The Anonymous Widower

Eviation Alice Has Changed Shape

This article on Flying Magazine gives the latest status of the Eviation Alice.

If you look at the picture in the Flying Magazine article and an earlier one taken at the 2019 Paris Air Show in this article in The Times, you are looking at two different aircraft.

  • The earlier aircraft has three engines; two in the wingtips and one in the tail, a V-tail and a taildragger undercarriage.
  • The latest aircraft has two engines in pods alongside the rear fuselage, a T-tail and a tricycle undercarriage.

The latest aircraft is much more conventional. This quote from the Flying Magazine article talks about the design.

The production configuration was optimized from real-world lessons learned and customer feedback.

My feedback, as a private pilot with many hours in command of a big piston twin, would have questioned the use of a taildragger configuration with three engines and I certainly prefer the new more-conventional configuration.

Every pilot’s nightmare in a twin-engined aircraft, is an engine-failure on take-off, as it sets up forces that are difficult to control. So you make sure you can cope in that situation. With three engines, there are more difficult situations to handle.

I suspect any pilot, who did their twin training on an aircraft like a Piper Seneca, could be easily and quickly converted to the later version of the Eviation Alice. But few pilots these days learn how to fly taildraggers and this configuration with three engines in the earlier aircraft, could require a longer and more demanding conversion process.

I haven’t piloted an aircraft for twenty years, but even so, in an emergency, I would feel I could take over the current Alice, but the original configuration would have been beyond my experience.

The new more conventional configuration will probably be easier to certify.

Conclusion 

I very much agree with the change of configuration.

I hope I get a chance to fly in this aircraft soon after its planned entry into service in 2024.

Alice and other similar electric aircraft will change short-haul aviation very much for the better.

July 9, 2021 Posted by | Design, Transport | , , | Leave a comment

Solving The Electrification Conundrum

The title of this post, is the same as an article in the July 2021 Edition of Modern Railways.

This is the introductory sub-heading.

Regional and rural railways poses a huge problem for the railway to decarbonise.

Lorna McDonald of Hitachi Rail and Jay Mehta of Hitachi ABB Power Grids tell Andy Roden why they believe they have the answer.

These are my thoughts on what is said.

Battery-Electric Trains

The article starts by giving a review of battery-electric trains and their use on routes of moderate but important length.

  • Some short routes can be handled with just a charge on an electrified main line.
  • Some will need a recharge at the termini.
  • Other routes might need a recharge at some intermediate stations, with a possible increase in dwell times.

It was in February 2015, that I wrote Is The Battery Electric Multiple Unit (BEMU) A Big Innovation In Train Design?, after a ride in public service on Bombardier’s test battery-electric train based on a Class 379 train.

I also wrote this in the related post.

Returning from Harwich, I travelled with the train’s on-board test engineer, who was monitoring the train performance in battery mode on a laptop. He told me that acceleration in this mode was the same as a standard train, that the range was up to sixty miles and that only minimal instruction was needed to convert a driver familiar to the Class 379 to this battery variant.

It was an impressive demonstration, of how a full-size train could be run in normal service without connection to a power supply. I also suspect that the partners in the project must be very confident about the train and its technology to allow paying passengers to travel on their only test train.

A couple of years later, I met a lady on another train, who’d used the test train virtually every day during the trial and she and her fellow travellers felt that it was as good if not better than the normal service from a Class 360 train or a Class 321 train.

So why if the engineering, customer acceptance and reliability were proven six years ago, do we not have several battery electric trains in service?

  • There is a proven need for battery-electric trains on the Marshlink Line and the Uckfield Branch in Sussex.
  • The current Class 171 trains are needed elsewhere, so why are no plans in place for replacement trains?
  • The government is pushing electric cars and buses, but why is there such little political support for battery-electric trains?

It’s almost as if, an important civil servant in the decision process has the naive belief that battery-electric trains won’t work and if they do, they will be phenomenally expensive. So the answer is an inevitable no!

Only in the South Wales Metro, are battery-electric trains considered to be part of the solution to create a more efficient and affordable electric railway.

But as I have constantly pointed out since February 2015 in this blog, battery-electric trains should be one of the innovations we use to build a better railway.

Hydrogen Powered Trains

The article says this about hydrogen powered trains.

Hybrid hydrogen fuel cells can potentially solve the range problem, but at the cost of the fuel eating up internal capacity that would ideally be used for passengers. (and as Industry and Technology Editor Roger Ford points out, at present hydrogen is a rather dirty fuel). By contrast, there is no loss of seating or capacity in a Hitachi battery train.

I suspect the article is referring to the Alstom train, which is based on the technology of the Alstom Coradia iLint.

I have ridden this train.

  • It works reliably.
  • It runs on a 100 km route.
  • The route is partially electrified, but the train doesn’t have a pantograph.
  • It has a very noisy mechanical transmission.

Having spoken to passengers at length, no-one seemed bothered by the Hindenburg possibilities.

It is certainly doing some things right, as nearly fifty trains have been ordered for train operating companies in Germany.

Alstom’s train for the UK is the Class 600 train, which will be converted from a four-car Class 321 train.

Note.

  1. Half of both driver cars is taken up by a hydrogen tank.
  2. Trains will be three-cars.
  3. Trains will be able to carry as many passengers as a two-car Class 156 train.

It is an inefficient design that can be improved upon.

Porterbrook and Birmingham University appear to have done that with their Class 799 train.

  • It can use 25 KVAC overhead or 750 VDC third-rail electrification.
  • The hydrogen tanks, fuel cell and other hydrogen gubbins are under the floor.

This picture from Network Rail shows how the train will appear at COP26 in Glasgow in November.

Now that’s what I call a train! Let alone a hydrogen train!

Without doubt, Porterbrook and their academic friends in Birmingham will be laying down a strong marker for hydrogen at COP26!

I know my hydrogen, as my first job on leaving Liverpool University with my Control Engineering degree in 1968 was for ICI at Runcorn, where I worked in a plant that electrolysed brine into hydrogen, sodium hydroxide and chlorine.

My life went full circle last week, when I rode this hydrogen powered bus in London.

The hydrogen is currently supplied from the same chemical works in Runcorn, where I worked. But plans have been made at Runcorn, to produce the hydrogen from renewable energy, which would make the hydrogen as green hydrogen of the highest standard. So sorry Roger, but totally carbon-free hydrogen is available.

The bus is a Wightbus Hydroliner FCEV and this page on the Wrightbus web site gives the specification. The specification also gives a series of cutaway drawings, which show how they fit 86 passengers, all the hydrogen gubbins and a driver into a standard size double-deck bus.

I believe that Alstom’s current proposal is not a viable design, but I wouldn’t say that about the Porterbrook/Birmingham University design.

Any Alternative To Full Electrification Must Meet Operator And Customer Expectations

This is a paragraph from the article.

It’s essential that an alternative traction solution offers the same levels of performance and frequency, while providing an increase in capacity and being economically viable.

