The Anonymous Widower

Exploring Germany Under The Latest Travel Rules

Because of the lack of travel brought about by the Covids, I’ve built up a list of places that I want to visit in Germany.

  • Hamburg to see the Siemens Gamesa ETES energy storage and see how the Alstom Coradia iLint hydrogen train is getting on.
  • Karlsruhe to see the newly-opened tram-tunnel in the city.
  • Stuttgart to see how the construction work for Stuttgart 21 is faring and Alstom’s new battery trains.
  • The Lake Constance Belt Railway.

The latest rules mean that travelling back to the UK is easy, so if I chose a route that allowed me to visit all the places I want from say a hotel in somewhere worth visiting like Stuttgart, would it be possible to book an appropriate stay there as a package?

Would this mean all the paperwork going to Germany would be handled by someone else, so if a mistake was made, it’s not my fault?

January 24, 2022 Posted by | Energy, Energy Storage, Transport/Travel | , , , , , | 3 Comments

How Defunct Coal Mines Could Heat UK Homes

The title of this post, is the same as that of this article on Mining Technology.

This is the introductory paragraph.

In a country with no operational coal mines, the UK Coal Authority has proposed to once again turn these operations to heating homes and businesses. But this time, they will not provide coal for burning. The plan, to take warm water from flooded mines, would turn an environmental problem into a community solution, and the idea is spreading.

The reason, I’m posting this is two-fold.

There was a report on this edition of Countryfile, which should be available until the end of 2022. The relevant section starts at 38.5 minutes into the program.

Charlotte Adams is featured in this report and the Countryfile program. I first came across Charlotte and her fascinating work at a lecture in 2018, which I wrote about in Can Abandoned Mines Heat Our Future?

 

January 23, 2022 Posted by | Energy | , , , , , | Leave a comment

Energy Storage Could Emerge As The Hottest Market Of 2022

The title of this post, is the same as that as this article on Nasdaq.

This is the introductory paragraph.

A few years ago, battery energy storage began drawing attention as what one industry executive at the time called the Holy Grail of renewable energy. In the years since, EVs have stolen the spotlight but now battery storage is back, larger than life and, quite likely, twice as expensive.

I would wholeheartedly agree.

Although, I do think, that some of the major players over the next few years will not be based on lithium-ion batteries.

I have invested in Gravitricity and Rheenergise and would have invested in Highview Power, if I had had the chance.

My stockbroker has also invested some of my pension in energy storage and battery funds.

January 20, 2022 Posted by | Energy, Energy Storage, Finance | , , , | Leave a comment

Lithium In A California Lake Could Help U.S. Gain Energy Autonomy

The title of this post, is the same as that of this article on NBC News.

This is the introductory paragraph.

The ingredient crucial to electric car batteries is found in the brine of the Salton Sea, a once-busy recreation spot that fell into decay because of toxic runoff.

So where is the Salton Sea?

This Google Map shows the Salton Sea in the middle of the Californian desert.

It looks like a rather bleak hot place to me.

But if we can extract lithium out of little Cornwall, surely the Yanks can extract it from a dying lake.

January 19, 2022 Posted by | Energy | , , | 4 Comments

Rolls-Royce Provide mtu Trigeneration Plant For Largest Data Centre In Romania

The title of this post, is the same as that of this press release on the Rolls Royce web site.

  • mtu Series 4000 gas generator sets to provide electricity, heat and cooling for ClusterPower’s Technology Campus in Craiova
    The completed campus will feature five data centers and provide a significant boost to the region’s global IT infrastructure competitiveness
  • Rolls-Royce, along with its distributor partner Knopf & Wallisch (K&W), has supplied three mtu customized and containerized combined cooling, heat and power plant (CCHP) trigeneration units to Romanian cloud service provider ClusterPower. They will be used for the efficient and sustainable energy supply at its new technology campus near the southern Romanian city of Craiova, where the IT company will open the largest data center in Romania.

The press release also says that trigeneration plants are hydrogen-ready.

The engines are gas engines, that can be converted to running on a mix of 25 % hydrogen and natural gas or eventually to pure hydrogen.

Conclusion

This would appear to be a neat way to sell the end customer an engine that can handle natural gas now and convert it over time to hydrogen.

January 14, 2022 Posted by | Computing, Energy, Hydrogen | , , , | Leave a comment

Two-Hour Energy Storage Offers Better Value As UK Frequency Response Market Saturating, Investor Gresham House Says

The title of this post, is the same as this article on Energy Storage News.

I would agree with what Gresham House says and it is my view that we need a lot more energy storage.

I like the system that Highview Power are building at Carrington near Manchester.

  • It has an output of 50 MW.
  • It has a capacity of 250 MWh.

This means it can supply 50 MW for five hours.

As they have sold other systems to Chile, Spain and the United States, I wouldn’t be surprised to see more of their systems sold in the UK.

January 12, 2022 Posted by | Energy, Energy Storage | , , , , | Leave a comment

Goldman Sachs Invests $250 million In Hydrostor To Advance Compressed Air Energy Storage Projects

The title of this post, is the same as that of this article on pv Magazine.

