The Anonymous Widower

Zhengzhou Henan: Chest-High Flooding Hits China Trains And Roads

The title of this post, is the same as that of this article on the the BBC.

This is the first two paragraphs.

Roads and subway stations have been submerged across China’s Henan province as heavy rain has brought severe floods.

One region in Henan has recorded 40cm (15 inches) of rainfall. In Zhengzhou, the city’s entire subway system was forced to close.

I feel sorry for those that died and their friends and families, not only for their loses, but also because they will have probably no say in the stopping of building of hundreds of coal-fired power station, which are certainly one of the factors in all the extreme weather around the world.

Let’s hope at COP26, if the Chinese turn up, other nations make the point that their pro-global warming policies are killing their own people.

 

July 21, 2021 Posted by | Energy, Transport | , , | 3 Comments

Solving The Electrification Conundrum

The title of this post, is the same as an article in the July 2021 Edition of Modern Railways.

This is the introductory sub-heading.

Regional and rural railways poses a huge problem for the railway to decarbonise.

Lorna McDonald of Hitachi Rail and Jay Mehta of Hitachi ABB Power Grids tell Andy Roden why they believe they have the answer.

These are my thoughts on what is said.

Battery-Electric Trains

The article starts by giving a review of battery-electric trains and their use on routes of moderate but important length.

  • Some short routes can be handled with just a charge on an electrified main line.
  • Some will need a recharge at the termini.
  • Other routes might need a recharge at some intermediate stations, with a possible increase in dwell times.

It was in February 2015, that I wrote Is The Battery Electric Multiple Unit (BEMU) A Big Innovation In Train Design?, after a ride in public service on Bombardier’s test battery-electric train based on a Class 379 train.

I also wrote this in the related post.

Returning from Harwich, I travelled with the train’s on-board test engineer, who was monitoring the train performance in battery mode on a laptop. He told me that acceleration in this mode was the same as a standard train, that the range was up to sixty miles and that only minimal instruction was needed to convert a driver familiar to the Class 379 to this battery variant.

It was an impressive demonstration, of how a full-size train could be run in normal service without connection to a power supply. I also suspect that the partners in the project must be very confident about the train and its technology to allow paying passengers to travel on their only test train.

A couple of years later, I met a lady on another train, who’d used the test train virtually every day during the trial and she and her fellow travellers felt that it was as good if not better than the normal service from a Class 360 train or a Class 321 train.

So why if the engineering, customer acceptance and reliability were proven six years ago, do we not have several battery electric trains in service?

  • There is a proven need for battery-electric trains on the Marshlink Line and the Uckfield Branch in Sussex.
  • The current Class 171 trains are needed elsewhere, so why are no plans in place for replacement trains?
  • The government is pushing electric cars and buses, but why is there such little political support for battery-electric trains?

It’s almost as if, an important civil servant in the decision process has the naive belief that battery-electric trains won’t work and if they do, they will be phenomenally expensive. So the answer is an inevitable no!

Only in the South Wales Metro, are battery-electric trains considered to be part of the solution to create a more efficient and affordable electric railway.

But as I have constantly pointed out since February 2015 in this blog, battery-electric trains should be one of the innovations we use to build a better railway.

Hydrogen Powered Trains

The article says this about hydrogen powered trains.

Hybrid hydrogen fuel cells can potentially solve the range problem, but at the cost of the fuel eating up internal capacity that would ideally be used for passengers. (and as Industry and Technology Editor Roger Ford points out, at present hydrogen is a rather dirty fuel). By contrast, there is no loss of seating or capacity in a Hitachi battery train.

I suspect the article is referring to the Alstom train, which is based on the technology of the Alstom Coradia iLint.

I have ridden this train.

  • It works reliably.
  • It runs on a 100 km route.
  • The route is partially electrified, but the train doesn’t have a pantograph.
  • It has a very noisy mechanical transmission.

Having spoken to passengers at length, no-one seemed bothered by the Hindenburg possibilities.

It is certainly doing some things right, as nearly fifty trains have been ordered for train operating companies in Germany.

Alstom’s train for the UK is the Class 600 train, which will be converted from a four-car Class 321 train.

Note.

  1. Half of both driver cars is taken up by a hydrogen tank.
  2. Trains will be three-cars.
  3. Trains will be able to carry as many passengers as a two-car Class 156 train.

It is an inefficient design that can be improved upon.

Porterbrook and Birmingham University appear to have done that with their Class 799 train.

  • It can use 25 KVAC overhead or 750 VDC third-rail electrification.
  • The hydrogen tanks, fuel cell and other hydrogen gubbins are under the floor.

This picture from Network Rail shows how the train will appear at COP26 in Glasgow in November.

Now that’s what I call a train! Let alone a hydrogen train!

Without doubt, Porterbrook and their academic friends in Birmingham will be laying down a strong marker for hydrogen at COP26!

I know my hydrogen, as my first job on leaving Liverpool University with my Control Engineering degree in 1968 was for ICI at Runcorn, where I worked in a plant that electrolysed brine into hydrogen, sodium hydroxide and chlorine.

My life went full circle last week, when I rode this hydrogen powered bus in London.

The hydrogen is currently supplied from the same chemical works in Runcorn, where I worked. But plans have been made at Runcorn, to produce the hydrogen from renewable energy, which would make the hydrogen as green hydrogen of the highest standard. So sorry Roger, but totally carbon-free hydrogen is available.

The bus is a Wightbus Hydroliner FCEV and this page on the Wrightbus web site gives the specification. The specification also gives a series of cutaway drawings, which show how they fit 86 passengers, all the hydrogen gubbins and a driver into a standard size double-deck bus.

I believe that Alstom’s current proposal is not a viable design, but I wouldn’t say that about the Porterbrook/Birmingham University design.

Any Alternative To Full Electrification Must Meet Operator And Customer Expectations

This is a paragraph from the article.

It’s essential that an alternative traction solution offers the same levels of performance and frequency, while providing an increase in capacity and being economically viable.

In performance, I would include reliability. As the on-board engineer indicated on the Bombardier  test train on the Harwich branch, overhead electrification is not totally reliable, when there are winds and/or criminals about.

Easy Wins

Hitachi’s five-car Class 800 trains and Class 802 trains each have three diesel engines and run the following short routes.

  • Kings Cross and Middlesbrough- 21 miles not electrified – Changeover in Northallerton station
  • Kings Cross and Lincoln – 16.6 miles not electrified – Changeover in Newark Northgate station
  • Paddington and Bedwyn – 13.3 miles not electrified – Changeover in Newbury station
  • Paddington and Oxford – 10.3 miles not electrified – Changeover in Didcot Parkway station

Some of these routes could surely be run with a train, where one diesel engine was replaced by a battery-pack.

As I’m someone, who was designing, building and testing plug-compatible transistorised electronics in the 1960s to replace  older valve-based equipment in a heavy engineering factory, I suspect that creating a plug-compatible battery-pack that does what a diesel engine does in terms of power and performance is not impossible.

What would be the reaction to passengers, once they had been told, they had run all the way to or from London without using any diesel?

Hopefully, they’d come again and tell their friends, which is what a train operator wants and needs.

Solving The Electrification Conundrum

This section is from the article.

Where electrification isn’t likely to be a viable proposition, this presents a real conundrum to train operators and rolling stock leasing companies.

This is why Hitachi Rail and Hitachi ABB Power Grids are joining together to present a combined battery train and charging solution to solve this conundrum. In 2020, Hitachi and ABB’s Power Grids business, came together in a joint venture, and an early outcome of this is confidence that bringing together their expertise in rail, power and grid management, they can work together to make electrification simpler cheaper and quicker.

I agree strongly with the second paragraph, as several times, I’ve been the mathematician and simulation expert in a large multi-disciplinary engineering project, that went on to be very successful.

The Heart Of The Proposition

This is a paragraph from the article.

The proposition is conceptually simple. Rather than have extended dwell times at stations for battery-powered trains, why not have a short stretch of 25 KVAC overhead catenary (the exact length will depend on the types of train and the route) which can charge trains at linespeed on the move via a conventional pantograph?

The article also mentions ABB’s related expertise.

  • Charging buses all over Europe.
  • Creating the power grid for the Great Western Electrification to Cardiff.

I like the concept, but then it’s very similar to what I wrote in The Concept Of Electrification Islands in April 2020.

But as they are electrical power engineers and I’m not, they’d know how to create the system.

Collaboration With Hyperdrive Innovation

The article has nothing negative to say about the the collaboration with Hyperdrive Innovation to produce the battery-packs.

Route Modelling

Hitachi appear to have developed a sophisticated route modelling system, so that routes and charging positions can be planned.

I would be very surprised if they hadn’t developed such a system.

Modular And Scalable

This is a paragraph from the article.

In the heart of the system is a containerised modular solution containing everything needed to power a stretch of overhead catenary to charge trains. A three-car battery train might need one of these, but the great advantage is that it is scalable to capacity and speed requirements.

This all sounds very sensible and can surely cope with a variety of lines and traffic levels.

It also has the great advantage , that if a line is eventually electrified, the equipment can be moved on to another line.

Financing Trains And Chargers

The article talks about the flexibility of the system from an operator’s point of view with respect to finance.

I’ve had some good mentors in the area of finance and I know innovative finance contributed to the success of Metier Management Systems, the project management company I started with three others in 1977.

After selling Metier, I formed an innovative finance company, which would certainly have liked the proposition put forward in the article.

No Compromise, Little Risk

I would agree with this heading of the penultimate section of the article.

In February 2015, when I rode that Class 379 train between Manningtree and Harwich, no compromise had been made by Bombardier and it charged in the electrified bay platform at Manningtree.

But why was that train not put through an extensive route-proving exercise in the UK after the successful trial at Manningtree?

  • Was it the financial state of Bombardier?
  • Was it a lack of belief on the part of politicians, who were too preoccupied with Brexit?
  • Was it that an unnamed civil servant didn’t like the concept and stopped the project?

Whatever the reason, we have wasted several years in getting electric trains accepted on UK railways.

If no compromise needs to be made to create a battery-electric train, that is equivalent to the best-in-class diesel or electric multiple units, then what about the risk?

The beauty of Hitachi’s battery-electric train project is that it can be done in phases designed to minimise risk.

Phase 1 – Initial Battery Testing 

Obviously, there will be a lot of bench testing in a laboratory.

But I also believe that if the Class 803 trains are fitted with a similar battery from Hyperdrive Innovation, then this small fleet of five trains can be used to test a lot of the functionality of the batteries initially in a test environment and later in a real service environment.

The picture shows a Class 803 train under test through Oakleigh Park station.

This phase would be very low risk, especially where passengers are concerned.

Phase 2 – Battery Traction Testing And Route Proving

I am a devious bastard, when it comes to software development. The next set of features would always be available for me to test earlier, than anybody else knew.

I doubt that the engineers at Hyperdrive Innovation will be any different.

So I wouldn’t be surprised to find out that the batteries in the Class 803 trains can also be used for traction, if you have the right authority.

We might even see Class 803 trains turning up in some unusual places to test the traction abilities of the batteries.

As East Coast Trains, Great Western Railway and Hull Trains are all First Group companies, I can’t see any problems.

I’m also sure that Hitachi could convert some Class 800 or Class 802 trains and add these to the test fleet, if East Coast Trains need their Class 803 trains to start service.

This phase would be very low risk, especially where passengers are concerned.

Possibly, the worse thing, that could happen would be a battery failure, which would need the train to be rescued.

Phase 3 – Service Testing On Short Routes

As I indicated earlier, there are some easy routes between London and places like Bedwyn, Lincoln, Middlesbrough and Oxford, that should be possible with a Class 800 or Class 802 train fitted with the appropriate number of batteries.

Once the trains have shown, the required level of performance and reliability, I can see converted Class 800, 801 and Class 802 trains entering services on these and other routes.

Another low risk phase, although passengers are involved, but they are probably subject to the same risks, as on an unmodified train.

Various combinations of diesel generators and batteries could be used to find out, what is the optimum combination for the typical diagrams that train operators use.

Hitachi didn’t commit to any dates, but I can see battery-electric trains running on the Great Western Railway earlier than anybody thinks.

Phase 4 – Service Testing On Medium Routes With A Terminal Charger System

It is my view that the ideal test route for battery-electric trains with a terminal charger system would be the Hull Trains service between London Kings Cross and Hull and Beverley.

The route is effectively in three sections.

  • London Kings Cross and Temple Hirst junction – 169.2 miles – Full Electrification
  • Temple Hirst junction and Hull station – 36.1 miles – No Electrification
  • Hull station and Beverley station – 8.3 miles – No Electrification

Two things would be needed to run zero-carbon electric trains on this route.

  • Sufficient battery capacity in Hull Trains’s Class 802 trains to reliably handle the 36.1 miles between Temple Hirst junction and Hull station.
  • A charging system in Hull station.

As Hull station also handles other Class 800 and Class 802 trains, there will probably be a need to put a charging system in more than one platform.

Note.

  1. Hull station has plenty of space.
  2. No other infrastructure work would be needed.
  3. There is a large bus interchange next door, so I suspect the power supply to Hull station is good.

Hull would be a very good first destination for a battery-electric InterCity train.

Others would include Bristol, Cheltenham, Chester, Scarborough, Sunderland and Swansea.

The risk would be very low, if the trains still had some diesel generator capacity.

Phase 5 – Service Testing On Long Routes With Multiple Charger Systems

Once the performance and reliability of the charger systems have been proven in single installations like perhaps Hull and Swansea stations, longer routes can be prepared for electric trains.

This press release from Hitachi is entitled Hitachi And Eversholt Rail To Develop GWR Intercity Battery Hybrid Train – Offering Fuel Savings Of More Than 20%.

The press release talks about Penzance and London, so would that be a suitable route for discontinuous electrification using multiple chargers?

These are the distances between major points on the route between Penzance and London Paddington.

  • Penzance and Truro – 35.8 miles
  • Truro and Bodmin Parkway – 26.8 miles
  • Bodmin Parkway and Plymouth – 26.9 miles
  • Plymouth and Newton Abbot – 31,9 miles
  • Newton Abbot and Exeter – 20.2 miles
  • Exeter and Taunton – 30.8 miles
  • Taunton and Westbury – 47.2 miles
  • Westbury and Newbury – 42.5 miles
  • Newbury and Paddington – 53 miles

Note.

  1. Only Newbury and Paddington is electrified.
  2. Trains generally stop at Plymouth, Newton Abbott, Exeter and Taunton.
  3. Services between Paddington and Exeter, Okehampton, Paignton, Penzance, Plymouth and Torquay wouldn’t use diesel.
  4. Okehampton would be served by a reverse at Exeter.
  5. As Paignton is just 8.1 miles from Newton Abbot, it probably wouldn’t need a charger.
  6. Bodmin is another possible destination, as Great Western Railway have helped to finance a new platform at Bodmin General station.

It would certainly be good marketing to run zero-carbon electric trains to Devon and Cornwall.

I would class this route as medium risk, but with a high reward for the operator.

In this brief analysis, it does look that Hitachi’s proposed system is of a lower risk.

A Few Questions

I do have a few questions.

Are The Class 803 Trains Fitted With Hyperdrive Innovation Batteries?

East Coast Trains‘s new Class 803 trains are undergoing testing between London Kings Cross and Edinburgh and they can be picked up on Real Time Trains.

Wikipedia says this about the traction system for the trains.

While sharing a bodyshell with the previous UK A-train variants, the Class 803 differs in that it has no diesel engines fitted. They will however be fitted with batteries to enable the train’s on-board services to be maintained, in case the primary electrical supplies have failed.

Will these emergency batteries be made by Hyperdrive Innovation?

My experience of similar systems in other industries, points me to the conclusion, that all Class 80x trains can be fitted with similar, if not identical batteries.

This would give the big advantage of allowing battery testing to be performed on Class 803 trains under test, up and down the East Coast Main Line.

Nothing finds faults in the design and manufacture of something used in transport, than to run it up and down in real conditions.

Failure of the catenary can be simulated to check out emergency modes.

Can A Class 801 Train Be Converted Into A Class 803 Train?

If I’d designed the trains, this conversion would be possible.

Currently, the electric Class 801 trains have a single diesel generator. This is said in the Wikipedia entry for the Class 800 train about the Class 801 train.

These provide emergency power for limited traction and auxiliaries if the power supply from the overhead line fails.

So it looks like the difference between the powertrain of a Class 801 train and a Class 803 train, is that the Class 801 train has a diesel generator and the Class 803 train has batteries. But the diesel generator and batteries, would appear to serve the same purpose.

Surely removing diesel from a Class 801 train would ease the maintenance of the train!

Will The System Work With Third-Rail Electrification?

There are three routes that if they were electrified would probably be electrified with 750 DC third-rail electrification, as they have this electrification at one or both ends.

  • Basingstoke and Exeter
  • Marshlink Line
  • Uckfield branch

Note.

  1. Basingstoke and Exeter would need a couple of charging systems.
  2. The Marshlink line would need a charging system at Rye station.
  3. The Uckfield branch would need a charging system at Uckfield station.

I am fairly certain as an Electrical Engineer, that the third-rails would only need to be switched on, when a train is connected and needs a charge.

I also feel that on some scenic and other routes, 750 VDC third-rail electrification may be more acceptable , than 25 KVAC  overhead electrification. For example, would the heritage lobby accept overhead wires through a World Heritage Site or on top of a Grade I Listed viaduct?

I do feel that the ability to use third-rail 750 VDC third-rail electrification strategically could be a useful tool in the system.

Will The System Work With Lightweight Catenary?

I like the design of this 25 KVAC overhead electrification, that uses lightweight gantries, which use laminated wood for the overhead structure.

There is also a video.

Electrification doesn’t have to be ugly and out-of-character with the surroundings.

Isuspect that both systems could work together.

 

Would Less Bridges Need To Be Rebuilt For Electrification?

This is always a contentious issue with electrification, as rebuilding bridges causes disruption to both rail and road.

I do wonder though by the use of careful design, that it might be possible to arrange that the sections of electrification and the contentious bridges were kept apart, with the bridges arranged to be in sections, where the trains ran on batteries.

I suspect that over the years as surveyors and engineers get more experienced, better techniques will evolve to satisfy all parties.

Get this right and it could reduce the cost of electrification on some lines, that will be difficult to electrify.

How Secure Are The Containerised Systems?

Consider.

  • I was delayed in East Anglia two years ago, because someone stole the overhead wires at two in the morning.
  • Apparently, overhead wire stealing is getting increasingly common in France and other parts of Europe.

I suspect the containerised systems will need to be more secure than those used for buses, which are not in isolated locations.

Will The Containerised Charging Systems Use Energy Storage?

Consider.

  • I’ve lived in rural locations and the power grids are not as good as in urban areas.
  • Increasingly, batteries of one sort or another are being installed in rural locations to beef up local power supplies.
  • A new generation of small-footprint eco-friendly energy storage systems are being developed.

In some locations, it might be prudent for a containerised charging system to share a battery with the local area.

Will The Containerised Charging Systems Accept Electricity From Local Sources Like Solar Farms?

I ask the question, as I know at least one place on the UK network, where a line without electrification runs through a succession of solar farms.

I also know of an area, where a locally-owned co-operative is planning a solar farm, which they propose would be used to power the local main line.

Will The System Work With Class 385 Trains?

Hitachi’s Class 385 trains are closely related to the Class 80x trains, as they are all members of Hitachi’s A-Train family.

Will the Charging Systems Charge Other Manufacturers Trains?

CAF and Stadler are both proposing to introduce battery-electric trains in the UK.

I also suspect that the new breed of electric parcel trains will include a battery electric variant.

As these trains will be able to use 25 KVAC overhead electrification, I would expect, that they would be able to charge their batteries on the Hitachi ABB  charging systems.

Will The System Work With Freight Trains?

I believe that freight services will split into two.

Heavy freight will probably use powerful hydrogen-electric locomotives.

In Freightliner Secures Government Funding For Dual-Fuel Project, which is based on a Freightliner press release, I detail Freightliner’s decarbonisation strategy, which indicates that in the future they will use hydrogen-powered locomotives.

But not all freight is long and extremely heavy and I believe that a battery-electric freight locomotive will emerge for lighter duties.

There is no reason it could not be designed to be compatible with Hitachi’s charging system.

In Is This The Shape Of Freight To Come?, I talked about the plans for 100 mph parcel services based on redundant electric multiple units. Eversholt Rail Group have said they want a Last-Mile capability for their version of these trains.

Perhaps they need a battery-electric capability, so they can deliver parcels and shop supplies to the remoter parts of these islands?

Where Could Hitachi’s System Be Deployed?

This is the final paragraph from the article.

Hitachi is not committing to any routes yet, but a glance at the railway map shows clear potential for the battery/OLE-technology to be deployed on relatively lightly used rural and regional routes where it will be hard to make a case for electrification. The Cambrian Coast and Central Wales Lines would appear to be worthy candidates, and in Scotland, the West Highland Line and Far North routes are also logical areas for the system to be deployed.

In England, while shorter branch lines could simply be operated by battery trains, longer routes need an alternative. Network Rail’s Traction Decarbonisation Network Strategy interim business case recommends hydrogen trains for branch lines in Norfolk, as well as Par to Newquay and Exeter to Barnstaple. However, it is also entirely feasible to use the system on routes likely to be electrified much later in the programme, such as the Great Western main line West of Exeter, Swansea to Fishguard and parts of the Cumbrian Coast Line.

Everyone is entitled to their own opinion and mine would be driven by high collateral benefits and practicality.

These are my thoughts.

Long Rural Lines

The Cambrian, Central Wales (Heart Of Wales), Far North and West Highland Lines may not be connected to each other, but they form a group of rail routes with a lot of shared characteristics.

  • All are rural routes of between 100 and 200 miles.
  • All are mainly single track.
  • They carry occasional freight trains.
  • They carry quite a few tourists, who are there to sample, view or explore the countryside.
  • All trains are diesel.
  • Scotrail have been experimenting with attaching Class 153 trains to the trains on the West Highland Line to act as lounge cars and cycle storage.

Perhaps we need a long-distance rural train with the following characteristics.

  • Four or possibly five cars
  • Battery-electric power
  • Space for a dozen cycles
  • A lounge car
  • Space for a snack trolley
  • Space to provide a parcels service to remote locations.

I should also say, that I’ve used trains on routes in countries like Germany, Poland and Slovenia, where a similar train requirement exists.

Norfolk Branch Lines

Consider.

  • North of the Cambridge and Ipswich, the passenger services on the branch lines and the important commuter routes between Cambridge and Norwich and Ipswich are run by Stadler Class 755 trains, which are designed to be converted to battery-electric trains.
  • Using Hitachi chargers at Beccles, Bury St. Edmunds, Lowestoft, Thetford and Yarmouth and the existing electrification, battery-electric Class 755 trains could provide a zero-carbon train service for Norfolk and Suffolk.
  • With chargers at Dereham and March, two important new branch lines could be added and the Ipswich and Peterborough service could go hourly and zero carbon.
  • Greater Anglia have plans to use the Class 755 trains to run a London and Lowestoft service.
  • Could they be planning a London and Norwich service via Cambridge?
  • Would battery-electric trains running services over Norfolk bring in more visitors by train?

Hitachi may sell a few chargers to Greater Anglia, but I feel they have enough battery-electric trains.

Par And Newquay

The Par and Newquay Line or the Atlantic Coast Line, has been put forward as a Beeching Reversal project, which I wrote about in Beeching Reversal – Transforming The Newquay Line.

In that related post, I said the line needed the following.

  • An improved track layout.
  • An hourly service.
  • An improved Par station.
  • A rebuilt Newquay station with a second platform, so that more through trains can be run.

I do wonder, if after the line were to be improved, that a new three-car battery-electric train shuttling between Par and Newquay stations could be the icing on the cake.

Exeter And Barnstaple

The Tarka Line between Exeter and Barnstaple is one of several local and main lines radiating from Exeter St. David’s station.

  • The Avocet Line to Exmouth
  • The Great Western Main Line to Taunton, Bristol and London
  • The Great Western Main Line to Newton Abbott, Plymouth and Penzance
  • The Riviera Line to Paignton
  • The West of England Line to Salisbury, Basingstoke and London.

Note.

  1. The Dartmoor Line to Okehampton is under development.
  2. Several new stations are planned on the routes.
  3. I have already stated that Exeter could host a charging station between London and Penzance, but it could also be an electrified hub for battery-electric trains running hither and thither.

Exeter could be a city with a battery-electric metro.

Exeter And Penzance

Earlier, I said that I’d trial multiple chargers between Paddington and Penzance to prove the concept worked.

I said this.

I would class this route as medium risk, but with a high reward for the operator.

But it is also an enabling route, as it would enable the following battery-electric services.

  • London and Bodmin
  • London and Okehampton
  • London and Paignton and Torquay

It would also enable the Exeter battery-electric metro.

For these reasons, this route should be electrified using Hitachi’s discontinuous electrification.

Swansea And Fishguard

I mentioned Swansea earlier, as a station, that could be fitted with a charging system, as this would allow battery-electric trains between Paddington and Swansea via Cardiff.

Just as with Exeter, there must be scope at Swansea to add a small number of charging systems to develop a battery-electric metro based on Swansea.

Cumbrian Coast Line

This is a line that needs improvement, mainly for the tourists and employment it could and probably will bring.

These are a few distances.

  • West Coast Main Line (Carnforth) and Barrow-in-Furness – 28.1 miles
  • Barrow-in-Furness and Sellafield – 25 miles
  • Sellafield and Workington – 18 miles
  • Workington and West Coast Main Line (Carlisle) – 33 miles

Note.

  1. The West Coast Main Line is fully-electrified.
  2. I suspect that Barrow-in-Furness, Sellafield and Workington have good enough electricity supplies to support charging systems  for the Cumbrian Coast Line.
  3. The more scenic parts of the line would be left without wires.

It certainly is a line, where a good case for running battery-electric trains can be made.

Crewe And Holyhead

In High-Speed Low-Carbon Transport Between Great Britain And Ireland, I looked at zero-carbon travel between the Great Britain and Ireland.

One of the fastest routes would be a Class 805 train between Euston and Holyhead and then a fast catamaran to either Dublin or a suitable rail-connected port in the North.

  • The Class 805 trains could be made battery-electric.
  • The trains could run between Euston and Crewe at speeds of up to 140 mph under digital signalling.
  • Charging systems would probably be needed at Chester, Llandudno Junction and Holyhead.
  • The North Wales Coast Line looks to my untrained eyes, that it could support at least some 100 mph running.

I believe that a time of under three hours could be regularly achieved between London Euston and Holyhead.

Battery-electric trains on this route, would deliver the following benefits.

  • A fast low-carbon route from Birmingham, London and Manchester to the island of Ireland. if coupled with the latest fast catamarans at Holyhead.
  • Substantial reductions in journey times to and from Anglesey and the North-West corner of Wales.
  • Chester could become a hub for battery-electric trains to and from Birmingham, Crewe, Liverpool, Manchester and Shrewsbury.
  • Battery-electric trains could be used on the Conwy Valley Line.
  • It might even be possible to connect the various railways, heritage railways and tourist attractions in the area with zero-carbon shuttle buses.
  • Opening up of the disused railway across Anglesey.

The economics of this corner of Wales could be transformed.

My Priority Routes

To finish this section, I will list my preferred routes for this method of discontinuous electrification.

  • Exeter and Penzance
  • Swansea and Fishguard
  • Crewe and Holyhead

Note.

  1. Some of the trains needed for these routes have been delivered or are on order.
  2. Local battery-electric services could be developed at Chester, Exeter and Swansea by building on the initial systems.
  3. The collateral benefits could be high for Anglesey, West Wales and Devon and Cornwall.

I suspect too, that very little construction work not concerned with the installation of the charging systems will be needed.

Conclusion

Hitachi have come up with a feasible way to electrify Great Britain’s railways.

I would love to see detailed costings for the following.

  • Adding a battery pack to a Class 800 train.
  • Installing five miles of electrification supported by a containerised charging system.

They could be on the right side for the Treasury.

But whatever the costs, it does appear that the Japanese have gone native, with their version of the Great British Compromise.

 

 

 

 

 

 

 

 

 

 

 

July 9, 2021 Posted by | Design, Energy, Hydrogen, Transport | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | 6 Comments

The Power Of Solar With A Large Battery

This post is based on this press release from Highview Power, which is entitled Highview Enlasa Developing 50MW/500MWh Liquid Air Energy Storage Facility In The Atacama Region Of Chile.

This is the first paragraph.

Highview Enlasa, the 50/50 joint venture between Highview Power, a global leader in long duration energy storage solutions, and Energía Latina S.A.-Enlasa, the largest backup power generation provider in Chile, is pleased to announce that it is developing the first liquid air long duration energy storage project in Chile. This 50MW/500MWh (10 hours) CRYOBattery™, which represents an estimated investment of USD $150 million, will be located in Diego de Almagro in the Atacama Region.

Ican deduce these points from this paragraph.

The power output of 50 MW appears to be standard for all of Highview Power’s CRYOBatteries, which is not surprising as the centre of each system appears to be a standard turbomachinery solution from MAN Energy Solutions, as I wrote about in MAN Energy Partners With Highview Power On Liquid-Air Energy-Storage Project.

But whereas the first system at Carrington, near Manchester, can only store 250 MWh, this plant in Chile is twice the size and can provide 50 MW of electricity for ten hours. The Chile plant will just have twice the number of storage tanks for liquid air.

I can no reason, why if Carrington needed to store more electricity, that more tanks couldn’t be added.

This Google Map shows the area around the city of Diego de Almagro.

Note.

  1. The city of Diego de Almagro is in the centre of the map.
  2. In the North-Western corner is the Planta Fotovoltaica ENEL Diego de Almagro, which even my rudimentary Spanish, identifies as a solar power plant.
  3. In the North-Eastern corner of the map, is appears that a second solar power plant is under construction.

The city is surrounded by the large Atacama Desert.

This second Google Map shows the location of Diego de Almagro, with respect to the Chilean Coast.

Note.

  1. The red arrow indicates the solar powerplant at Diego de Almagro.
  2. La Paz in Bolivia is in the North-East corner of the map.
  3. The sandy-beige colour indicates the Atacama Desert.

The area would appear not to lack sun.

This extract is from the press release.

With one of the highest solar irradiations in the world, the Atacama Region has the potential to generate all the country’s electricity. By pairing solar with cryogenic energy storage, Chile can benefit from 24/7, 100% renewable energy.

The Wiukipedia entry for Solar Power In Chile, is not as optimistic as the press release, but does show the rapid growth in the amount of solar power.

Conclusion

Solar power installed with large batteries, will transform the electricity supply in countries like Australia, Chile and India and those in Africa and other places, where there are large hot deserts.

In Europe, Spain is investing heavily in solar power and is a big innovator in solar technology.

 

 

July 1, 2021 Posted by | Energy, Energy Storage | , , , , , , | Leave a comment

Soaking Up The Sun: Artificial Photosynthesis Promises Clean, Sustainable Source Of Energy

The title of this post, is the same as that of this article on Science Daily.

As the article is about research at Perdue University, this could be science to watch.

June 16, 2021 Posted by | Energy | | Leave a comment

Work Underway To Create ‘UK’s Biggest Electric Bus Charging Station’ In Glasgow

The title of this post, is the same as that of this article on edie.

This is the first paragraph.

Public transport operator First Bus has begun work to retrofit its Caledonia depot in Glasgow to host 162 electric vehicle (EV) charging points, claiming the project will be the largest of its kind in the UK once complete.

These are other points from the article.

  • The project is in two phases and both will be complete by the end of 2022.
  • Phase One will handle the charging for twenty-two buses for COP26.
  • The new chargers will be 150 kW and will be supplied by the Heliox Group.
  • First Bus aim to have a zero-emission fleet in the UK by 2035.

This Google Map shows the Caledonia depot.

Note.

  1. It is a big site.
  2. There seems plenty of space in the area.
  3. The M74 Motorway in the South-West corner of the map.
  4. Further to the South-West is the main electrified railway into Glasgow Central station.

I have some thoughts.

Power Supply

Charging up 162 electric buses at a rate of 150 kW will need an electrical feed of 24.3 MW.

To illustrate the levels of renewable power available near Glasgow, Whitelee Wind Farm is a dozen miles to the South-West.

  • It is the largest onshore wind farm in the UK and the second largest in Europe.
  • It has a nameplate capacity of 539 MW.

All of a sudden 24.3 MW of preferably renewable energy doesn’t seem such a large amount.

The grid may need strengthening to bring electricity into the First Bus Caledonia depot, but I doubt that would be the most difficult of projects.