In performance, I would include reliability. As the on-board engineer indicated on the Bombardier  test train on the Harwich branch, overhead electrification is not totally reliable, when there are winds and/or criminals about.

Easy Wins

Hitachi’s five-car Class 800 trains and Class 802 trains each have three diesel engines and run the following short routes.

  • Kings Cross and Middlesbrough- 21 miles not electrified – Changeover in Northallerton station
  • Kings Cross and Lincoln – 16.6 miles not electrified – Changeover in Newark Northgate station
  • Paddington and Bedwyn – 13.3 miles not electrified – Changeover in Newbury station
  • Paddington and Oxford – 10.3 miles not electrified – Changeover in Didcot Parkway station

Some of these routes could surely be run with a train, where one diesel engine was replaced by a battery-pack.

As I’m someone, who was designing, building and testing plug-compatible transistorised electronics in the 1960s to replace  older valve-based equipment in a heavy engineering factory, I suspect that creating a plug-compatible battery-pack that does what a diesel engine does in terms of power and performance is not impossible.

What would be the reaction to passengers, once they had been told, they had run all the way to or from London without using any diesel?

Hopefully, they’d come again and tell their friends, which is what a train operator wants and needs.

Solving The Electrification Conundrum

This section is from the article.

Where electrification isn’t likely to be a viable proposition, this presents a real conundrum to train operators and rolling stock leasing companies.

This is why Hitachi Rail and Hitachi ABB Power Grids are joining together to present a combined battery train and charging solution to solve this conundrum. In 2020, Hitachi and ABB’s Power Grids business, came together in a joint venture, and an early outcome of this is confidence that bringing together their expertise in rail, power and grid management, they can work together to make electrification simpler cheaper and quicker.

I agree strongly with the second paragraph, as several times, I’ve been the mathematician and simulation expert in a large multi-disciplinary engineering project, that went on to be very successful.

The Heart Of The Proposition

This is a paragraph from the article.

The proposition is conceptually simple. Rather than have extended dwell times at stations for battery-powered trains, why not have a short stretch of 25 KVAC overhead catenary (the exact length will depend on the types of train and the route) which can charge trains at linespeed on the move via a conventional pantograph?

The article also mentions ABB’s related expertise.

  • Charging buses all over Europe.
  • Creating the power grid for the Great Western Electrification to Cardiff.

I like the concept, but then it’s very similar to what I wrote in The Concept Of Electrification Islands in April 2020.

But as they are electrical power engineers and I’m not, they’d know how to create the system.

Collaboration With Hyperdrive Innovation

The article has nothing negative to say about the the collaboration with Hyperdrive Innovation to produce the battery-packs.

Route Modelling

Hitachi appear to have developed a sophisticated route modelling system, so that routes and charging positions can be planned.

I would be very surprised if they hadn’t developed such a system.

Modular And Scalable

This is a paragraph from the article.

In the heart of the system is a containerised modular solution containing everything needed to power a stretch of overhead catenary to charge trains. A three-car battery train might need one of these, but the great advantage is that it is scalable to capacity and speed requirements.

This all sounds very sensible and can surely cope with a variety of lines and traffic levels.

It also has the great advantage , that if a line is eventually electrified, the equipment can be moved on to another line.

Financing Trains And Chargers

The article talks about the flexibility of the system from an operator’s point of view with respect to finance.

I’ve had some good mentors in the area of finance and I know innovative finance contributed to the success of Metier Management Systems, the project management company I started with three others in 1977.

After selling Metier, I formed an innovative finance company, which would certainly have liked the proposition put forward in the article.

No Compromise, Little Risk

I would agree with this heading of the penultimate section of the article.

In February 2015, when I rode that Class 379 train between Manningtree and Harwich, no compromise had been made by Bombardier and it charged in the electrified bay platform at Manningtree.

But why was that train not put through an extensive route-proving exercise in the UK after the successful trial at Manningtree?

  • Was it the financial state of Bombardier?
  • Was it a lack of belief on the part of politicians, who were too preoccupied with Brexit?
  • Was it that an unnamed civil servant didn’t like the concept and stopped the project?

Whatever the reason, we have wasted several years in getting electric trains accepted on UK railways.

If no compromise needs to be made to create a battery-electric train, that is equivalent to the best-in-class diesel or electric multiple units, then what about the risk?

The beauty of Hitachi’s battery-electric train project is that it can be done in phases designed to minimise risk.

Phase 1 – Initial Battery Testing 

Obviously, there will be a lot of bench testing in a laboratory.

But I also believe that if the Class 803 trains are fitted with a similar battery from Hyperdrive Innovation, then this small fleet of five trains can be used to test a lot of the functionality of the batteries initially in a test environment and later in a real service environment.

The picture shows a Class 803 train under test through Oakleigh Park station.

This phase would be very low risk, especially where passengers are concerned.

Phase 2 – Battery Traction Testing And Route Proving

I am a devious bastard, when it comes to software development. The next set of features would always be available for me to test earlier, than anybody else knew.

I doubt that the engineers at Hyperdrive Innovation will be any different.

So I wouldn’t be surprised to find out that the batteries in the Class 803 trains can also be used for traction, if you have the right authority.

We might even see Class 803 trains turning up in some unusual places to test the traction abilities of the batteries.

As East Coast Trains, Great Western Railway and Hull Trains are all First Group companies, I can’t see any problems.

I’m also sure that Hitachi could convert some Class 800 or Class 802 trains and add these to the test fleet, if East Coast Trains need their Class 803 trains to start service.

This phase would be very low risk, especially where passengers are concerned.

Possibly, the worse thing, that could happen would be a battery failure, which would need the train to be rescued.

Phase 3 – Service Testing On Short Routes

As I indicated earlier, there are some easy routes between London and places like Bedwyn, Lincoln, Middlesbrough and Oxford, that should be possible with a Class 800 or Class 802 train fitted with the appropriate number of batteries.

Once the trains have shown, the required level of performance and reliability, I can see converted Class 800, 801 and Class 802 trains entering services on these and other routes.

Another low risk phase, although passengers are involved, but they are probably subject to the same risks, as on an unmodified train.

Various combinations of diesel generators and batteries could be used to find out, what is the optimum combination for the typical diagrams that train operators use.

Hitachi didn’t commit to any dates, but I can see battery-electric trains running on the Great Western Railway earlier than anybody thinks.

Phase 4 – Service Testing On Medium Routes With A Terminal Charger System

It is my view that the ideal test route for battery-electric trains with a terminal charger system would be the Hull Trains service between London Kings Cross and Hull and Beverley.

The route is effectively in three sections.

  • London Kings Cross and Temple Hirst junction – 169.2 miles – Full Electrification
  • Temple Hirst junction and Hull station – 36.1 miles – No Electrification
  • Hull station and Beverley station – 8.3 miles – No Electrification

Two things would be needed to run zero-carbon electric trains on this route.

  • Sufficient battery capacity in Hull Trains’s Class 802 trains to reliably handle the 36.1 miles between Temple Hirst junction and Hull station.
  • A charging system in Hull station.

As Hull station also handles other Class 800 and Class 802 trains, there will probably be a need to put a charging system in more than one platform.

Note.

  1. Hull station has plenty of space.
  2. No other infrastructure work would be needed.
  3. There is a large bus interchange next door, so I suspect the power supply to Hull station is good.

Hull would be a very good first destination for a battery-electric InterCity train.

Others would include Bristol, Cheltenham, Chester, Scarborough, Sunderland and Swansea.

The risk would be very low, if the trains still had some diesel generator capacity.

Phase 5 – Service Testing On Long Routes With Multiple Charger Systems

Once the performance and reliability of the charger systems have been proven in single installations like perhaps Hull and Swansea stations, longer routes can be prepared for electric trains.

This press release from Hitachi is entitled Hitachi And Eversholt Rail To Develop GWR Intercity Battery Hybrid Train – Offering Fuel Savings Of More Than 20%.

The press release talks about Penzance and London, so would that be a suitable route for discontinuous electrification using multiple chargers?

These are the distances between major points on the route between Penzance and London Paddington.

  • Penzance and Truro – 35.8 miles
  • Truro and Bodmin Parkway – 26.8 miles
  • Bodmin Parkway and Plymouth – 26.9 miles
  • Plymouth and Newton Abbot – 31,9 miles
  • Newton Abbot and Exeter – 20.2 miles
  • Exeter and Taunton – 30.8 miles
  • Taunton and Westbury – 47.2 miles
  • Westbury and Newbury – 42.5 miles
  • Newbury and Paddington – 53 miles

Note.

  1. Only Newbury and Paddington is electrified.
  2. Trains generally stop at Plymouth, Newton Abbott, Exeter and Taunton.
  3. Services between Paddington and Exeter, Okehampton, Paignton, Penzance, Plymouth and Torquay wouldn’t use diesel.
  4. Okehampton would be served by a reverse at Exeter.
  5. As Paignton is just 8.1 miles from Newton Abbot, it probably wouldn’t need a charger.
  6. Bodmin is another possible destination, as Great Western Railway have helped to finance a new platform at Bodmin General station.

It would certainly be good marketing to run zero-carbon electric trains to Devon and Cornwall.

I would class this route as medium risk, but with a high reward for the operator.

In this brief analysis, it does look that Hitachi’s proposed system is of a lower risk.

A Few Questions

I do have a few questions.

Are The Class 803 Trains Fitted With Hyperdrive Innovation Batteries?

East Coast Trains‘s new Class 803 trains are undergoing testing between London Kings Cross and Edinburgh and they can be picked up on Real Time Trains.

Wikipedia says this about the traction system for the trains.

While sharing a bodyshell with the previous UK A-train variants, the Class 803 differs in that it has no diesel engines fitted. They will however be fitted with batteries to enable the train’s on-board services to be maintained, in case the primary electrical supplies have failed.

Will these emergency batteries be made by Hyperdrive Innovation?

My experience of similar systems in other industries, points me to the conclusion, that all Class 80x trains can be fitted with similar, if not identical batteries.

This would give the big advantage of allowing battery testing to be performed on Class 803 trains under test, up and down the East Coast Main Line.

Nothing finds faults in the design and manufacture of something used in transport, than to run it up and down in real conditions.

Failure of the catenary can be simulated to check out emergency modes.

Can A Class 801 Train Be Converted Into A Class 803 Train?

If I’d designed the trains, this conversion would be possible.

Currently, the electric Class 801 trains have a single diesel generator. This is said in the Wikipedia entry for the Class 800 train about the Class 801 train.

These provide emergency power for limited traction and auxiliaries if the power supply from the overhead line fails.

So it looks like the difference between the powertrain of a Class 801 train and a Class 803 train, is that the Class 801 train has a diesel generator and the Class 803 train has batteries. But the diesel generator and batteries, would appear to serve the same purpose.

Surely removing diesel from a Class 801 train would ease the maintenance of the train!

Will The System Work With Third-Rail Electrification?

There are three routes that if they were electrified would probably be electrified with 750 DC third-rail electrification, as they have this electrification at one or both ends.

  • Basingstoke and Exeter
  • Marshlink Line
  • Uckfield branch

Note.

  1. Basingstoke and Exeter would need a couple of charging systems.
  2. The Marshlink line would need a charging system at Rye station.
  3. The Uckfield branch would need a charging system at Uckfield station.

I am fairly certain as an Electrical Engineer, that the third-rails would only need to be switched on, when a train is connected and needs a charge.

I also feel that on some scenic and other routes, 750 VDC third-rail electrification may be more acceptable , than 25 KVAC  overhead electrification. For example, would the heritage lobby accept overhead wires through a World Heritage Site or on top of a Grade I Listed viaduct?

I do feel that the ability to use third-rail 750 VDC third-rail electrification strategically could be a useful tool in the system.

Will The System Work With Lightweight Catenary?

I like the design of this 25 KVAC overhead electrification, that uses lightweight gantries, which use laminated wood for the overhead structure.

There is also a video.

Electrification doesn’t have to be ugly and out-of-character with the surroundings.

Isuspect that both systems could work together.

 

Would Less Bridges Need To Be Rebuilt For Electrification?

This is always a contentious issue with electrification, as rebuilding bridges causes disruption to both rail and road.

I do wonder though by the use of careful design, that it might be possible to arrange that the sections of electrification and the contentious bridges were kept apart, with the bridges arranged to be in sections, where the trains ran on batteries.

I suspect that over the years as surveyors and engineers get more experienced, better techniques will evolve to satisfy all parties.

Get this right and it could reduce the cost of electrification on some lines, that will be difficult to electrify.

How Secure Are The Containerised Systems?

Consider.

  • I was delayed in East Anglia two years ago, because someone stole the overhead wires at two in the morning.
  • Apparently, overhead wire stealing is getting increasingly common in France and other parts of Europe.

I suspect the containerised systems will need to be more secure than those used for buses, which are not in isolated locations.

Will The Containerised Charging Systems Use Energy Storage?

Consider.

  • I’ve lived in rural locations and the power grids are not as good as in urban areas.
  • Increasingly, batteries of one sort or another are being installed in rural locations to beef up local power supplies.
  • A new generation of small-footprint eco-friendly energy storage systems are being developed.

In some locations, it might be prudent for a containerised charging system to share a battery with the local area.

Will The Containerised Charging Systems Accept Electricity From Local Sources Like Solar Farms?

I ask the question, as I know at least one place on the UK network, where a line without electrification runs through a succession of solar farms.

I also know of an area, where a locally-owned co-operative is planning a solar farm, which they propose would be used to power the local main line.

Will The System Work With Class 385 Trains?