This is the introductory paragraph.

The investment is planned to support development and construction of Hydrostor’s 1.1GW, 8.7GWh of Advanced Compressed Air Energy Storage projects that are well underway in California and Australia, and help expand Hydrostor’s project development pipeline globally.

It certainly seems that the big beasts of finance are starting to back innovative energy storage.

January 11, 2022 Posted by | Energy, Energy Storage, Finance | , , , , | Leave a comment

Drax’s Plans For Cruachan

Cruachan Power Station is a pumped-storage hydroelectric power station in Argyll and Bute, Scotland.

  • It can generate 440 MW of power.
  • It has a storage capacity of 7.1 GWh.
  • The power station is owned by Drax.

This Google Map shows the area around the power station.

Note.

  1. Cruachan Reservoir is the upper reservoir for the power station.
  2. The River Awe is the lower reservoir.
  3. The turbines for the power station are in a hollowed-out Ben Cruachan.
  4. There is a visitor centre, which is two-hundred metres from the Falls of Cruachan station, that can be seen on the map, by the river.

More information on visiting can be found at the Visit Cruachan web site.

This second map shows the Southern part of the  Cruachan Reservoir to a larger scale.

Note the strength of the dam.

The Operation Of Cruachan Power Station

Wikipedia says this about the operation of Cruachan power station.

The station is capable of generating 440 megawatts (590,000 hp) of electricity from four turbines, two of 100 megawatts (130,000 hp) and two of 120 megawatts (160,000 hp) capacity, after two units were upgraded in 2005. It can go from standby to full production in two minutes, or thirty seconds if compressed air is used to start the turbines spinning. When the top reservoir is full, Cruachan can operate for 22 hours before the supply of water is exhausted. At full power, the turbines can pump at 167 cubic metres (5,900 cu ft) per second and generate at 200 cubic metres (7,100 cu ft) per second.

What I find surprising, is that they only upgraded two turbines to 120 MW. I would suspect that there was some other factor that stopped all turbines from being upgraded.

So I would be very surprised if Drax upgraded the power of the existing station.

The Wikipedia extract claims that the Cruachan power station can provide power for 22 hours, if the reservoir, which has a capacity of 7.1 GWh is full. A simple calculation gives an average output in 323 MW. Does that indicate an efficiency of 73.4 %, by dividing 323 by 440.

But no pumped storage system of the 1950s is 100 % efficient. The Ffestiniog Power Station, which opened two years before Cruachan has an efficiency of 73 %. , which appears to be in line with the figures for Cruachan.

Cruachan Power Station And Nuclear Power

Wikipedia says this about Cruachan power station and Hunterston A nuclear power station.

Construction began in 1959 to coincide with the Hunterston A nuclear power station in Ayrshire. Cruachan uses cheap off-peak electricity generated at night to pump water to the higher reservoir, which can then be released during the day to provide power as necessary.

Note.

  1. Hunterston A power station closed in 1990.
  2. Hunterston B power station closed a few days ago.
  3. Scotland now only has one nuclear station at Torness.

It looks like the method of operation will have to change.

Cruachan Power Station And Wind Power

The obvious replacement source of energy at night to replace the nuclear power is wind power.

As I write this the UK is generating 8.5 GW of power from wind turbines.

Surely, enough can be diverted to Cruachan to fill the Cruachan Reservoir.

Cruachan 2

Drax’s plans for Cruachan are based around the building of a second underground power station, which is not surprisingly called Cruachan 2. This page on the Drax web site describes Cruachan 2.

  • It will be a 600 MW power station.
  • It will be to the East of the current power station.
  • More than a million tonnes of rock would be excavated to build the power station.

The existing upper reservoir, which can hold 2.4 billion gallons of water, has the capacity to serve both power stations.

I think it is reasonable to assume the following about Cruachan 2.

  • Design of the turbines will have improved in the sixty years since the Francis turbines for the original power station were ordered and designed.
  • The turbines will now be precisely computer-controlled to optimise the operation of the power station.
  • The turbines will have a faster response, than even that of Cruachan 1, which will help to match output to demand.

But most importantly, I suspect that the efficiency will be higher due to improved turbine design.

I can do a simple calculation, where I will assume the following figures for the two power stations.

  • Cruachan 1 – 440 MW – Efficiency – 73 % – Full Power – 323 MW
  • Cruachan 2 – 600 MW – Efficiency – 80 % – Full Power – 480 MW

It looks to me that 1040 MW can be used to store water in the reservoir and at this rate it would take 6.8 hours to fill the reservoir. With just Cruachan 1 in operation, filling the reservoir would take sixteen hours.

It looks like with moderate winds generating sensible amounts of electricity, it should be possible to fill the reservoir overnight using both Cruachan 1 and Cruachan 2.

When running flat-out, the combined station can generate 803 MW. At that rate it will generate the power for just under nine hours.

The Wikipedia entry for Francis turbines says this.