Energy Storage

I am an enthusiast for energy storage and have invested in two companies developing energy storage systems.

My modelling of water networks in the 1970s and what I’ve read since, indicate to me, that detailed modelling would show that to support a 24.3 MW electrical supply to the depot, some amount of energy storage will be needed.

Highview Power are building a system at Carrington near Manchester, that can supply 50 MW for up to five hours.

If I was First Bus, I would be seriously looking at energy storage to support the charging of the buses.

After all, there’s nothing as useless in the morning rush hour in a city like Glasgow, than a flat battery-electric bus!

Wind Turbines And Solar Panels

How about some on site power generation?

Conclusion

Given the renewable energy available locally and First Bus’s objective of being zero-carbon by 2035, I can see Caledonia depot being enlarged in the future.

June 7, 2021 Posted by | Energy, Energy Storage, Transport | , , , | 8 Comments

Gravitricity Battery Generates First Power At Edinburgh Site

The title of this post, is the same as that of this article on the BBC.

This is the first paragraph.

A project to create electricity from gravity has generated its first power at a demonstrator site in Edinburgh.

The article gives a good explanation of the uses of the Gravitricity system and shows a video.

I suppose, I should declare an interest, in that I have invested money in Gravitricity through crowdfunding.

But then I like the concept and they are also using some of the best winch technology in the world from specialist company: Huisman.

May 27, 2021 Posted by | Energy, Energy Storage, Finance | | Leave a comment

How Siemens Gamesa Could Give Coal Plants a Second Life

This article on Greentech Media is a must-read as it makes you think. This is the sub-title.

The ETES thermal battery can offer coal plants a new life as heat and power storage hubs. The first customer for a full-size version could be on-board as early as next year.

It talks about the philosophy of reusing coal-fired power station sites and some of their equipment like turbines.

It is an idea much more applicable to countries like the US and Germany rather than the UK, as they still have lots of operational coal-fired power stations and and we only have a few.

I first came across this idea, when Highview Power were talking about their 50/MW/400 MWh installation in Vermont, which was to be built on the site of a demolished coal-fired power station. The utility company and Highview were in that case just reusing the grid connection.

But then I’ve heard of other energy storage systems using old power station sites.

And not to forget that Highview Power’s installation at Carrington is close to a gas-fired power station.

 

May 22, 2021 Posted by | Energy, Energy Storage | , , , | Leave a comment

Highview Power Unveils $1bn Of Liquid-Air Energy Storage Projects In Spain

The title of this post, is the same as that of this article on Recharge Magazine.

The article is based on this press release from Highview Power, which is entitled Highview Power Developing 2 GWh of Liquid Air Long Duration Energy Storage Projects in Spain.

This is the introductory paragraph from the press release.

Highview Power, a global leader in long duration energy storage solutions, announced today it is developing up to 2 GWh of long duration, liquid air energy storage projects across Spain for an estimated investment of around $1 billion. These projects will enable several Spanish regions to move towards their net zero emissions target.

The press release also says this about location and size.

Highview Power is planning to develop up to seven CRYOBattery™ projects ranging from 50 MW/300 MWh in Asturias, Cantabria, Castilla y Leon, and the Canary Islands.

Three of these areas are in Northern Spain and the other is a group of islands.

As Spain has at least two large pumped storage systems, perhaps geography rules this proven technology out in these areas.

System Modularity 

According to the Wikipedia entry for Highview Power, the two current CRYOBatteries under development are sized as follows.

  • Carrington, Manchester, UK – 50 MW/250 MWh – Under construction
  • Vermont, USA – 50 MW/400 MWh – Under development

Do the figures indicate that several systems will share the same 50 MW core power system, with a number of liquid air tanks to give the appropriate capacity?

I have extensively modelled chemical plants in my past to see, how different sizes work and I am fairly certain, that Highview Power have developed a design, that is extremely flexible.

It looks like if initial calculations show that a system capable of supplying 50 MW for five hours is needed, but operation proves that a capacity of six hours would be better, that all Highview Power need to do is add another 50 MWh tank.

This is surely an operator’s dream, as if say a developer builds a thousand dwellings and/or a windfarm nearby and more energy storage is needed, an appropriate number of extra tanks can be added.

Sourcing The 50 MW Core Power System

I talked about how the first system at Carrington will use a system from MAN Energy Solutions in MAN Energy Partners With Highview Power On Liquid-Air Energy-Storage Project.

This surely is an approach that minimises risk.

Sourcing The Storage Tanks

I have been searching the Internet for manufacturers of cryogenic gas tanks and I’ve found them in countries like Australia, Brazil, Germany, India, South Africa, Spain, the UK and the US.

But then most hospitals have one for their liquid oxygen.

This image was from shutterstock.

They are not difficult to find.

Spain And Renewable Energy

Spain is a large producer of renewable energy and also a leader in wind and solar power technology.

See Renewable Energy in Spain on Wikipedia for more details.

Siemens Gamesa, which was created by a merger of a German and a Spanish company and is headquartered at Zamudio in Spain,  have also developed the Siemens Gamesa ETES, which is a volcanic rock-based energy storage system about the same size of Highview Power’s CRYOBattery.

Conclusion

It looks to me, that Highview Power have closed a good sale.

May 20, 2021 Posted by | Energy, Energy Storage | , , , , | 4 Comments

Rolls-Royce Seeks Private Funds To Power Nuclear Project

The title of this post, is the same as that of this article on The Times.

The article is based on this press release on the Rolls-Royce web site, which is entitled More Power And Updated Design Revealed As Nuclear Power Team Targets First Place In The Assessment Queue In Autumn 2021.

