say easy-peasy. but I’m fairly certain the Kings Cross and Edinburgh record is under serious threat.

  • A massive power supply upgrade to the North of Doncaster is continuing. See this page on the Network Rail web site.
  • ERTMS and ETC probably needs to be installed all the way between Kings Cross and Edinburgh.
  • There may be a need to minimise the number of slower passenger trains on the East Coast Main Line.
  • The Northumberland Line and the Leamside Line may be needed to take some trains from the East Coast Main Line.

Recent Developments Concerning the Hitachi Trains

There have been several developments  since the Hitachi Class 800 and Class 801 trains were ordered.

  • Serious engineers and commentators like Roger Ford of Modern Railways have criticised the lugging of heavy diesel engines around the country.
  • Network Rail have upgraded the power supply South of Doncaster and have recently started to upgrade it between Doncaster and Edinburgh. Will this extensive upgrade cut the need to use the diesel power-packs?
  • Hitachi and their operators must have collected extensive in-service statistics about the detailed performance of the trains and the use of the diesel power-packs.
  • Hitachi have signed an agreement with Hyperdrive Innovation of Sunderland to produce battery-packs for the trains and two new versions of the trains have been announced; a Regional Battery Train and an Intercity Tri-Mode Battery Train.
  • East Coast Trains have ordered five five-car Class 803 trains, each of which will have a small battery for emergency use and no diesel power-packs.
  • Avanti West Coast have ordered ten seven-car Class 807 trains, each of which have no battery or diesel power-packs.

And these are just the ones we know about.

The Class 807 Trains And Liverpool

I find Avanti West Coast’s Class 807 trains the most interesting development.

  • They have been partly financed by Rock Rail, who seem to organise train finance, so that the train operator, the train manufacturer all get the best value, by finding good technical solutions.
  • I believe that these trains have been designed so they can run between Euston and Liverpool Lime Street stations in under two hours.
  • Does the absence of battery or diesel power-packs save weight and improve performance?
  • Euston and Liverpool Lime Street in two hours would be an average of only 96.8 mph.
  • If the Class 807 trains could achieve the same start-stop average of 112.5 mph achieved by the InterCity 225 test run between Kings Cross and Edinburgh, that would mean a Euston and Liverpool Lime Street time of one hour and forty-three minutes.
  • Does Thunderbird provision on the West Coast Main Line for the Class 390 trains mean that the Class 807 trains don’t need emergency power?
  • Have diesel power-packs been rarely used in emergency by the Hitachi trains?

I believe the mathematics show that excellent sub-two hour times between Euston and Liverpool Lime Street are possible by Avanti West Coast’s new Class 807 trains.

The Class 803 Trains And Edinburgh

East Coast Trains ordered their Class 803 trains in March 2019,  nine months before Avanti West Coast ordered their Class 807 trains.

In Trains Ordered For 2021 Launch Of ‘High-Quality, Low Fare’ London – Edinburgh Service, I outlined brief details of the trains and the proposed service.

  • FirstGroup is targeting the two-thirds of passengers, who fly between London and Edinburgh.
  • They are also targeting business passengers, as the first train arrives in Edinburgh at 10:00.
  • The trains are five-cars.
  • The trains are one class with onboard catering, air-conditioning, power sockets and free wi-fi.
  • Stops will be five trains per day with stops at Stevenage, Newcastle and Morpeth.
  • The trains will take around four hours.
  • The service will start in Autumn 2021.

I also thought it would be a successful service

As I know Edinburgh, Liverpool and London well, I believe there are similarities between the Euston-Liverpool Lime Street and Kings Cross-Edinburgh routes.

  • Both routes are between two cities known all over the world.
  • Both routes are fully-electrified.
  • Both routes have the potential to attract passengers from other transport modes.

The two services could even be run at similar speeds.

  • Euston-Liverpool Lime Street in two hours will be at 96.8 mph
  • Kings Cross-Edinburgh in four hours will be at 98.3 mph.

Does this explain the similar lightweight trains?

Could Lightweight Trains Help LNER?

There is one important factor, I haven’t talked about in detail in this post. Batteries and diesel power-packs on the Hitachi trains.

I have only mentioned them in the following circumstances.

  • When trains are not fitted with battery and/or diesel power-packs.
  • When battery developments are being undertaken.