Francis turbines are the most common water turbine in use today, and can achieve over 95% efficiency.

Applying 95 % Efficiency to Cruachan 2 would give the following.

  • An output of 570 MW for Cruachan 2.
  • A total output of 1010 MW for the combined station.
  • This would mean the combined station could deliver 1.01 GW for just over seven hours.

Modern control technology would probably be used to ensure that the output of the combined Cruachan station filled in the gaps between demand and supply.

Could The Size Of Cruachan Reservoir Be Increased?

This would increase the amount of energy stored.

I suspect that it probably can’t be increased, as any increases would have been done by now.

Conclusion

It looks like very good engineering to me.

  • There is a good chance, that on most nights, the reservoir will be filled using wind energy
  • The maximum output of the Cruachan power station has been more than tripled from 323 to 1010 MW.
  • There has been no increase in the size of the Cruachan reservoir.

Scotland will now have a GW-sized hydro-electric power station.

 

 

January 11, 2022 Posted by | Energy, Energy Storage | , , , , , | 1 Comment

Catalyst Capital Makes First Move In GBP 300m Battery Storage Strategy

The title of this post, is the same as that of this article on Renewables Now.

This is the first paragraph.

Fund manager Catalyst Capital has acquired a site to build a 100-MW battery in Yorkshire, northern England, in the first of a series of planned deals under a GBP-300-million (USD 406.1m/EUR 358.9m) strategy to develop diversified UK battery energy storage systems (BESS) facilities.

£300 million, says to me that the finance industry, now finds battery storage to be a worthwhile investment.

Skelton Grange Power Station

This Google Map shows the location of the Skelton Grange power station site, where the battery will be developed.

And this second Google Map shows the site in more detail.

Note that there is still a sub-station on the site.

The article states that planning permission was received in 2021 and they hope to have the facility on-line in the first quarter of this year.

That appears quick to me. Is it because the electrical connection already in situ?

It should also be noted, that the battery output of 100 MW is much less than that of the former coal-fired power station in the mid-1980s, which was at last 480 MW.

I also wonder, if the site could host a hydrogen fuelling station for buses.

  • It is not far from the centre of Leeds.
  • It has a good connection to the National Grid.
  • An electrolyser like the one built by ITM Power at Tyseley Energy Park uses 3 MW of electricity to produce around 1.5 tonnes of hydrogen per day.

I also feel that the site could host a wind turbine up to about 10 MW.

Conclusion

Catalyst Capital seems to have made a big entry into the market. They won’t be the last to do this, as the returns are there and the battery storage is needed.

January 8, 2022 Posted by | Energy, Energy Storage, Finance, Hydrogen | , , , , , | 2 Comments

Why Use A Hydrogen Pipeline Rather Than A Electricity Cable To Bring Electricity Ashore From A Windfarm?

A comment to the post entitled Siemens Gamesa Partners On Offshore Wind-to-Hydrogen, was as follows.

Trying to get my head around this concept. Build an electrolysis plant in the North Sea and run a hydrogen pipeline to shore, rather than generating electricity and transferring the power by undersea cable to a shore based electrolysis plant. Can it really be better technically and economically? Someone convince me.

The reasons probably all come down to saving money and hassle.

Reusing Existing Infrastructure

Supposing, you have an offshore gas field, which is on the point of being worked out.

  • It has a well-maintained platform on top.
  • It has a pipe to an onshore terminal that handles the natural gas and distributes it to end-users.

Supposing the following are possible.

  • Building a large wind farm in the vicinity of the platform.
  • Using the gas field for hydrogen storage.
  • Converting the gas terminal from natural gas to hydrogen.
  • The end-users can convert to hydrogen.

In some cases the end-users might even prefer hydrogen to natural gas, to help their own decarbonisation.

I would suspect that there will be a sound economic case to use hydrogen, where wind farms are developed, in the same areas as worked-out gas fields.

  • Platform demolition costs are deferred.
  • No HVDC link is needed, with an expensive converter station at the shore end.
  • The new system comes with energy storage.

The only extra cost might be that an offshore electrolyser is more expensive than an onshore one.

Engineering Resources

The engineering resources needed for a gas pipeline are different to those needed for an electrical system.

But because gas pipelines are a declining industry, they will be readily available.

Less Planning Hassle

There have been some objections to the development of wind farm terminals by Nimbies.

If a terminal is converted from natural gas to hydrogen, I suspect there will be fewer objections.

Better Control Of Wind Farms

There have been stories of wind farms having to be switched off because there is no-one to buy the electricity.

If some form of offshore hydrogen storage is possible, then the electricity can be used to generate hydrogen, which can be piped ashore, when it is needed.

It Won’t Be One Type Fits All

I suspect we’ll see some hybrid systems and other innovative engineering.

Conclusion

I believe that in a drive to cut costs, we’ll see a lot of energy brought ashore as hydrogen gas.

I

 

January 8, 2022 Posted by | Energy, Energy Storage, Hydrogen | , , , , , | 5 Comments