The Anonymous Widower

X1 Wind’s Floating Prototype Delivers First Power Offshore Canary Islands

The title of this post, is the same as that of this article on

This is the sub-heading.

X1 Wind has announced that its floating offshore wind turbine prototype delivered first power to PLOCAN’s smart grid in the Canary Islands, Spain.

The article is based on this news item from X1 Wind, which is entitled X1 Wind’s X30 Floating Wind Prototype Delivers First kWh, which starts with these two paragraphs.

X1 Wind has announced today (MARCH 07) that its X30 floating wind prototype, installed in the Canary Islands, successfully produced its first kWh.

The milestone marks the world’s only floating wind platform currently installed with a TLP mooring system, which dramatically reduces the environmental footprint and improves compatibility with other sea uses. It further heralds Spain’s first floating wind prototype to export electricity via a subsea cable.


  1. TLP is short for tension leg platform, which is described in this Wikipedia entry.
  2. The TLP Wikipedia entry contains a section, which describes their use with wind turbines.
  3. TLPs have been in use for over forty years, with the first use in the Hutton field in the North Sea.
  4. TLPs work well for water depths of between 300 and 1,500 metres.

I also suspect there’s a lot of experience from the oil and gas industry around the world about how to deploy TLPs.

The X1 Wind news item also has this paragraph.

The novel X30 platform is equipped with a specially adapted V29 Vestas turbine and ABB power converter. Another key design feature, developed through the EU-backed PivotBuoy Project, combines advantages of SPM and TLP mooring systems. The proprietary SPM design enables the floater to ‘weathervane’ passively and maximise energy yields, with an electrical swivel ensuring electricity transfer without cable twisting. The TLP mooring system also dramatically reduces the seabed footprint, compared to traditional designs proposing catenary mooring lines, minimizing environmental impact while maximizing compatibility with other sea uses, in addition to its suitability to move into deeper waters.

SPM is short for single point mooring, which is described in this Wikipedia entry, where this is the first sentence.

A Single buoy mooring (SrM) (also known as single-point mooring or SPM) is a loading buoy anchored offshore, that serves as a mooring point and interconnect for tankers loading or offloading gas or liquid products. SPMs are the link between geostatic subsea manifold connections and weathervaning tankers. They are capable of handling any tonnage ship, even very large crude carriers (VLCC) where no alternative facility is available.


  1. The use of the weathervane in both paragraphs.
  2. If an SPM can handle a VLCC, it surely can handle a well-designed floating structure with a wind turbine mounted on top.
  3. I suspect that an SPM used for a wind turbine will be much simpler than one used to load or unload a gas or oil tanker.

As with TLPs, I also suspect there’s a lot of experience from the oil and gas industry, from around the world about how to deploy SPMs.

It looks to me, that X1 Wind have used the proven attributes of SPMs and TLPs to create a simple mooring for a wind turbine, that is designed to align itself with the wind.

X1 Wind Are Open With Their Technology

Today’s news item from X1 Wind also links to two other useful documents.

They are certainly open with their information.

The news item, also includes this video.



These are some thoughts.

Capacity Factor

The capacity factor of this wind turbine could be an interesting figure.

As the turbine constantly will turn to be downwind, this should maximise the amount of electricity produced over a period of time.


The design is effectively a tetrahedron.

Alexander Graham Bell knew a lot about the properties of tetrahedrons and invented the tetrahedral kite.

This document details Bell’s involvement with tetrahedrons and says this.

Bell found the tetrahedron to have a very good strength to weight ratio.

Put more simply this means that an object is structurally very strong but at the same time very lightweight.

So X1 Wind’s design is probably extremely strong for its weight.

Large Turbines

X1 Wind’s prototype uses a wind turbine of only 225 KW.

Manufacturers are building 15 or 16 MW turbines now and talking of 20 MW in the next few years.

Given the strength of the tetrahedron, I wonder, if it will be possible to build a PivotBuoy, that is capable of hosting a 20 MW wind turbine?


Although it appears radical, it uses proven technology to generate power in an innovative way.

In some ways the thinking behind the design of this floating technology, is a bit like that of Issigonis in his design for the first Mini, where he took proven technology and arranged it differently to perform better.



March 7, 2023 - Posted by | Design, Energy | , , , , , ,

No comments yet.

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.

%d bloggers like this: