The Anonymous Widower

Climate Change: ‘Sand Battery’ Could Solve Green Energy’s Big Problem

The title of this post, is the same as that of this article on the BBC.

This is the introductory paragraph.

Finnish researchers have installed the world’s first fully working “sand battery” which can store green power for months at a time.

The article then gives a detailed explanation about how the battery works.

Note.

  1. The article does not give any details on battery capacity.
  2. The heat stored in the battery is extracted as hot water.
  3. The Finnish company is called Polar Night Energy.

In Bang Goes My Holiday!, I describe the Siemens Gamesa ETES, which appears to work on similar principles, like this.

This document on the Siemens Gamesa web site describes the installation.

  • The nominal power is 30 MW.
  • The capacity is 130 MWh.
  • Siemens use volcanic rock as the storage medium.
  • 80 % of the technology is off the shelf.

The picture on the front says “Welcome To The New Stone Age”.

July 5, 2022 Posted by | Energy Storage, Energy | , | Leave a comment

The Crown Estate Announces Areas Of Search To Support Growth Of Floating Wind In The Celtic Sea

The title of this post, is the same as that of this press release from the Crown Estate.

This is the first paragraph.

In a major step forward in supporting the UK’s net zero ambitions, The Crown Estate has today identified five broad ‘Areas of Search’ for the development of floating offshore wind in the Celtic Sea – a region rich in natural resources, including world-class wind resource that can be developed with floating turbines. This marks a significant milestone and provides the foundation on which to build greater capacity in the future, helping the UK to achieve its renewable energy targets and drive economic development.

Points in the press release include.

  • Five areas with good wind power potential have been chosen.
  • A competitive tender, is to be launched in mid-2023.
  • It is intended that these areas will deliver 4GW of floating offshore wind power by 2035.

This map shows the areas.

I have a few thoughts.

What About The Other Wind Farms Already Announced In the Celtic Sea?

In DP Energy And Offshore Wind Farms In Ireland, I said this.

They are also developing the Gwynt Glas offshore wind farm in the UK sector of the Celtic Sea.

  • In January 2022, EDF Renewables and DP Energy announced a Joint Venture partnership to combine their knowledge and
    expertise, in order to participate in the leasing round to secure seabed rights to develop up to 1GW of FLOW in the Celtic Sea.
  • The wind farm is located between Pembroke and Cornwall.

The addition of Gwynt Glas will increase the total of floating offshore wind in the UK section of the Celtic Sea.

  • Blue Gem Wind – Erebus – 100 MW Demonstration project  – 27 miles offshore
  • Blue Gem Wind – Valorus – 300 MW Early-Commercial project – 31 miles offshore
  • Falck Renewables and BlueFloat Energy – Petroc – 300 MW project – 37 miles offshore
  • Falck Renewables and BlueFloat Energy – Llywelyn – 300 MW project – 40 miles offshore
  • Llŷr Wind – 100 MW Project – 25 miles offshore
  • Llŷr Wind – 100 MW Project – 25 miles offshore
  • Gwynt Glas – 1000 MW Project – 50 miles offshore

This makes a total of 2.2 GW, with investors from several countries.

It does seem that the Celtic Sea is becoming the next area of offshore wind around the British Isles to be developed.

So what about these seven wind farms?

Erebus and Valorus

Is Blue Gem’s philosophy to develop and prove the technology and put in big bid for around a GW?

Gwynt Glas

The Gwynt Glas web site says this.

The Crown Estate announced in March 2021 that it intends to run a competitive leasing round to award seabed rights to developers for floating offshore wind (FLOW) projects in the Celtic Sea, targeting an overall regional capacity of 4GW.

In January 2022, EDF Renewables and DP Energy announced a Joint Venture partnership to combine their knowledge and expertise, in order to participate in the leasing round to secure seabed rights to develop up to 1GW of FLOW in the Celtic Sea.

The partnership project is called Gwynt Glas, Welsh for Blue Wind, in recognition of its Celtic roots.

Our proposed floating offshore wind project could provide power for approximately 920,000 homes.