Let’s consider the LNER fleet.

  • LNER has thirteen nine-car Class 800 trains, each of which has five diesel power-packs
  • LNER has ten five-car Class 800 trains, each of which has three diesel power-packs
  • LNER has thirty nine-car Class 801 trains, each of which has one diesel power-pack
  • LNER has twelve five-car Class 801 trains, each of which has one diesel power-pack

There are sixty-five trains, 497 coaches and 137 diesel power-packs.

And look at their destinations.

  • Aberdeen – No Electrification from Edinburgh
  • Alnmouth – Fully Electrified
  • Berwick-upon-Tweed – Fully Electrified
  • Bradford Forster Square – Fully Electrified
  • Darlington – Fully Electrified
  • Doncaster – Fully Electrified
  • Durham – Fully Electrified
  • Edinburgh – Fully Electrified
  • Glasgow – Fully Electrified
  • Grantham – Fully Electrified
  • Harrogate – No Electrification from Leeds – Possible Battery Destination
  • Huddersfield – No Electrification from Leeds – Possible Battery Destination – Probable Electrification
  • Hull – No Electrification from Temple Hirst Junction – Possible Battery Destination
  • Inverness – No Electrification from Stirling
  • Leeds – Fully Electrified
  • Lincoln – No Electrification from Newark North Gate – Possible Battery Destination
  • Middlesbrough – No Electrification from Northallerton – Possible Battery Destination
  • Newcastle – Fully Electrified
  • Newark North Gate – Fully Electrified
  • Northallerton – Fully Electrified
  • Peterborough – Fully Electrified
  • Skipton – Fully Electrified
  • Retford – Fully Electrified
  • Stevenage – Fully Electrified
  • Stirling – Fully Electrified
  • Sunderland – No Electrification from Northallerton – Possible Battery Destination
  • Wakefield Westgate – Fully Electrified
  • York – Fully Electrified

The destinations can be summarised as followed.

  • Not Electrified – 2
  • Possible Battery Destination – 6
  • Fully Electrified – 20

This gives a total of 28.

Could the trains be matched better to the destinations?

  • Some routes like Edinburgh, Glasgow, Newcastle and Stirling could possibly be beneficially handled by lightweight trains without any diesel or battery power-packs.
  • Only Aberdeen and Inverness can’t be reached by all-electric or battery-electric trains.
  • In LNER Seeks 10 More Bi-Modes, I proposed a hydrogen-electric flagship train, that would use hydrogen North of the existing electrification.

There certainly appear to be possibilities.

Example Journey Times To Edinburgh

This table shows the various time for particular start-stop average speeds between Kings Cross and Edinburgh.

  • 80 mph – 4:54
  • 85 mph – 4:37
  • 90 mph – 4:12
  • 98.2 mph – 4:00
  • 100 mph – 3:56
  • 110 mph – 3:34
  • 120 mph – 3:16
  • 125 mph – 3:08

Note.

  • Times are given in h:mm.
  • A few mph increase in average speed reduces journey time by a considerable amount.

The figures certainly show the value of high speed trains and of removing bottlenecks, as average speed is so important.

Decarbonisation Of LNER

LNER Seeks 10 More Bi-Modes was based on an article in the December 2020 Edition of Modern Railways, with the same title. These are the first two paragraphs of the article.

LNER has launched the procurement of at least 10 new trains to supplement its Azuma fleet on East Coast main line services.

In a Prior Information Notice published on 27 October, the operator states it is seeking trains capable of operating under 25kW overhead power with ‘significant self-power capability’ for operation away from overhead wires. ‘On-board Energy Storage for traction will be specified as a mandatory requirement to reduce, and wherever practical eliminate, diesel usage where it would otherwise be necessary, although LNER anticipates some degree of diesel traction may be required to meet some self-power requirements. Suppliers tendering are asked to detail their experience of designing and manufacturing a fleet of multi-mode trains with a range of traction options including battery-electric, diesel-electric, hydrogen-electric, battery-diesel, dual fuel and tri-mode.

From this, LNER would appear to be serious about decarbonisation and from the destination list I published earlier, most services South of the Scottish Central Belt can be decarbonised by replacing diesel-power packs with battery power-packs.

That last bit, sounds like a call for innovation to provide a solution to the difficult routes to Aberdeen and Inverness. It also looks as if it has been carefully worded not to rule anybody out.