Hitachi’s Class 385 trains are closely related to the Class 80x trains, as they are all members of Hitachi’s A-Train family.

Will the Charging Systems Charge Other Manufacturers Trains?

CAF and Stadler are both proposing to introduce battery-electric trains in the UK.

I also suspect that the new breed of electric parcel trains will include a battery electric variant.

As these trains will be able to use 25 KVAC overhead electrification, I would expect, that they would be able to charge their batteries on the Hitachi ABB  charging systems.

Will The System Work With Freight Trains?

I believe that freight services will split into two.

Heavy freight will probably use powerful hydrogen-electric locomotives.

In Freightliner Secures Government Funding For Dual-Fuel Project, which is based on a Freightliner press release, I detail Freightliner’s decarbonisation strategy, which indicates that in the future they will use hydrogen-powered locomotives.

But not all freight is long and extremely heavy and I believe that a battery-electric freight locomotive will emerge for lighter duties.

There is no reason it could not be designed to be compatible with Hitachi’s charging system.

In Is This The Shape Of Freight To Come?, I talked about the plans for 100 mph parcel services based on redundant electric multiple units. Eversholt Rail Group have said they want a Last-Mile capability for their version of these trains.

Perhaps they need a battery-electric capability, so they can deliver parcels and shop supplies to the remoter parts of these islands?

Where Could Hitachi’s System Be Deployed?

This is the final paragraph from the article.

Hitachi is not committing to any routes yet, but a glance at the railway map shows clear potential for the battery/OLE-technology to be deployed on relatively lightly used rural and regional routes where it will be hard to make a case for electrification. The Cambrian Coast and Central Wales Lines would appear to be worthy candidates, and in Scotland, the West Highland Line and Far North routes are also logical areas for the system to be deployed.

In England, while shorter branch lines could simply be operated by battery trains, longer routes need an alternative. Network Rail’s Traction Decarbonisation Network Strategy interim business case recommends hydrogen trains for branch lines in Norfolk, as well as Par to Newquay and Exeter to Barnstaple. However, it is also entirely feasible to use the system on routes likely to be electrified much later in the programme, such as the Great Western main line West of Exeter, Swansea to Fishguard and parts of the Cumbrian Coast Line.

Everyone is entitled to their own opinion and mine would be driven by high collateral benefits and practicality.

These are my thoughts.

Long Rural Lines

The Cambrian, Central Wales (Heart Of Wales), Far North and West Highland Lines may not be connected to each other, but they form a group of rail routes with a lot of shared characteristics.

  • All are rural routes of between 100 and 200 miles.
  • All are mainly single track.
  • They carry occasional freight trains.
  • They carry quite a few tourists, who are there to sample, view or explore the countryside.
  • All trains are diesel.
  • Scotrail have been experimenting with attaching Class 153 trains to the trains on the West Highland Line to act as lounge cars and cycle storage.

Perhaps we need a long-distance rural train with the following characteristics.

  • Four or possibly five cars
  • Battery-electric power
  • Space for a dozen cycles
  • A lounge car
  • Space for a snack trolley
  • Space to provide a parcels service to remote locations.

I should also say, that I’ve used trains on routes in countries like Germany, Poland and Slovenia, where a similar train requirement exists.

Norfolk Branch Lines

Consider.

  • North of the Cambridge and Ipswich, the passenger services on the branch lines and the important commuter routes between Cambridge and Norwich and Ipswich are run by Stadler Class 755 trains, which are designed to be converted to battery-electric trains.
  • Using Hitachi chargers at Beccles, Bury St. Edmunds, Lowestoft, Thetford and Yarmouth and the existing electrification, battery-electric Class 755 trains could provide a zero-carbon train service for Norfolk and Suffolk.
  • With chargers at Dereham and March, two important new branch lines could be added and the Ipswich and Peterborough service could go hourly and zero carbon.
  • Greater Anglia have plans to use the Class 755 trains to run a London and Lowestoft service.
  • Could they be planning a London and Norwich service via Cambridge?
  • Would battery-electric trains running services over Norfolk bring in more visitors by train?

Hitachi may sell a few chargers to Greater Anglia, but I feel they have enough battery-electric trains.

Par And Newquay

The Par and Newquay Line or the Atlantic Coast Line, has been put forward as a Beeching Reversal project, which I wrote about in Beeching Reversal – Transforming The Newquay Line.

In that related post, I said the line needed the following.

  • An improved track layout.
  • An hourly service.
  • An improved Par station.
  • A rebuilt Newquay station with a second platform, so that more through trains can be run.

I do wonder, if after the line were to be improved, that a new three-car battery-electric train shuttling between Par and Newquay stations could be the icing on the cake.

Exeter And Barnstaple

The Tarka Line between Exeter and Barnstaple is one of several local and main lines radiating from Exeter St. David’s station.

  • The Avocet Line to Exmouth
  • The Great Western Main Line to Taunton, Bristol and London
  • The Great Western Main Line to Newton Abbott, Plymouth and Penzance
  • The Riviera Line to Paignton
  • The West of England Line to Salisbury, Basingstoke and London.

Note.

  1. The Dartmoor Line to Okehampton is under development.
  2. Several new stations are planned on the routes.
  3. I have already stated that Exeter could host a charging station between London and Penzance, but it could also be an electrified hub for battery-electric trains running hither and thither.

Exeter could be a city with a battery-electric metro.

Exeter And Penzance

Earlier, I said that I’d trial multiple chargers between Paddington and Penzance to prove the concept worked.

I said this.

I would class this route as medium risk, but with a high reward for the operator.

But it is also an enabling route, as it would enable the following battery-electric services.

  • London and Bodmin
  • London and Okehampton
  • London and Paignton and Torquay

It would also enable the Exeter battery-electric metro.

For these reasons, this route should be electrified using Hitachi’s discontinuous electrification.

Swansea And Fishguard

I mentioned Swansea earlier, as a station, that could be fitted with a charging system, as this would allow battery-electric trains between Paddington and Swansea via Cardiff.

Just as with Exeter, there must be scope at Swansea to add a small number of charging systems to develop a battery-electric metro based on Swansea.

Cumbrian Coast Line

This is a line that needs improvement, mainly for the tourists and employment it could and probably will bring.

These are a few distances.

  • West Coast Main Line (Carnforth) and Barrow-in-Furness – 28.1 miles
  • Barrow-in-Furness and Sellafield – 25 miles
  • Sellafield and Workington – 18 miles
  • Workington and West Coast Main Line (Carlisle) – 33 miles

Note.

  1. The West Coast Main Line is fully-electrified.
  2. I suspect that Barrow-in-Furness, Sellafield and Workington have good enough electricity supplies to support charging systems  for the Cumbrian Coast Line.
  3. The more scenic parts of the line would be left without wires.

It certainly is a line, where a good case for running battery-electric trains can be made.