It looks like they’re throwing their hat into the ring for 1 GW.

Llŷr Wind

The Llŷr Wind web site says this.

Combined, the two 100MW projects will generate enough renewable electricity to power around 250,000 homes. If successful, we will be able to offer highly cost-effective, floating offshore wind farms to the rest of the world by 2030.

By unlocking new, higher energy capacities from deeper waters, further offshore, the Llŷr projects have huge implications for UK energy consumers. Not only will they help the UK meet its target for net zero emissions, but they will create new opportunities for regional manufacturing and supply chains in Wales and Southwest England as global demand for floating, offshore, wind rises.

It looks to me that this project hasn’t been fully defined yet. Perhaps, this will happen after a successful bid.

Llywelyn

The Llywelyn web site says this.

Llywelyn wind farm is located in Welsh waters in the Celtic Sea, 40 miles off the coast of Pembrokeshire.
Llywelyn’s location has been selected following an extensive feasibility study and rigorous site assessment process. Our assessment has included reviews of protected areas, environmental impacts, cable routing, existing infrastructure, marine traffic, and fishing activity.

We have signed an agreement with National Grid, securing a 300MW grid connection in Pembrokeshire. The system operator is exploring upgrades to the existing site to facilitate the connection. These developments will enable the Llywelyn offshore wind project to quickly enter the planning system.

Have they already said go?

Petroc

The Petroc web site says this.

Petroc’s location has been selected following an extensive feasibility study and rigorous site assessment process. Our assessment has included reviews of protected areas, environmental impacts, cable routing, existing infrastructure, marine traffic, and fishing activity.

We have signed an agreement with National Grid, securing a 300MW grid connection in North Devon. The system operator is exploring upgrades to the existing site to facilitate the connection. These developments will enable the Petroc offshore wind project to quickly enter the planning system.

Have they already said go?

These companies are certainly setting themselves up for bidding or have already got a smaller deal.

How Much Wind Power Can Be Developed In The Celtic Sea?

This article on the Engineer is entitled Unlocking The Renewables Potential Of The Celtic Sea.

The article starts with these two paragraphs.

Over the last decade, the UK has become a global leader in renewable marine energy, tapping into the vast resources its coastal geography offers. Offshore wind, in particular, has flourished, with gigawatt-scale projects being deployed off the east coast of England and Scotland, at Hornsea, Dogger Bank and Moray.

However, looking at a map of existing and proposed wind farms, what’s perhaps most striking is the complete absence of projects in the southwest of Britain, off the rugged shores of Wales, Devon and Cornwall, shaped by the fierce North Atlantic. The Celtic Sea – which extends south off Wales and Ireland down past Cornwall and Brittany to the edge of the continental shelf – is estimated to have around 50GW of wind generating capacity alone. What’s more, it also delivers some of the highest tidal ranges in the world, alongside some of the best waters in Europe for generating wave energy. In a country blessed with renewable resources, the Celtic Sea may well be its biggest prize.

I’ll go along with what this article says and accept that 50 GW of wind capacity could be installed in the Celtic Sea.

As I write this article at around nine o’clock, the UK is generating almost exactly 30 GW of electricity, which gives an idea of how large electricity production in the Celtic Sea could be.

Conclusion

It will be interesting to see how this first round of leasing in the Celtic Sea develops.

 

 

July 5, 2022 Posted by | Energy | , , , , , , , | Leave a comment

XLCC Obtains Planning Approval To Build UK’s First HVDC Cable Factory In North Ayrshire

The title of this post, is the same as that of this press release from XLCC.

These are the first three paragraphs.

On 29th June 2022, the North Ayrshire Council Planning Committee resolved to grant planning permission for XLCC’s HVDC subsea cable manufacturing operations in Hunterston, Scotland.

Breaking ground in the coming months, the brownfield site will create a new UK industry to support global decarbonisation targets. Once fully operational, the facility will support 900 jobs in the area, with thousands more in the wider supply chain.

XLCC’s first order is for four 3,800km long cables to connect solar and wind renewable power generation in the Sahara to the UK for the Xlinks Morocco-UK power project.

XLCC have also issued two other important press releases.

XLCC To Build New Cable Laying Vessel To Address Increase In Future Demand For HVDC Cable

These are the first paragraphs.

XLCC, the new HVDC, renewable energy focused business in the UK, has completed the concept design of an advanced, first-of-a-kind Cable Laying Vessel to be delivered in the first half of 2025.

As the world strives for Net Zero, the UK, EU and other world economies have set themselves ambitious targets for decarbonisation. The UK, for example, has stated that it will be powered entirely by clean energy by 2035 and that it will fully decarbonise the power system in the same time frame. This ambition is driving an exponential growth in high voltage cable demand as the increase in installation of offshore wind and interconnectors drive a forecast six times increase (2020 – 2027 over 2014 – 2020) for HVDC cable.

The planned delivery of the XLCC CLV will support the Morocco – UK Power Project, the first client project, through the delivery of four 3,800km subsea HVDC cables from a wind and solar generation site in Morocco to the UK.

This press release can be read in full here.

XLCC Signs UK Steel Charter For New Export-Led Cable Industry

These are the first paragraphs.

XLCC signed the UK Steel Charter at an event in Parliament on 19 April 2022, alongside representatives from politics, business and the trade union movement.

XLCC will create a new export-led HVDC cable manufacturing industry for the UK, nearly doubling the world’s current production. It aims to support renewable energy projects with the first factory planned for Hunterston, Scotland. XLCC will deliver its first project for the Xlinks Morocco-UK Power Project, consisting of four 3,800km long subsea cables, with the first phase between 2025-2027 connecting wind and solar power generated in Morocco exclusively to the UK in Devon.

Signing the UK Steel Charter shows a commitment to supporting existing and future jobs within the sector and the supply chain. Along with strengthening UK-based business, sourcing steel locally will cut transport emissions and seek to support decarbonisation in a sector dedicated to finding ways to minimise environmental impact of steel use.

This press release can be read in full here.

I have a few thoughts.

You Wait For A Large Interconnector Project To Come Along And Then Two Arrive Holding Hands

This paragraph introduces the Morocco-UK Power Project.

The Xlinks Morocco-UK Power Project will be a new electricity generation facility entirely powered by solar and wind energy combined with a battery storage facility. Located in Morocco’s renewable energy rich region of Guelmim Oued Noun, it will cover an approximate area of 1,500km2 and will be connected exclusively to Great Britain via 3,800km HVDC sub-sea cables.

XLCC have this mission statement on their home page.

XLCC will establish a new, export-led, green industry in the UK: world class HVDC subsea cable manufacturing.

Our mission is to provide the connectivity required for renewable power to meet future global energy needs.

Xlinks Morocco-UK Power Project and XLCC appear to be made for each other.

In some ways it takes me back to the 1970s, where large oil and gas projects in the North Sea were paired with platform building in Scottish lochs.

There Are Several Interconnector Projects Under Development

We will see a lot of undersea interconnectors in the next few years.

  • Country-to-country interconnectors
  • Interconnectors along the coast of the UK.
  • Connections to offshore wind farms.

This capacity, with a ship to lay it, is being created at the right time.

Icelink

Icelink is a proposed interconnector between Iceland and the UK.

  • It would be up to 1200 km long.
  • It would have a capacity of around 1 GW

XLCC could spur the development of this project.

Floating Wind Farms Hundreds Of Miles Out To Sea

The developer of a floating wind farm, say a hundred miles out to sea, is not going to develop it, if there isn’t a secure supply of cable.

Where Will Finance Come From?

Wind farms have proven to be good investments for finance giants such as Aviva.

See World’s Largest Wind Farm Attracts Huge Backing From Insurance Giant, for Aviva’s philosophy.

As mathematical modelling for electrical systems get better, the estimates of the finance needed and the returns to be made, will indicate whether these mega-projects can be funded.

It was done with North Sea oil and gas and it can be done with offshore wind power and its interconnectors.

In The Times on the 4th of July 2022, there is this article, which is entitled Schroders Chief Buzzing To Take Finance Offshore Wind Farms.

It is a must-read!

Conclusion

XLCC and its cable factory will spur the expansion of zero-carbon electricity in the UK.

July 3, 2022 Posted by | Energy | , , , , , , , , , | 3 Comments

Enery Dome Closes $11M Convertible Round To Accelerate Commercial Deployment Of CO2 Battery

The title of this post, is the same as that of this press release from Energy Dome.

When I first saw Energy Dome on the Internet, I thought they had something.

Energy Dome Secures Funding, Partner For New CO2 Energy Storage Projects was my first post about the company and this is an extract, from that post.

Note.

  1. It appears that Energy Dome has weaponised carbon dioxide against climate change.
  2. Providing 2.5 MW for over an hour and a half is an impressive performance.
  3. I think this project has the style we associate with Italy and Italians.

I have found their website at energydome.com and behind their energy storage system is unusual technology.

Their web site says this about their choice of storage medium.

CO2 is the perfect fluid to store energy cost effectively in a closed thermodynamic process as it is one of the few gases that can be condensed and stored as a liquid under pressure at ambient temperature. This allows for high density energy storage without the need to go at extreme cryogenic temperatures.

That is breathtakingly simple!

The main tank for the gaseous carbon dioxide is an inflatable dome and the liquid carbon dioxide is stored in steel tanks.

A turbine -compressor moves the carbon dioxide between gaseous and liquid states storing it appropriately.

It is very impressive! And I suspect extremely affordable!

This was the sub-heading of Tuesday’s press release.

Provider of long-duration energy storage completes convertible funding round co-led by CDP Venture Capital Sgr and Barclays and joined by Novum Capital Partners, ahead of planned Series B round.

This is the second time they have raised eleven million dollars to fund a project.

This paragraph from the press release outlines how the money will be used.

Energy Dome’s rapid technological development motivates the speed and frequency of the funding rounds. The Series A enabled the company to complete its 2.5MW / 4MWh commercial demonstration plant in Sardinia, Italy, the final step of technology de-risking. Energy Dome has begun the commercialization of the CO2 Battery. This latest bridge funding will allow the company to accelerate its development in advance of the Series B round by placing purchase orders for the long lead time turbomachinery equipment associated with its First of a Kind utility scale (20MW, 200MWh, 10-hour duration) energy storage projects. A Memorandum of Understanding for this first utility scale project has been signed with A2A, a major European utility, and the company is making strong progress on its commercial pipeline.

This is a company to watch.

 

July 1, 2022 Posted by | Energy, Energy Storage | | Leave a comment

SSE Thermal And Equinor To Acquire Triton Power In Acceleration Of Low-Carbon Ambitions

The title of this post, is the same as that as this press release from SSE.

These are the first three paragraphs.

SSE Thermal and Equinor have entered into an agreement to acquire Triton Power Holdings Ltd from Energy Capital Partners for a total consideration of £341m shared equally between the partners.

The transaction represents another step forward for the two companies’ existing collaboration, supporting the long-term decarbonisation of the UK’s power system whilst contributing to security of supply and grid stability through flexible power generation in the shorter term.

Triton Power operates Saltend Power Station which is 1.2GW CCGT (Combined Cycle Gas Turbine) and CHP (Combined Heat & Power) power station located on the north of the Humber Estuary in East Yorkshire.

This deal is more complicated than it looks and these are my thoughts.

What About The Triton Power Workers?

The press release says this.

The 82 existing employees will continue to be employed by Triton Power. In line with just transition principles, the joint venture is committed to transitioning the assets for the net zero world through responsible ownership and operation, and in consultation with the local workforce and representatives.

It does sound that they are following the right principles.

Saltend Power Station

Saltend power station is no tired ancient asset and is described like this in Wikipedia.