This press release from Hitachi is entitled Hitachi And Eversholt Rail To Develop GWR Intercity Battery Hybrid Train – Offering Fuel Savings Of More Than 20%.

It announces the Hitachi Intercity Tri-mode Battery Train, which is described in this Hitachi infographic.

As the Hitachi press release is dated the 15th of December 2020, which is after the publication of the magazine, it strikes me that LNER and Hitachi had been talking.

At no point have Hitachi stated what the range of the train is on battery power.

To serve the North of Scotland these gaps must be bridged.

  • Aberdeen and Edinburgh Haymarket – 130 miles
  • Inverness and Stirling – 146 miles

It should also be noted that distances in Scotland are such, that if these gaps could be bridged by battery technology, then probably all of the North of Scotland’s railways could be decarbonised. As Hitachi are the major supplier of Scotland’s local and regional electric trains, was the original Prior Information Notice, written to make sure Hitachi responded?

LNER run nine-car Class 800 trains on the two long routes to Aberdeen and Inverness.

  • These trains have five diesel power-packs under coaches 2,3, 5, 7 and 8.
  • As five-car Class 800 trains have diesel power-packs under coaches 2, 3 and 4, does this mean that Hitachi can fit diesel power-packs under all cars except for the driver cars?
  • As the diesel and battery power-packs appear to be interchangeable, does this mean that Hitachi could theoretically build some very unusual trains?
  • Hitachi’s trains can be up to twelve-cars in normal mode and twenty-four cars in rescue mode.
  • LNER would probably prefer an all Azuma fleet, even if a few trains were a bit longer.

Imagine a ten-car train with two driver and eight intermediate cars, with all of the intermediate cars having maximum-size battery-packs.

Supposing, one or two of the battery power-packs were to be replaced with a diesel power-pack.

There are a lot of possibilities and I suspect LNER, Hitachi and Hyperdrive Innovation are working on a train capable of running to and from the North of Scotland.

Conclusion

I started by asking what is possible on The East Coast Main Line?

As the time of three-and-a-half hours was achieved by a short-formation InterCity 225 train in 1991 before Covids, Hitchin, Kings Cross Remodelling, Power Upgrades, Werrington and lots of other work, I believe that some journeys between Kings Cross and Edinburgh could be around this time within perhaps five years.

To some, that might seem an extraordinary claim, but when you consider that the InterCity 225 train in 1991 did it with only a few sections of 140 mph running, I very much think it is a certainly at some point.

As to the ultimate time, earlier I showed that an average of 120 mph between  King’s Cross and Edinburgh gives a time of 3:16 minutes.

Surely, an increase of fourteen minutes in thirty years is possible?

 

 

 

May 15, 2021 Posted by | Transport | , , , , , , , , , , , , , , , , , , , , , , , , , | 2 Comments

Thoughts On Faster Trains On Thameslink

The Class 700 trains used by Thameslink only have an operating speed of 100 mph.

I do wonder, if that is a fast enough operating speed for all Thameslink routes.

Sharing The Midland Main Line With 125 mph Trains

A couple of years ago, I travelled back into St. Pancras with a group of East Midlands drivers in a Class 222 train.

They told me several things about the route including that the bridge at the South of Leicester station would be difficult to electrify, as it was low and the track couldn’t be lowered as one of Leicester’s main sewers was under the tracks at the bridge. Perhaps, this is one place, where discontinuous electrification could be used on the Midland Main Line.

They also told me, that sometimes the Thameslink trains were a nuisance, as because of their 100 mph operating speed, the 125 mph Class 222 trains had to slow to 100 mph.

Upgrading Of The Midland Main Line South Of Bedford

The electrification of the Midland Main Line South of Bedford is being updated, so that it is suitable for 125 mph running.

An Analysis Of Services On The Midland Main Line South Of Bedford

The current Class 222 trains are capable of 125 mph and will be replaced by Class 810 trains capable of the same speed on both diesel and electricity.

Currently, a Class 222 train is capable of doing the following on a typical non-stop run between St. Pancras and Leicester.