Crewe And Holyhead

In High-Speed Low-Carbon Transport Between Great Britain And Ireland, I looked at zero-carbon travel between the Great Britain and Ireland.

One of the fastest routes would be a Class 805 train between Euston and Holyhead and then a fast catamaran to either Dublin or a suitable rail-connected port in the North.

  • The Class 805 trains could be made battery-electric.
  • The trains could run between Euston and Crewe at speeds of up to 140 mph under digital signalling.
  • Charging systems would probably be needed at Chester, Llandudno Junction and Holyhead.
  • The North Wales Coast Line looks to my untrained eyes, that it could support at least some 100 mph running.

I believe that a time of under three hours could be regularly achieved between London Euston and Holyhead.

Battery-electric trains on this route, would deliver the following benefits.

  • A fast low-carbon route from Birmingham, London and Manchester to the island of Ireland. if coupled with the latest fast catamarans at Holyhead.
  • Substantial reductions in journey times to and from Anglesey and the North-West corner of Wales.
  • Chester could become a hub for battery-electric trains to and from Birmingham, Crewe, Liverpool, Manchester and Shrewsbury.
  • Battery-electric trains could be used on the Conwy Valley Line.
  • It might even be possible to connect the various railways, heritage railways and tourist attractions in the area with zero-carbon shuttle buses.
  • Opening up of the disused railway across Anglesey.

The economics of this corner of Wales could be transformed.

My Priority Routes

To finish this section, I will list my preferred routes for this method of discontinuous electrification.

  • Exeter and Penzance
  • Swansea and Fishguard
  • Crewe and Holyhead

Note.

  1. Some of the trains needed for these routes have been delivered or are on order.
  2. Local battery-electric services could be developed at Chester, Exeter and Swansea by building on the initial systems.
  3. The collateral benefits could be high for Anglesey, West Wales and Devon and Cornwall.

I suspect too, that very little construction work not concerned with the installation of the charging systems will be needed.

Conclusion

Hitachi have come up with a feasible way to electrify Great Britain’s railways.

I would love to see detailed costings for the following.

  • Adding a battery pack to a Class 800 train.
  • Installing five miles of electrification supported by a containerised charging system.

They could be on the right side for the Treasury.

But whatever the costs, it does appear that the Japanese have gone native, with their version of the Great British Compromise.

 

 

 

 

 

 

 

 

 

 

 

July 9, 2021 Posted by | Design, Energy, Hydrogen, Transport | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | 6 Comments

Approaching Kings Cross – 5th July 2021

I took these pictures approaching Kings Cross.

Reports say most of the work of the remodelling is now complete. Although, it did look to me that in places more tracks could be laid.

The Length Of The Long Platforms At Kings Cross

This repeat of the last picture in the gallery shows the length of the nine long platforms.

Note.

  1. The train is in Platform 3.
  2. The train is an eight-car Class 700 train.
  3. Eight-car units are 162 metres long.
  4. Twelve-car units are 242.6 metres long.

Platform 3 is obviously long enough to take the following trains.

This Google Map shows the ends of the platforms at Kings Cross.

Note.

  1. The long platforms at the right are 2 and 3.
  2. Platform 2 and 3 are wide.
  3. Two LNER Azumas are in Platforms 5 and 6.

It looks to me that whilst all platforms can probably handle the standard British Rail length of 240 metres, those on the right may be able to handle longer trains. But what trains? These are my thoughts.

Longer LNER Azumas

This document on the Hitachi Rail web site is entitled Development of Class 800/801 High-speed Rolling Stock for UK Intercity Express Programme.

The document says that Class 80x trains have a sophisticated Train Control and Management System (TCMS).

The document says that this is one of the functions of the TCMS.

To simplify the rearrangement and management of train configurations, functions are provided for
identifying the train (Class 800/801), for automatically determining the cars in the trainset and its total length,
and for coupling and uncoupling up to 12 cars in normal and 24 cars in rescue or emergency mode.

I would assume that with the purchase of extra cars, that it might be possible to lengthen trains to up to twelve cars.

Lengths would be as follows.

  • Ten-car Class 80x train – 260 metres.
  • Eleven-car Class 80x train – 276 metres.
  • Twelve-car Class 80x train – 312 metres.

To add extra capacity on the routes to Leeds and Edinburgh services, there must be a balance between these factors.

  • The cost of extra cars.
  • The cost of platform lengthening.

There must of course be space for any platform lengthening.

It would seem to me, that common sense should allow twelve-car trains to be handled at King’s Cross, as this must be one of the best ways of adding capacity to East Coast Main Line services.

Caledonian Sleeper

The Caledonian Sleeper doesn’t normally run into King’s Cross, but during the rebuilding Euston for High Speed Two, it may be necessary to provide an alternative platform.

Unfortunately, the sixteen-car Caledonian sleeper trains are 352 metres long. So it would appear that Kings Cross would not be a temporary alternative.

But given the amount of money being invested in sleeper trains in Europe by the likes of Midnight Trains and NightJet, I can see that the Caledonian Sleeper might have another problem – success and the need for more capacity.

So I wouldn’t rule out an East Coast Main Line sleeper train between London Kings Cross and Edinburgh.

It might call at Stevenage, Newcastle and Berwick to widen its passenger base, just as the current sleeper calls at Watford, Carlisle and Carstairs.

The train could be extended to Aberdeen, to simplify services in Scotland.

Obviously, traffic and finance would decide, but I wouldn’t rule out the Caledonian Sleeper running to and from King’s Cross for a few years yet.

A Night Light Freight Terminal

In Is This The Shape Of Freight To Come?, I wrote about the new generation of fast electric freight trains, based on redundant electric multiple units.

  • If you look at Real Time Trains, you will find that few trains use King’s Cross station between two and five in the morning.
  • Platforms can take a twelve-car version of these electric freight trains.
  • The new platforms are wide and level.
  • Local delivery could use electric vehicles and bikes.

I think King’s Cross has possibilities for handling goods like food, parcels and shop supplies.

The Short Platforms At Kings Cross

When I was a child, King’s Cross had four short suburban platforms, where N2 steam tank engines hauled suburban services in and out of the station.

The suburban platforms have now been reduced to two platforms, that fit in with the current uses of the station.

  • The two platforms are numbered 9 and 10.
  • They can handle an eight-car Class 700 train, which is 162 metres long.
  • They can handle a five-car Class 800 train, which is 130 metres long.
  • Some five-car services run by the new Hitachi trains use these platforms.

These pictures show the platforms.

Note.

  1. The platforms are wide.
  2. The picture of the Azuma in Platform 9 was taken before the centre track was removed recently.
  3. Today, one LNER Azuma departed from Platform 9 to go to Lincoln, but both platforms were busy with Great Northern services to Cambridge, Ely and Kings Lynn.

I do wonder if the platforms could be used for light freight, during the night.

Conclusion

King’s Cross is not just one of the UK’s finest railway stations, which is recognised by its Grade I Listed status, but it is now moving towards an efficient, high-capacity station that works around the clock!