The station is run on gas using single shaft 3 × Mitsubishi 701F gas Turbines machines with Alstom 400 MWe generators. The station has a total output of 1,200 MW; of that 100 MW is allocated to supply BP Chemicals. Each gas turbine has a Babcock Borsig Power (BBP) heat recovery steam generator, which all lead to one steam turbine per unit (single shaft machine means Gas turbine and Steam Turbine are on the same shaft). The waste product of electricity generation is steam at the rate of about 120 tonnes/h which is sold to BP Chemicals to use in their process. This makes Salt End one of the most efficient[clarification needed] power stations in the UK. The plant is scheduled to use hydrogen from steam reformed natural gas for 30% of its power.

Note.

  1. It was commissioned in 2000.
  2. It appears there are seven CCGT power stations in England that are larger than Saltend.
  3. The power station seems to have had at least four owners.

The press release says this about SSE and Equinor’s plans for Saltend power station.

The transaction underscores SSE Thermal and Equinor’s shared ambition to decarbonise the Humber, which is the UK’s most carbon-intensive industrial region, as well as the UK more widely. Initial steps to decarbonise Saltend Power Station are already underway, targeting partial abatement by 2027 through blending up to 30% of low-carbon hydrogen. In addition, carbon capture provides an additional valuable option for the site. SSE Thermal and Equinor will continue to work towards 100% abatement.

Note.

  1. It appears that initially, Saltend power station will move to running on a mixture of 30 % hydrogen and 70 % natural gas.
  2. Carbon capture will also be applied.
  3. It looks like that in the future all carbon-dioxide emitted by the power station will be captured and either stored or used.

The press release says this about the source of the hydrogen.

Saltend Power Station is a potential primary offtaker to Equinor’s H2H Saltend hydrogen production project. H2H Saltend is expected to kick-start the wider decarbonisation of the Humber region as part of the East Coast Cluster, one of the UK’s first carbon capture, usage and storage clusters.

H2H Saltend is described in this page on the Equinor web site, which has a title of The First Step To A Zero Carbon Humber, where this is said.

This project represents a bold but practical first step towards delivering the world’s first net zero industrial cluster by 2040. This unparalleled project can play a leading role in the UK’s journey to net zero by 2050, renew the UK’s largest industrial cluster, and unlock technology that will put the UK at the forefront of a global hydrogen economy.

There is also a video.

SSE Thermal And Equinor Low-Carbon Thermal Partnership

This is a section in the press release, where after giving their policy about the workers, it says this about the acquisition of Triton Power.

This acquisition strengthens SSE Thermal and Equinor’s portfolio of joint projects, which bring together expertise in power, natural gas, hydrogen and carbon capture and storage. This portfolio includes three development projects within the Humber region:

  • Keadby 3 Carbon Capture Power Station, which could be the UK’s first flexible power station equipped with carbon capture.
  • Keadby Hydrogen Power Station, which could be one of the world’s first 100% hydrogen-fuelled power stations.
  • Aldbrough Hydrogen Storage, located in East Yorkshire, which could be one of the world’s largest hydrogen storage facilities.

The two companies are also developing Peterhead Carbon Capture Power Station, situated on the Aberdeenshire coast in Scotland and there are further opportunities for hydrogen blending across SSE’s generation portfolio, including at Keadby 2.

Note.

  1. There is no mention of the three Doggerbank Wind Farms, each of which will be 1200 MW, that are owned by SSE Renewables and Equinor.
  2. I wrote about Aldbrough Gas Storage in The Massive Hydrogen Project, That Appears To Be Under The Radar.
  3. According to this press release from Equinor, which is entitled SSE Thermal And Equinor Join Forces On Plans For First-Of-A-Kind Hydrogen And Carbon Capture Projects In The Humber, Keadby Hydrogen power station will have a capacity of 1800 MW.

The Complete System

The system has the following power sources.