  • Covering the 30 miles between St. Albans and Bedford in 17 minutes at an average speed of 106 mph.
  • Covering the 50.3 miles between Bedford and Leicester in 30 minutes at an average speed of 100.6 mph.
  • Maintaining 125 mph for long stretches of the route, once the trains is North of London commuter traffic at St. Albans

I can estimate the timings on the 79.2 miles between Leicester and St. Albans, by assuming the train runs at a constant speed.

  • 100 mph – 47.5 minutes
  • 110 mph – 43.2 minutes
  • 125 mph – 38 minutes
  • 140 mph – 34 minutes

Note.

  1. I have done the calculation for 140 mph, as that is the maximum operating speed of the Class 810 train with full in-cab digital signalling.
  2. Trains have been running at 125 mph for a couple of decades on the Midland Main Line.
  3. To get a St. Pancras and Leicester time add another 14 minutes, which is the current time between St. Pancras and St. Albans of a Class 222 train.
  4. Some Off Peak trains are timed at 62-63 minutes between St. Pancras and Leicester.
  5. A time of under an hour between St. Pancras and Leicester might be possible and the Marketing Department would like it.
  6. As Thameslink trains between Bedford and St. Albans stop regularly, they are on the slow lines of the four-track railway, to the North of St. Albans.
  7. South of St. Albans, Thameslink trains often run on the fast lines.

I can expect that East Midlands Railway will want to be running their new Class 810 trains as far as far South as they can at 125 mph, to speed up their services. When the signalling allows it, they’ll want to run at 140 mph.

So they won’t want to see Thameslink’s slow trains on the fast lines.

  • But if you look at the Thameslink trains that do run on the fast lines between St. Albans and St. Pancras, they appear to be the four trains per hour (tph) that run to and from Bedford.
  • Of these trains, two tph terminate at Brighton and two tph terminate at Gatwick Airport.
  • The average speed of a Class 222 train between St. Albans and St. Pancras assuming 14 minutes for the 19.7 miles is 84.4 mph.

So it looks to me that a 100 mph Thameslink train could be able to get away without slowing the East Midland Railway expresses.

But then that is not surprising, as for many years, the Class 222 trains worked happily with 100 mph Class 319 trains.

Is There Scope For Extra And Faster Services Into St. Pancras?

I have only done a simple calculation, but I do wonder if there is scope for the following.

  • Increasing the frequency of trains for both Thameslink and East Midlands Railway.
  • Saving a few minutes on East Midlands Railway services.

Consider.

  • The new Class 810 electric trains will probably have better acceleration and deceleration than the current Class 222 diesel trains, when working using electric power.
  • East Midlands Railway is introducing Class 360 trains that were built as 100 mph trains by Siemens, who are now upgrading them to 110 mph trains.
  • Can Siemens do the same for the Class 700 trains and create a sub-fleet capable of 110 mph running?
  • All trains will be running under full in-cab digital signalling with a large degree of automatic train control.

I feel that if the Class 700 trains had the extra speed, they would make the planning of services South of St. Albans easier and allow the Class 810 trains to both run faster and provide more services.

Sharing The East Coast Main Line With 125 mph Trains

The following Thameslink services run up the East Coast Main Line past Stevenage.

  • Cambridge And Brighton – Two tph – Stops at Royston, Ashwell and Morden (1 tph), Baldock, Letchworth Garden City, Hitchin, Stevenage, Finsbury Park, London St Pancras International, Farringdon, City Thameslink, London Blackfriars, London Bridge, East Croydon, Gatwick Airport, Three Bridges, Balcombe, Haywards Heath and Burgess Hill
  • Cambridge and Kings Cross – Two tph – Stops at Foxton, Shepreth, Meldreth, Royston, Ashwell and Morden, Baldock, Letchworth Garden City, Hitchin, Stevenage, Knebworth, Welwyn North, Welwyn Garden City, Hatfield, Potters Bar and Finsbury Park
  • Peterborough and Horsham – Two tph – Stops at Huntingdon, St Neots, Sandy, Biggleswade, Arlesey, Hitchin, Stevenage, Finsbury Park, London St Pancras International, Farringdon, City Thameslink, London Blackfriars, London Bridge, East Croydon, Coulsdon South, Merstham, Redhill, Horley, Gatwick Airport, Three Bridges, Crawley, Ifield, Faygate (limited) and Littlehaven

Note.