 

 

July 6, 2021 Posted by | Design, Transport | , , , , , , , | Leave a comment

Watford Junction Station’s Barrier Seats

I quite like these seats at Watford Junction station.

They would appear to give a nice perch to sit, whilst waiting for the train and also act as a crush barrier for the glass shelter behind.

They also give me something to hold, when a train goes through.

The train shown in the picture was a Tesco train between Tilbury and Daventry.

It went through the station at probably over 60 mph.

It had the usual smelly and polluting Class 66 on the front.

It took four hours 45 minutes for the journey, which included the Gospel Oak and Barking Line through London.

I did note earlier that the train seemed to be using modern wagons.

Are these wagons faster than those you generally see on UK railways?

Surely too, this is the type of train, that could be hauled by an electric locomotive with a Last-Mile capability, like a Class 88 Locomotive.

I would have thought, that Tesco could benefit, by using electric haulage, especially if the locomotive was appropriately liveried.

 

July 6, 2021 Posted by | Design, Transport | , , , | 2 Comments

Is This The Shape Of Freight To Come?

This article on Rail Advent is entitled Eversholt Rail Unveils First Swift Express Freight Train In Doncaster.

It is a full report on the first of a new breed of freight trains based on redundant 100 mph electric multiple units.

Three Rail Problems

The rail industry, its financiers and customers have a lot of problems, they’d like to solve, but these three seem to be coming together to create a whole new industry.

Rolling Stock Leasing Companies Have A Surplus Of Redundant Rolling Stock

 

Most of the released rolling stock has been made redundant because of the arrival of new trains.

What will be left will be a an assortment, which will contain a lot of trains with these characteristics.

  • Four cars
  • Can run in formations of 4, 8 and 12 cars
  • Electrically-powered.
  • Some trains are even dual voltage.
  • 100 mph operating speed.
  • Good reliability.
  • Easy maintenance and modification if needed.

Many were even built over thirty years ago by British Rail Engineering Ltd.

As someone, who used to part-own a company that leased trucks to operators, I know that to maximise cash-flow and ultimately profits, you don’t want them sitting in a yard or a siding.

Conversion to zero carbon is one option.

  • Porterbrook have said they will convert the Class 350 trains, that they own to battery-electric operation.
  • Porterbrook have also converted some Class 319 trains to electro-diesel Class 769 trains.
  • Porterbrook have also converted a Class 319 train to hydrogen operation.
  • Eversholt Rail Group and Alstom are converting Class 321 trains to hydrogen operation.

I also believe that the redundant Class 379 trains will also be converted to battery-electric operation.

But there will still be a substantial number of quality trains, that need a second life.

The Growth Of Parcel Freight

Parcel freight traffic driven by on-line shopping, has boomed in the pandemic.

This type of traffic often originates from outside of the UK and enters the country at places like London Gateway or East Midlands Airport.

Much of it is currently distributed to large cities by truck, which in this day and age is not a green option, or even an option at all.

Rail Operations Group have leased ten Class 769 trains and 9 Class 319 trains with the intention of running parcel services under the Orion brand. I wrote about this proposal in A Freight Shuttle For Liverpool Street Station Planned.

Road Congestion

Road congestion is getting worse and there is bir much point in having product stuck on the motorway, when it can be running along at a 100 mph on an electrified rail line.

The Need For Just-In-Time Deliveries

Many factories these days work on the Just-In-Time principle, with product delivered just as its needed.

As an example Toyota build their cars at Burnaston near Derby, but the engines are built in North Wales. I suspect that they go across the country by truck.

Looking at maps, the engine plant could be rail connected and I feel one could be arranged at Burnaston.

Do they keep a good stock of engines at Burnaston?

I can see several situations like this needing a regular company train.

Fast Food

Because of Brexit we will need to be growing more of our own food.

Traditionally, the Class 43 power cars of InterCity 125 trains carried flowers and fish up from Cornwall.

So will we see rail provide an alternative.

Conclusion

Put these problems together and you can see a fair number of four-car electric multiple units being converted to short 100 mph electric freight trains.

Eversholt Rail Group‘s Swift Express Freight Train is very much a demonstrator for their ideas and it has some expected and unexpected features.

Based On A Class 321 train

The train is based on a four-car Class 321 train.

I rode one recently and I timed it at over 90 mph on the way to Southend.

Trolley Cages

Pictures in the Rail Advent article show a stripped-bare interior with a steel floor, with another picture showing three supermarket trolley cages arranged across the train.

One estimate in the article says that each coach can handle over fifty of these cages and up to nine-and-a-half tonnes of cargo.

Four Seats And A Toilet

Eversholt feel that some of the trains could be used in a Travelling Post Office mode and there may be a need for sorting en route, so two first-class seats, two second-class seats and a toilet are provided.

This train would enable an Anglo-Scottish parcel service.

  • It might stop several times en route.
  • At each stop parcels would be rolled out and in, perhaps with the help of a Harrington Hump.
  • The on-train staff would sort the incoming parcels and put them in the required trolley for offloading.

I don’t think though, they’ll be delivering postal orders.

A Last Mile Capability

The article also disclosed that Eversholt were thinking of fitting a Last-Mile capability to the Swift Express Freight Train.

Batteries were mentioned and they would obviously work.

But one development recently is Porterbrook’s HydroFlex train, which has converted a Class 319 train to hydrogen power.

  • The conversion was done by Birmingham University.
  • It appears that all the hydrogen gubbins is underneath the floor, so cargo capacity would not be reduced.

I suspect underfloor hydrogen power could be very viable in an express freight train.

Fleet Size

The article talks of a fleet size of twenty and also says that the first train has been leased to an unnamed parcel distributor in the UK.

July 3, 2021 Posted by | Design, Finance, Transport | , , , , , , , , , , , | 6 Comments

Wrightbus Presents Their First Battery-Electric Bus

The title of this post, is the same as that of this article on electrive.

This is the first paragraph.

The Northern Irish bus manufacturer Wrightbus presents its first battery-electric vehicle in its portfolio: a double-decker bus called StreetDeck Electroliner. Until now, the Northern Irish manufacturer has been known primarily for its hydrogen-powered buses.

In My First Ride In A Hydrogen-Powered Double-Deck Bus, I rode in a Wrightbus StreetDeck Hydroliner FCEV, so these pictures of that bus, will at least show the external style of the StreetDeck Electroliner BEV.

These two links show the web page for each product on the Wrightbus web site.

Wrightbus StreetDeck Electroliner BEV

Wrightbus StreetDeck Hydroliner FCEV

Wrightbus on their web page announce the Electroliner with a headline of The Electric Bus Perfected.

This is the first paragraph of the web page.

Meet the electric bus from the future of environmentally friendly transport. Our StreetDeck Electroliner is built with features to inspire the next wave of electric transport including best in class range to cover most duty cycles, modern passenger-focused amenities, best in class charge time, and many more. Making every kilometer a new sustainability milestone.