  • Dogger Bank A – 1200 MW – Expected commissioning in 2023/24
  • Dogger Bank B – 1200 MW – Expected commissioning in 2024/25
  • Dogger Bank C – 1200 MW – Expected commissioning in 2024/25
  • Keadby power station – 735 MW
  • Keadby 2 power station – 893 MW – Could be Part-Hydrogen
  • Keadby 3 power station – 910 MW – Carbon Capture
  • Keadby Hydrogen power station – 1800 MW – Hydrogen
  • Saltend power station – 1200 MW – Part-Hydrogen

That totals up to 9138 MW.

Fuel will come from three sources.

  • The God of the winds.
  • Natural gas
  • Hydrogen

Hydrogen will be sourced from.

  • Blue hydrogen from H2H Saltend
  • Green Hydrogen could come from electrolysers driven by wind power.

Hydrogen would be stored in Aldbrough Gas Storage.

I am by training a Control Engineer and controlling these power sources is either a wonderful dream or your most entwined and complicated nightmare.

Conclusion

I suspect on an average day, this cluster of power stations and sources could reliably supply as much zero-carbon power as two large nuclear stations.

 

June 30, 2022 Posted by | Energy, Energy Storage, Hydrogen | , , , , , , , , , , , , | Leave a comment

Octopus Energy On Xlinks

Today, Octopus Energy published a web page, which is entitled Backing Cheaper, Greener Energy Globally, giving more details of the Xlinks project.

I first wrote about the tie-up between Octopus Energy and Xlinks in Xlinks Welcomes New Investor Octopus Energy In Providing Cheap Green Power To Over 7 Million Homes.

Points made in the page on the Octopus web page include.

  • The project will cover over 570 square miles in Morocco with 7GW of solar and 3.5GW of wind generation alongside a 20GWh battery storage facility.
  • This green energy powerhouse will be connected to the UK via 2,361 miles of HVDC subsea cables.
  • The cables will be built with British steel in a new factory in Hunterton, Scotland.
  • It also appears that the site of the project has been chosen to optimise energy collection.

This project appears to be excellently-thought out to bring large benefits to all stakeholders.

June 29, 2022 Posted by | Energy, Energy Storage | , , , , , | 7 Comments

Could Rolls-Royce SMRs Be The Solution To Europe’s Gas Shortage?

Of all the offshore wind farms, that I’ve looked at recently, I find Magnora’s ScotWind N3 wind farm the most interesting.

I wrote about it in ScotWind N3 Offshore Wind Farm.

I said this.

In any design competition, there is usually at least one design, that is not look like any of the others.

In the successful bids for the ScotWind leases, the bid from Magnora ASA stands out.

  • The company has an unusual home page on its offshore wind web site.
  • This page on their web site outlines their project.
  • It will be technology agnostic, with 15MW turbines and a total capacity of 500MW
  • It will use floating offshore wind with a concrete floater
  • It is estimated, that it will have a capacity factor of 56 %.
  • The water depth will be an astonishing 106-125m
  • The construction and operation will use local facilities at Stornoway and Kishorn Ports.
  • The floater will have local and Scottish content.
  • The project will use UK operated vessels​.
  • Hydrogen is mentioned.
  • Consent is planned for 2026, with construction starting in 2028 and completion in 2030.

This project could serve as a model for wind farms all round the world with a 500 MW power station, hydrogen production and local involvement and construction.

I very much like the idea of a concrete floater, which contains a huge electrolyser and gas storage, that is surrounded by an armada of giant floating wind turbines.

These are my thoughts.

Floating Concrete Structures

To many, they may have appear to have all the buoyancy of a lead balloon, but semi-submersible platforms made from concrete have been used in the oil and gas industry for several decades.

Kishorn Yard in Scotland was used to build the 600,000-tonne concrete Ninian Central Platform,in 1978. The Ninian Central Platform still holds the record as the largest movable object ever created by man.

The Ninian Central Platform sits on the sea floor, but there is no reason why a semi-submersible structure can’t be used.

Electrolysers

There is no reason, why a large electrolyser, such as those made by Cummins, ITM Power or others can’t be used, but others are on the way.

  • Bloom Energy are working on high temperature electrolysis, which promises to be more efficient.
  • Torvex Energy are developing electrolysis technology that used sea water, rather than more expensive purified water.