  1. Services are generally run by Class 700 trains, although lately the Kings Cross service seems to use Class 387 trains, which have a maximum speed of 110 mph and a more comfortable interior with tables.
  2. It is intended that the Cambridge and Kings Cross service will be extended to Maidstone East by 2021.

In addition there are two Cambridge Express and Fen Line services.

  • Kings Cross and Ely – One tph – Stops at Cambridge and Cambridge North.
  • Kings Cross and King’s Lynn – One tph – Stops at Cambridge, Cambridge North, Waterbeach, Ely, Littleport, Downham Market and Watlington

Note.

  1. These services are generally run by Class 387 trains.
  2. Cambridge and King’s Cross is timetabled at around fifty minutes.

Adding all of this together means that slower services on the East Coast Main Line are comprised of the following in both directions.

  • Three tph – 110 mph – Class 387 trains
  • Four tph – 100 mph – Class 700 trains

These seven trains will have to be fitted in with the 125 mph trains running services on the East Coast Main Line, for LNER, Grand Central, Hull Trains and East Coast Trains.

There are also the following problems.

  • All trains must navigate the double-track section of the East Coast Main Line over the Digswell Viaduct and through Welwyn North station.
  • The King’s Cross and Cambridge service stops in Welwyn North station.
  • Full in-cab digital signalling is being installed on the East Coast Main Line, which could increase the speed of the expresses through the double-track section.

Could the introduction of the Class 387 trains on the Cambridge and King’s Cross service have been made, as it easier to fit in all the services if this one is run by a 110 mph train?

However, the full in-cab digital signalling with a degree of automatic train control could be the solution to this bottleneck on the East Coast Main Line.

  • Trains could be controlled automatically and with great precision between perhaps Hatfield and Stevenage.
  • Some expresses might be slowed to create gaps for the Cambridge and Peterborough services.
  • The Hertford Loop Line is also getting full in-cab digital signalling, so will some services be sent that way?

In Call For ETCS On King’s Lynn Route, I talked about a proposal to improve services on the Fen Line. This was my first three paragraphs.

The title of this post, is the same as that on an article in Edition 849 of Rail Magazine.

The article is based on this document on the Fen Line Users Aoociation web site, which is entitled Joint Response To Draft East Coast Main Line Route Study.

In addition to ETCS, which could improve capacity on the East Coast Main Line, they would also like to see journey time reductions using trains capable of running at 125 mph or faster on the King’s Lynn to Kings Cross route.

My scheduling experience tells me that a better solution will be found, if all resources are similar.

Hence the proposal to run 125 mph trains between King’s Cross and King’s Lynn and probably Ely as well, could be a very good and logical idea.

If the Class 700 trains were increased in speed to 110 mph, the trains through the double-track section of the East Coast Main Line would be.

  • One tph – 110 mph – Class 387 trains
  • Four tph – 110 mph – Class 700 trains
  • Two tph – 125 mph – New trains

Note.

  1. This would probably be an easier mix of trains to digest with the high speed services, through the double-track section.
  2. I like the idea of extending the Ely service to Norwich to give Thetford, Attleborough and Wymondham an improved service to London, Cambridge and Norwich.

The new trains would probably be a version of Hitachi’s Regional Battery Train.

  • It would need to be capable of 125 mph on the East Coast Main Line.
  • If the Ely service were to be extended to Norwich, this section would be on battery power.

There are certainly a lot of possibilities.

But as with on the Midland Main Line, it looks like for efficient operation, the operating speed of the Class 700 trains on the route needs to be increased to at least 110 mph.

Could Faster Class 700 trains Improve Services To Brighton?

These are the Thameslink services that serve Bedford, Cambridge and Peterborough, that I believe could be run more efficiently with trains capable of at running at speeds of at least 110 mph.

  • Bedford and Brighton – Two tph
  • Bedford and Gatwick Airport – Two tph
  • Cambridge and Brighton – Two tph
  • Cambridge and Maidstone East – Two tph
  • Peterborough and Horsham – Two tph

Note.

  1. I have assumed that the Cambridge and King’s Cross service has been extended to Maidstone East as planned.
  2. Eight tph serve Gatwick Airport.
  3. Four tph serve Brighton.

The Gatwick Express services have a frequency of two tph between London Victoria and Brighton calling at Gatwick Airport is already run by 110 mph Class 387 trains.