This is the first two paragraphs.

The consortium, led by Rolls-Royce, which is creating a compact nuclear power station known as a small modular reactor (SMR), has revealed its latest design and an increase in power as it completes its first phase on time and under budget.

It has also announced it is aiming to be the first design to be assessed by regulators in the second half of 2021 in the newly-opened assessment window, which will keep it on track to complete its first unit in the early 2030s and build up to 10 by 2035.

It would appear that they are following AstraZeneca’s example and building the relationships with the regulators early, so the process of regulation doesn’t delay entry into service.

An Updated Design

These two paragraphs describe the design changes.

As the power station’s design has adjusted and improved during this latest phase – with more than 200 major engineering decisions made during this latest phase – the team has optimised the configuration, efficiency and performance criteria of the entire power station , which has increased its expected power capacity, without additional cost, from 440 megawatts (MW) to 470MW.

The refreshed design features a faceted aesthetic roof; an earth embankment surrounding the power station to integrate with the surrounding landscape; and a more compact building footprint, thanks to successes optimising the use of floor space.

These changes appear to be positive ones.

Transformation To A Focussed Business

Rolls-Royce are transforming the current consortium to an as yet unnamed stand-alone business, as detailed in this paragraph from the press release.

With a focus on continuing its progress at pace, the UK SMR team is transitioning from being a collaborative consortium to a stand-alone business, which will deliver a UK fleet of power stations to become a low carbon energy bastion alongside renewables, while securing exports to make the power station a key part of the world’s decarbonisation toolkit.

Are Rolls-Royce aiming to repeat the success they’ve had with Merlins in World War II and large turbofan engines for airliners with small modular nuclear reactors that decarbonise the world? The strategy is certainly not going against the heritage of the company.

Use Of A Small Modular Nuclear Reactor

This paragraph from the press release outlines a few uses.

The power station’s compact size makes it suitable for a variety of applications, helping decarbonise entire energy systems. Each power station can supply enough reliable low carbon power for around one million* homes, or be used to power net zero hydrogen and synthetic aviation fuel manufacturing facilities, desalination plants or energy intensive industrial sites.

Their size would appear to increase the number of applications.

Hydrogen Production

I particularly like the idea of using an SMR to produce hydrogen for chemical feedstock or to make steel.

I indicated this in Will INEOS And Rolls-Royce Get Together Over Hydrogen Production?

I estimate that a 470 MW SMR would produce around 4,900 tonnes of hydrogen per day.

The numbers certainly seem convenient.

Cost Of Energy And Capital Costs

Tom Samson, Chief Executive Officer of the UK SMR consortium is quoted as saying.

Nuclear power is central to tackling climate change, securing economic recovery and strengthening energy security. To do this it must be affordable, reliable and investable and the way we manufacture and assemble our power station brings down its cost to be comparable with offshore wind at around £50 per megawatt-hour.

Hinckley Point C has a strike price of over £80 per megawatt-hour.

The release also gives a price of around £2.2 billion per unit dropping to £1.8 billion by the time five have been completed.

Benefits To The UK

The press release lists these benefits to the UK.

  • create 40,000 regional UK jobs by 2050
  • generate £52 billion of economic benefit
  • have 80% of the plant’s components sourced from the UK
  • target an additional £250 billion of exports – memoranda of understanding are already in place with Estonia, Turkey and the Czech Republic

The value of exports would indicate export sales of over a hundred reactors.

Lifetime

The press release indicates the following about the lifetime of the reactors.

  • The reactor will operate for at least 60 years.
  • The design, which will be finalised at the end of the regulatory assessment process, proposes that all used fuel will be stored on each site for the lifetime of the plant.

I would assume that Rolls-Royce are developing a philosophy for taking the SMRs apart at the end of their life.

Construction

This paragraph from the press release talks about the construction process.

The power station’s design cuts costs by using standard nuclear energy technology used in 400 reactors around the world, so no prototyping is required. The components for the power station are manufactured in modules in factories, before being transported to existing nuclear sites for rapid assembly inside a weatherproof canopy. This replicates factory conditions for precision activities and further cuts costs by avoiding weather disruptions. The whole sequence secures efficiency savings by using streamlined and standardised processes for manufacturing and assembly, with 90% of activities carried out in factory conditions, helping maintain extremely high quality. In addition, all spoil excavated will be reused on site to build the earth embankment, removing the need for it to taken off site, reducing road journeys that are both financially and environmentally costly.

I have talked to project managers, who have assembled factory-built railway stations and their experiences would back the Rolls-Royce method of construction.

My project management knowledge would also indicate, that the construction of an SMR could be much more predictable than most construction projects, if the factory-built modules are built to the specification.

Funding

According to the article in The Times, the consortium now seems to be in line for £215 million of Government funding, which will unlock £300 million of private funding.

Conclusion

It looks like this project will soon be starting to roll.

 

May 18, 2021 Posted by | Energy, Finance | , , , , | 1 Comment

USTDA Grants $1 Million To Support Battery Storage Project In Africa

The title of this post, is the same as that of this article on Running Africa.

This is the first two paragraphs.

The United States Trade and Development Agency (USTDA), an independent body of the US government, has reportedly issued a grant of just under USD 1 million to support feasibility studies for large-scale battery storage schemes in Senegal and Mozambique.

Notably, these large-scale battery storage projects have been grouped with wind energy in Mozambique in Southeast Africa as well as Senegal in West Africa.

A Dutch company seems to be doing the development.

We need more aid projects like these, as with electricity and clean water life can be so much better!

 

May 16, 2021 Posted by | Energy, Energy Storage | , , , | 2 Comments