High Temperature Electrolysis

High temperature electrolysis needs a heat source to work efficiently and in Westinghouse And Bloom Energy To Team Up For Pink Hydrogen, I described how Bloom  Energy propose to use steam from a large nuclear power station.

Offshore Nuclear Power

I’ve never heard of offshore nuclear power, but it is not a new idea.

In 1970, a company called Offshore Power Systems was created and it is introduced in its Wikipedia entry like this.

Offshore Power Systems (OPS) was a 1970 joint venture between Westinghouse Electric Company, which constructed nuclear generating plants, and Newport News Shipbuilding and Drydock, which had recently merged with Tenneco, to create floating nuclear power plants at Jacksonville, Florida.

Westinghouse’s reactor was a 1.150 MW unit, which was typical of the time, and is very similar in size to Sizewell B.

The project was cancelled before the reactors were towed into position.

Nuclear Knowledge Has Improved

Consider.

  • In the fifty years since Offshore Power Systems dabbed their toes in the water of offshore nuclear power, our knowledge of nuclear systems and engineering has improved greatly.
  • The offshore oil and gas industry has also shown what works impeccably.
  • The floating offshore wind industry looks like it might push the envelop further.
  • There has been only one nuclear accident at Fukushima, where the sea was part of the problem and that disaster taught us a lot.
  • There have been a large number of nuclear submarines built and most reached the planned end of their lives.
  • Would a small modular nuclear reactor, be safer than a large nuclear power plant of several GW?

I would suggest we now have the knowledge to safely build and operate a nuclear reactor on a proven semi-submersible platform, built from non-rusting concrete.

An Offshore Wind Farm/Small Modular Reactor Combination Producing Hydrogen

Consider.

  • A typical floating offshore wind farm is between one and two gigawatts.
  • A Rolls-Royce small modular reactor is sized to produce nearly 0.5 GW.
  • The high temperature electrolyser will need some heat to achieve an optimum working temperature.
  • Spare electricity can be used to produce hydrogen.
  • Hydrogen can be stored platform.
  • Hydrogen can be sent ashore using existing gas pipes.
  • Hydrogen could even be blended with natural gas produced offshore to create a lower-carbon fuel.
  • It would also be possible to decarbonise nearby offshore infrastructure.

A balance between wind and nuclear power can be obtained, which would provide a steady output of energy.

Conclusion

There are a large numbers of possibilities, to locate a Rolls-Royce small modular reactor close to a wind farm to use high temperature electrolysis to create green hydrogen, which can be used in the UK or exported through the gas network.

June 23, 2022 Posted by | Energy, Hydrogen | , , , , , , , , , , , , , | 2 Comments

News Of The Day From Rolls-Royce

This press release from Rolls-Royce is entitled Rolls-Royce Advances Hybrid-Electric Flight With New Technology To Lead The Way In Advanced Air Mobility.

This is the introductory paragraph.

Rolls-Royce is officially announcing the development of turbogenerator technology, which includes a new small engine designed for hybrid-electric applications. The system will be an on-board power source with scalable power offerings and will complement the Rolls-Royce Electrical propulsion portfolio, enabling extended range on sustainable aviation fuels and later as it comes available through hydrogen combustion.

This paragraph outlines the use of the new small engine.

Current battery technology means all-electric propulsion will enable eVTOL and fixed wing commuter aircraft for short flights in and between cities and island-hopping in locations like Norway and the Scottish Isles. By developing turbogenerator technology, that will be scaled to serve a power range between 500 kW and 1200 kW, we can open up new longer routes that our electric battery powered aircraft can also support.

There is also a video in the press release, which gives more information.

  • The turbogenerator is compatible to their electric power and propulsion offering.
  • The turbogenerator has a power of 500-1200 kW to serve different aircraft platforms.
  • The system is modular and can be tailored to different applications.
  • The turbogenerator can either power the aircraft directly or charge the batteries.
  • The system can be configured to provide primary power for other applications.
  • Rolls-Royce are designing all the components; the turbogenerator, the gas turbine, the generator, the power electronics, so they all fit together in a compact and lightweight solution.
  • Rolls-Royce intend to manufacture all components themselves and not rely on bought-in modules.
  • Every gram of weight saved is important.

I suspect that one of the keys to making this all work is a very comprehensive and clever control system.

I have a few thoughts.

Weight Is Key

Rolls-Royce emphasise weight saving in the video. Obviously, this is important with any form of flying machine.

An Example System

Let’s suppose you want an electric power system to power a railway locomotive or one of those large mining trucks.

  • The locomotive or truck has an electric transmission.
  • Power of 2 MW is needed.
  • A battery is needed.
  • Fuel will be Sustainable Aviation Fuel (SAF) or hydrogen.

A series hybrid-electric power unit will be created from available modules, which could be very fuel efficient.

What Will Rolls-Royce’s System Be Able to Power?

Although the system is aimed at the next generation of electric flying machines, these systems will be used in any application that wants an efficient zero- or low-carbon power source.

Consider.

  • Some large trucks have diesel engines with a power of almost 500 kW.
  • A Class 68 bi-mode locomotive has a 700 kW diesel engine.
  • A Class 802 train has three 700 kW diesel engines.
  • Rolls-Royce subsidiary MTU are a large supplier of diesel engines for rail, road and water.

It looks to me that Rolls-Royce have sized the system to hoover up applications and they have MTU’s experience to engineer the applications.

Class 43 Power Cars

The iconic Class 43 power cars running on UK railways are an interesting possibility for powering with Rolls-Royce’s new system.

  • Despite being over forty-years old, there are over a hundred and twenty still in service.
  • They were upgraded with new 1.7 MW MTU diesel engines in the early part of this century.
  • Rolls-Royce is based in Derby.
  • The Class 43 power cars were developed in Derby.
  • Hydrogen-powered Class 43 power cars, hauling GWR Castles or ScotRail Inter7Cities would be tourist attractions.
  • The Class 43 power cars need to be either decarbonised or replaced in the next few years.

Decarbonisation using Rolls-Royce’s new system would probably be more affordable.

This all sounds like a project designed in a pub in Derby, with large amounts of real ale involved.

But I wouldn’t be surprised if it happened.

Will The System Be Upgradable From Sustainable Aviation Fuel To Hydrogen?

This is an except from the introductory paragraph.

The system will be an on-board power source with scalable power offerings and will complement the Rolls-Royce Electrical propulsion portfolio, enabling extended range on sustainable aviation fuels and later as it comes available through hydrogen combustion.

This would appear that if used in aviation, it will be possible to upgrade the system from sustainable aviation fuel to hydrogen, when a suitable hydrogen supply becomes available.

But all applications could be upgraded.

A truck, like the one shown in the picture could be delivered as one running on sustainable aviation fuel and converted to hydrogen later.

Conclusion

Rolls-Royce have put together a modular system, that will have lots of applications.

 

 

June 22, 2022 Posted by | Energy, Hydrogen, Transport/Travel | , , , , , , , | Leave a comment

Australian Mining Billionaire Touts A Green Revolution In U.S. Coal Country — With Skepticism Trailing Close Behind

The title of this post, is the same as this article on Forbes.

It is a definite must-read about Andrew ‘Twiggy’ Forrest, making one of the most difficult hydrogen pitches in the world, to coal miners in West Virginia.

Perhaps we need Mr Forrest to convince the RMT, that their views are wrong and so nineteenth century.

June 22, 2022 Posted by | Hydrogen, Energy | , , , , , | Leave a comment

Gravity—Yes, Gravity—Is the Next Frontier for Batteries

The title of this post, is the same as that of this article on Popular Mechanics.

This is the first paragraph.

When the sun isn’t shining and the wind isn’t howling, suspended weights can step in to generate power.

The article goes on to explain Energy Vault and Gravitricity.

It is certainly an endorsement of the technique from one of America’s popular magazines.

June 22, 2022 Posted by | Energy, Energy Storage | , | Leave a comment