It would appear that if the Bedford, Cambridge and Peterborough were run by uprated 110 mph Class 700 trains, then this would mean that more 110 mph trains would be running to Gatwick and Brighton and this must surely improve the service to the South Coast.

But it’s not quite as simple as that, as the Cambridge and Maidstone East services will be run by eight-car trains and all the other services by twelve-car trains.

Conclusion

There would appear to be advantages in uprating some or possibly all of the Class 700 trains, so that they can run at 110 mph, as it will increase capacity on the Brighton Main Line, East Coast Main Line and Midland Main Line.

 

 

April 6, 2021 Posted by | Transport | , , , , , , , , , , , , , , , , , , | Leave a comment

Roger Ford’s Cunning Plan

In the February 2020 of Modern Railways, there is an article called LNER Procurement, which has been written by Roger Ford.

It is Roger’s reply to an article in the December 2020 Edition of Modern Railways, which was entitled LNER Seeks 10 More Bi-Modes.

He starts by describing the requirement and then says this.

Would any fleet engineer in his or her right mind want to add a unique sub-fleet of 10 high speed trains to an existing successful fleet, even if they were hydrogen-electric tri-modes from the respected Kim Chong t’ae Electric Locomotive Works?

In my analysis of the December 2020 article, I wrote this post with the same name, where I said this, under a heading of More Azumas?

Surely, It would require a very innovative train at perhaps a rock-bottom price from another manufacturer, for LNER to not acquire extra Azumas.

So it would appear that Roger and myself are vaguely in agreement on the subject of more Azumas.

The last section of the article has a title of Cunning.

Roger puts forward, the view that the procurement process, as well as being compatible with EU law, could be a warning to Hitachi, to make sure that LNER get a good deal.

It certainly could be, and I remember a similar maneuver by ICI around 1970.

The company was buying a lot of expensive IBM 360 computers.

ICI needed a new computer to do scientific calculations at their Central Instrument Research Establishment (CIRL) at Pangbourne in Berkshire.

  • English Electric had just released a clone of an IBM 360 and were keen to sell it to ICI.
  • As it would do everything that ICI wanted, they bought one.
  • It worked well and did everything that CIRL wanted at a cheaper price.

IBM’s reaction was supposedly quick and dramatic. The salesman who dealt with ICI, was immediately fired!

But as ICI had about a dozen large IBM computers, there wasn’t much they could do to one of the most important and largest UK companies.

IBM also made sure, that ICI got their next computer at a good price.

I’m with Roger that all the shenanigans are a warning to Hitachi.

Roger finishes the article with these two paragraphs.

A genuine bluff would have been to seek bids for the long-term deployment of remanufactured IC225s. Which in these straitened times could still turn out to be a more viable option.

I rather fancy the idea of a hydrogen-electric Class 91. Owner Eversholt Rail might even have played along on the understanding that it funded the inevitable hybrid Azumas.

Note that IC225s are InterCity 225 trains.

  • The 31 trains, were built for  British Rail in the 1980s.
  • They are hauled by a 4.83 MW Class 91 locomotive, which is usually at the Northern end of the train.
  • Nine Mark 4 coaches and a driving van trailer complete the train.
  • As with the Hitachi Azumas (Class 800 and Class 801 trains), they are capable of operating at 140 mph on lines where digital in-cab ERTMS signalling has been installed.

I just wonder, if a Class 91 locomotive could be to the world’s first 140 mph hydrogen-electric locomotive.

Consider the following.

Dynamics

The wheels, bogies and traction system were designed by British Rail Engineering Ltd, who were the masters of dynamics. This is a sentence from the locomotive’s Wikipedia entry.

Unusually, the motors are body mounted and drive bogie-mounted gearboxes via cardan shafts. This reduces the unsprung mass and hence track wear at high speeds.

That is a rather unique layout. But it obviously works, as otherwise these locomotives would have been scrapped decades ago.

I believe the quality dynamics are because BREL owned a PACE 231R for a start, which was an analogue computer, that was good enough for NASA to use two computers like this to calculate how to put a man on the moon.

London and Edinburgh is a slightly shorter distance, run at a somewhat slower speed.

Space

This picture shows a Class 91 locomotive.

What is in the space in the rear end of the nearly twenty metre-long locomotive?

This sentence from the Wikipedia entry for the locomotive gives a clue.

The locomotive also features an underslung transformer, so that the body is relatively empty compared to contemporary electric locomotives.

It also states that much of the layout came from the APT-P, which was a version of the tilting Advanced Passenger Train.

Would the space be large enough for a tank of hydrogen and some form of generator that used the hydrogen as fuel?

It should be noted that one version of the APT used a gas-turbine engine, so was the locomotive designed for future use as a bi-mode?

Fuel Cells

I’ve ignored fuel cells, as to get the amount of power needed, the fuel cells could be too large for the locomotive.

Class 91 Locomotive Performance

The performance of a Class 91 locomotive is as follows.

  • Power output – 4.83 MW
  • Operating speed – 140 mph
  • Record Speed – 161 mph

Not bad for a 1980s locomotive.

Required Performance Using Hydrogen Fuel

If the locomotives were only needed to use hydrogen to the North of the electrification from London, the locomotive would need to be able to haul a rake of coaches twice on the following routes.

  • Aberdeen and Edinburgh Haymarket – 130 miles
  • Inverness and Stirling – 146 miles

A range of three hundred miles would be sufficient.

The locomotive would need refuelling at Aberdeen and Inverness.

The operating speed of both routes is nowhere near 140 mph and I suspect that a maximum speed of 100 mph on hydrogen, pulling or pushing a full-size train, would probably be sufficient.

When you consider that a nine-car Class 800 train has five 560 kW diesel engines, that give a total power of 2.8 MW, can carry 611 passengers and an InterCity 225 can only carry 535, I don’t think that the power required under hydrogen will be as high as that needed under electricity.

Rolls-Royce

Rolls-Royce have developed a 2.5 MW generator, that is the size of a beer keg. I wrote about it in Our Sustainability Journey.

Could one of these incredibly-powerful generators provide enough power to speed an InterCity 225 train, through the Highlands of Scotland to Aberdeen and Inverness, at speeds of up to 100 mph.

I would give it a high chance of being a possible dream.

Application Of Modern Technology

I do wonder, if the locomotive’s cardan shaft drive could be improved by modern technology.

These pictures show Joseph Bazalgette’s magnificent Abbey Mills Pumping station in East London.

A few years ago, Thames Water had a problem. Under the pumping station are Victorian centrifugal pumps that pump raw sewage to Beckton works for treatment. These are connected to 1930s electric motors in Dalek-like structures on the ground floor, using heavy steel shafts. The motors are controlled from the control panel in the first image.

The shafts were showing signs of their age and needed replacement.

So Thames Water turned to the experts in high-power transmission at high speed – Formula One.

The pumps are now connected to the electric motors, using high-strength, lower-weight carbon-fibre shafts.

Could this and other modern technology be used to update the cardan shafts and other parts of these locomotives?

Could The Locomotives Use Regenerative Braking To Batteries?

I’ll start by calculating the kinetic energy of a full InterCity 225 train.

  • The Class 91 locomotive weighs 81.5 tonnes
  • Nine Mark 4 coaches weigh a total of 378 tonnes
  • A driving van trailer weighs 43.7 tonnes.
  • This gives a total weight of 503.2 tonnes.

Assuming that each of the 535 passengers, weighs 90 Kg with babies, baggage, bikes and buggies, this gives a passenger weight of 48.15 tonnes or a total train weight of 551.35 tonnes.

Using Omni’s Kinetic Energy Calculator, gives the following values at different speeds.

  • 100 mph – 153 kWh
  • 125 mph – 239 kWh
  • 140 mph – 300 kWh

I think, that a 300 kWh battery could be fitted into the back of the locomotive, along with the generator and the fuel tank.

With new traction motors, that could handle regenerative braking, this would improve the energy efficiency of the trains.

Sustainable Aviation Fuel

Sustainable aviation fuel produced by companies like Altalto would surely be an alternative to hydrogen.

  • It has been tested by many aerospace companies in large numbers of gas turbines.
  • As it has similar properties to standard aviation fuel, the handling rules are well-known.

When produced from something like household waste, by Altalto, sustainable aviation fuel is carbon-neutral and landfill-negative.

ERTMS Signalling And Other Upgrades

Full ERTMS digital signalling will needed to be fitted to the trains to enable 140 mph running.

Conclusion

I believe it is possible to convert a Class 91 locomotive into a hydrogen-electric locomotive with the following specification.

  • 4.83 MW power on electricity.
  • 140 mph on electrification
  • 2.5 MW on hydrogen power.
  • 100 mph on hydrogen
  • Regenerative braking to battery.

If it were easier to use sustainable aviation fuel, that may be a viable alternative to hydrogen, as it is easier to handle.

 

February 3, 2021 Posted by | Hydrogen, Transport | , , , , , , , , , , , | 1 Comment

A Class 93 Locomotive Hauling A Train Between The Port Of Felixstowe And Wentloog

I am looking at this trip in detail, to see how a Class 93 locomotive could change this journey.

Where Is Wentloog?

Wentloog is a Rail Freight Interchange, run by Freightliner, a few miles to the East of Cardiff.

This Google Map shows the interchange.

Note the electrified Great Western Main Line between London and Cardiff giving rail access to freight trains.

Sections Of The Route

The route can be divided into these sections.

  • Port of Felixstowe and Trimley – 2.3 miles – 7 minutes – 19.7 mph –  Not Electrified
  • Trimley and Ipswich – 14 miles – 60 minutes -14 mph – Not Electrified
  • Ipswich and Stratford – 64.6 miles – 77 minutes – 50.3 mph – Electrified
  • Stratford and Acton Wells Junction – 12.5 miles – 72 minutes – 10.4 mph – Electrified
  • Acton Wells Junction and Acton Main Line – 0.7 miles – 3 minutes -14 mph – Possibly Electrified
  • Acton Main Line and Wentloog – 134.3 miles – 249 minutes -32.4 mph – Electrified

Note.

  1. Nearly, all the route is electrified.
  2. I am not sure if between Acton Wells Junction and Acton Main Line is electrified.

The journey takes nearly eight hours.

These are my thoughts on how the various sections would be handled.

Port of Felixstowe And Trimley

As I stated in Rail Access To The Port Of Felixstowe, I would electrify the short section between the Port of Felixstowe And Trimley. This would do the following.

  • Charge the batteries on trains entering the Port, so they could operate in the Port without using diesel.
  • Charge batteries on trains leaving the Port, so that they could have a power boost to Ipswich.
  • The trains could be accelerated to operating speed using the electrification.

There would also be no use of diesel to the East of Trimley, which I’m sure the residents of Felixstowe would like.

Trimley and Ipswich

This section would be on diesel, with any energy left in the battery used to cut diesel running through Ipswich.

Ipswich And Stratford

Consider

  • Ipswich and Stratford is a 100 mph fully-electrified line.
  • A passenger train can do the route in an hour.

There must be savings to be made! Especially, if all trains between Ipswich and Liverpool Street are 100 mph electrically-hauled trains.

Stratford and Acton Wells Junction

The North London Line is getting increasingly busy and as it goes through the middle of residential areas, there will be increasing pressure for all trains to be electric, to cut noise and pollution.

In A North London Line With Digital Signalling, I wrote about the benefits of adding digital signalling on the North London Line.

I suspect in a few years time all freight trains using the North London Line will be electrically-hauled and will use digital ERTMS signalling, so that more trains can be squeezed onto the North London Line, so that increasing numbers of freight trains can travel between Felixstowe, London Gateway and Tilbury in the East and Birmingham, Cardiff, Liverpool, Manchester, Scotland and other destinations in the North and West.

Locomotives like the Class 93 locomotive will become an increasingly common sight on the line.

Acton Wells Junction and Acton Main Line

This connection between the North London Line and the Great Western Main Line will surely, be electrified, if it has not been done already, so that electric freight trains can go between the two routes.

Acton Main Line and Wentloog

Consider

  • Acton Main Line and Wentloog is a fully-electrified line.
  • The operating speed is up to 125 mph
  • A passenger train can do the route in just under 100 minutes.

There must be savings to be made! Especially, if all trains between London and Cardiff are electrically-hauled trains, capable of upwards of 100 mph.

Conclusion

There would be very worthwhile time and diesel savings, by running the Felixstowe and Wentloog service using a Class 93 locomotive.

How many other services to and from Felixstowe, London Gateway and Tilbury would be improved by being hauled by a Class 93 locomotive?

I suspect, it’s not a small number, that can be counted on your fingers and toes.

January 19, 2021 Posted by | Transport | , , , , , | 1 Comment