These are some features of the bus, gleaned from Wrightbus web page and the electrive article.

Battery Power

The Wrightbus web page says this about the batteries.

StreetDeck Electroliner’s maximum power from a 454kW zero-emission battery electric powertrain is the highest battery capacity for a UK Double Deck bus. It powers it to a leading range of up to 200 miles and a fast charge time of just 2.5 hours ensures longer journeys with fewer refueling breaks. Our commitment to greener transport is also strengthened with an optional 8-year battery warranty.

Note.

  1. On the Wrightbus web page, a cutaway drawing appears to show batteries everywhere.
  2. Reading the Wrightbus web page, the specification says that there are two battery sizes available; 340 kWh and 454 kWh.

They certainly seem to have all angles covered with batteries.

According to the electrive article, the StreetDeck Electroliner uses slim batteries from French company; Forsee Power.

On their web site, there is a paragraph, which is entitled Wrightbus Will Integrate ZEN SLIM Batteries, where this is said.

As part of its exclusive supplier partnership with Wrightbus, Forsee Power will supply Wrightbus with the new ZEN SLIM batteries, whose extra flat format allows easy integration into the chassis of vehicles (standard or double-decker buses).

Each bus will be equipped with three battery systems up to 340 kWh and an extension including a fourth system will also be possible, providing exceptional capacity of 432 kWh and a battery range of more than 350 kilometers.

The figure of 432 kWh does not fit with the Wrightbus specification and is not 340*4/3, so I suspect the Forsee web site is a couple of figures out of date.

The Forsee brochure for the ZEN SLIM batteries gives an energy density of 166 Wh per Kg. This means that the weight of the 454 kWh battery is around 3.7 tonnes.

I do like the modularity of the batteries, as it means must mean greater flexibility for bus operators, especially in a large city, where there is a varied mix of routes.

Intriguingly the batteries appear to be water cooled. Is the heat generated by the batteries, used to warm the bus in winter? Now that would be kool!

Battery Charging

In the specification on the Wrightbus web site, under a heading of EV Charging, this is said.

CCS2.0 Compliant Combo2 Socket
150kW or 300kW fast charge

And under a heading of EV Charge Time, this is said.

340kWh – 2 ½ hours @ 150kW
454kWh – 3 hours @ 150Kw
Up to 420kW Opportunity Charging / Pantograph Charging

I find the pantograph charging interesting.

I have been following a battery train charging device called a Railbaar since 2016, when I wrote How To Charge A Battery Train.

The device is now available for buses as a Busbaar and this page on the opbrid web site talks about opportunity charging for buses.

Opportunity Charging would entail charging the buses at suitable points along the route, using an overhead charging point and a speciality designed pantograph on the roof of the bus.

Wrightbus claims a charging rate of 420 kW for their system. With a claimed range of 200 miles, these buses should be able to handle at least 90 % of the bus routes in the UK.

Note that Opbrid are part of Furrer and Frey, the Swiss supplier of railway overhead electrification, who have a quality pedigree and are Network Rail’s supplier of choice for overhead electrification.

Co-location Of Bus And Railway Stations

Bus stations with charging for battery buses and electrified railway lines will both need a high grade connection to the electricity grid.

As an Electrical Engineer, I think it would be prudent to co-locate bus and railway stations so that all heavy users and the parked electric vehicles nearby could share the grid connection.

Both The Hydroliner And The Electroliner Appear To Share A Chassis

Looking at the cutaways on the two web pages for the buses, the chassis of both buses appear to be very similar.

The cutaway for the Electroliner shows some of the batteries low down between the wheels with more stacked up at the back of bus.

On the Hydroliner much of the equipment seems to be stacked up at the back of the bus.

The similar chassis and body designs must surely help production and allow a lot of components to be shared between the two buses.

Drive System

This article on electrive is entitled Voith To Deliver Electric Drives For Wrightbus and this is the first paragraph.

Northern Irish bus manufacturer Wrightbus has selected Voith as its exclusive partner to supply the electric drive system for the second generation of its battery-electric and fuel cell buses for Europe.

The second paragraph, says that Wrightbus has an order for eighty Electroliners for Translink in Northern Ireland to be delivered after August 2021.

This electrive article also described Voith’s electric drive system (VEDS).

The German supplier says it has developed the VDES specifically for the requirements of public transport. The 340 kW electric motor is said to be able to drive even double-decker buses, heavy articulated buses and trucks over long distances. The system also includes a water-cooled converter system, a drive management unit (called DMU), further converters for auxiliary units and the on-board charging management system including the cabling. Voith expects this to result in the highest possible efficiency, as all components are coordinated with each other.

Note the water-cooled converter system.

Running Gear

No vehicle is complete without a good set of wheels and suspension. The first electrive article says this.

Other features of the StreetDeck Electroliner, Wrightbus says, include a ZF rear axle system (AV133) and an independent front suspension system (RL 82 EC), also from ZF.

Few would question the choice of ZF as a supplier.

Conclusion

It looks to me, that Wrightbus have designed two buses, from the best components they can find and fitted them into their own purpose-built chassis and bodywork.

It’s almost as how the great Colin Chapman of Lotus fame would have designed a bus.

 

I

July 3, 2021 Posted by | Design, Transport | , , , , , , , | 5 Comments

Decarbonisation Of London’s Freight Routes

London has a rail capacity problem, for both freight and passenger trains.

This report from Network Rail is entitled The London Rail Freight Strategy (LRFS).

Surprisingly, the report only mentions decarbonisation once and that is when it is talking about moving the AC/DC switchover point on the West London Line to Kensington Olympia station.

This section from the report describes how dual-voltage electrically-hauled freight trains would handle the electrification on the West London Line.

Although moving the changeover to Shepherd’s Bush would eliminate the need for passenger trains to slow down or stop at North Pole Junction, electrically hauled freight trains will still need to switch power supply modes whilst moving, wherever the AC/DC interface is located.

Due to the substantial incline facing trains running northward on the WLL, which increases in severity towards the Willesden end of the route, it would be preferable for the changeover to be made as far south as possible. This would enable freight trains to slow down to switch traction before reaching the worst of the gradient, giving them a much better chance of regaining line speed once drawing power from the OLE.

Although Kensington Olympia is less than a mile to the south of Shepherd’s Bush, the intervening route section is almost entirely level, with the incline commencing just before Shepherd’s Bush station and continuing to rise sharply along the rest of the WLL. The capacity and performance benefits of relocating the changeover are therefore likely to be greater if the overhead wires are extended to Kensington Olympia, removing the risk to traffic flow that would remain if freight trains were forced to switch whilst running uphill.

This would prepare the West London Line for the transition to electric freight that will be necessary as part of the decarbonisation of the railway over the next thirty years.

Resolving the current traction changeover issues for freight as well as passenger trains would support this transition by encouraging freight operators to invest in electric locomotives to run on the orbital routes, in the confidence that this constraint has been addressed.

Where is Network Rail’s guidance?

These are a few thoughts.

How Many Of The Freight Trains Through London Could Be Electrically-Hauled?

Most freight trains are hauled by diesel Class 66 locomotives.

But that doesn’t mean that these freight trains between say Ipswich and Cardiff are electrically-hauled on what is a fully-electrified route.

There are various reasons, why they aren’t.

  • There are large fleets of cheap, nasty and polluting Class 66 locomotives.
  • There isn’t many suitable electric locomotives.
  • The routes to major ports like Felixstowe, Immingham, London Gateway and Southampton are not electrified.
  • Many busy cross-country freight routes like Ipswich and Peterborough are not fully-electrified.

But powerful bi-mode electric-locomotives, like the Class 88 locomotives, that can do many tricky trips in the UK are available. Although there are only ten of them.

I have done a quick analysis and found the following.

  • There are a good proportion of lighter weight freight trains, that are not long and heavy.
  • There are a good proportion of freight trains running over routes that are electrified with 750 VDC third-rail equipment.
  • There are also some freight services, where a dual-voltage locomotive would be needed.
  • If a locomotive had a Last-Mile capability of perhaps forty miles, a lot of services could be electric-hauled.

Network Rail should do an analysis of all freight working in the various regions of the UK, to find out what are the needs of the electrically-hauled market in the various regions of the UK.

Could There Be A London Locomotive?

I wouldn’t want to get too regional, but looking at the figures, I think the following locomotive could be developed to handle freight trains in and through London.

I’m very much of the opinion, that the UK needs a battery-electric locomotive with the following capabilities.

  • The physical size and axle loading of a Class 68 or 88 locomotive.
  • Up to 4 MW when running on 25 KVAC overhead electrification.
  • Up to 2.5 MW when running on 750 VDC third-rail electrification.
  • Up to 2 MW for 30 minutes when running on battery power.
  • Regenerative braking to batteries.

Note.

  1. The axle load of a Co-Co Class 66 locomotive is 21.6 tonnes.
  2. The axle load of a Bo-Bo Class 88 locomotive is 21.5 tonnes.

But the overall weight of the Class 66 locomotive is fifty percent higher.

I believe, that a locomotive with this specification could replace the ubiquitous, cheap, smelly, polluting and carbon-emitting Class 66 locomotive on a lot of duties. Especially, in London and the South East, where there is a lot of running on tracks with 750 VDC third-rail electrification.

I believe that this locomotive would be able to haul some of the heaviest trains on these routes.

  • Ipswich and the Port of Liverpool via London.
  • Ipswich and Wentloog (Cardiff) via London.
  • Ipswich and Coatbridge via London.
  • Ipswich and Birmingham via London.
  • Ipswich and Crewe via London.

These routes cry out for the ability to be able to do the last miles into Felixstowe.

Ipswich And Felixstowe On Battery Power

If the diesel engine and all the associated gubbins are removed from a Class 88 locomotive, a battery with the same weight could be fitted into the locomotive, without unduly affecting handling or axle load.

Doing rough calculations, this battery would have a capacity of at least 1 MWh.

  • This battery would be able to supply 2.5 MW for twenty-four minutes, which would be a very valuable Last-Mile capability.
  • The battery would also enable regenerative braking to the battery, which would increase the energy efficiency of the locomotive.

These capabilities may open up the possibility of battery-electric haulage of some trains into and out of the Port of Felixstowe.

  • Freight trains take around 32 minutes to travel from the Great Eastern Main Line to the port.
  • Freight trains take around 36 minutes to travel from the port to the Great Eastern Main Line.
  • The route is fairly level although there is the climb over Spring Road viaduct.

If necessary, the route could be electrified, between the Great Eastern Main Line and Derby Road station.

  • The climb over the viaduct would be electrified.
  • Only 21 minutes of the route would not be electrified.

I believe that, it would be possible for Stadler to design a dual-mode battery-electric locomotive that could haul most of the heaviest trains into and out of the Port of Felixstowe.

This would effectively decarbonise a large proportion of freight traffic on the North London and Gospel Oak to Barking Lines.

Third-Rail Freight

In addition, a locomotive of this class, with a third-rail capability would be able to handle the numerous freight trains on the third-rail network.

With third-rail electrification, there are always worries that it can supply enough power.

  • A Class 66 locomotive has a diesel engine generating 2.5 MW.
  • An eight-car Class 700 train is rated at 3.3 MW. These trains are seen all over South London.
  • A Class 377 train is rated between 0.8 and 1.2 MW. Pairs of these trains are seen all over South London.

It would appear that an electric Class 66-sized locomotive would only draw the same power as typical trains on the third-rail network.

So perhaps a dual-voltage electric locomotive suitable for freight through much of South London, wouldn’t leave all of South London in the dark?

Junctions Which Need Upgrading

The London Rail Freight Strategy, identifies these junctions as needing an upgrade.

Would these junctions be easier to upgrade, if the designers of the junctions, knew that many more trains using the junction were to be hauled by powerful and spritely electric-haulage?

West London Line Issues

Two of the posts covering the London Rail Freight Strategy concern the AC/DC  switchover on the West London Line.

The proposed locomotive wouldn’t care where the switchover happened, as it would use batteries to achieve a smooth switchover.

Conclusion

The UK rail network needs a go-anywhere battery-electric locomotive.

Related Posts

These are related posts about the London Rail Freight Strategy (LRFS).

Doubling Harlesden Junction

East Coast Main Line South Bi-Directional Capability

Gauge Improvements Across London

Gospel Oak Speed Increases

Headway Reductions On The Gospel Oak To Barking, North London and West London Lines

Heavy Axle Weight Restrictions

Kensal Green Junction Improvement

Longhedge Junction Speed Increases

Moving The West London Line AC/DC Switchover To Kensington Olympia

Moving The West London Line AC/DC Switchover To Shepherd’s Bush

Nunhead Junction Improvement

Stratford Regulating Point Extension

Will Camden Road Station Get A Third Platform?

Will Clapham Junction Station Get A Platform 0?

June 28, 2021 Posted by | Design, Transport | , , , , , , | 14 Comments

Is Caledonian Road And Barnsbury An Ideal Four-Track Station?

This Google Map shows Caledonian Road And Barnsbury station.

Note the island platform, with two tracks on either side.

These four pictures show each pair of tracks in both directions.

And these pictures show general views of the station.

I don’t know the layout of every station, but Caledonian Road And Barnsbury seems to be unusual.

  • There is a spacious island platform in the middle of the four tracks.
  • On either side of the island platform, there are the two lines for local passenger trains.
  • Outside of the two local passenger lines, there are two lines for freight trains.
  • Access to the island platform is via a simple half-bridge with only two lifts.
  • Everybody enters the station from one side.

Does this layout have advantages?

Ease Of Construction

I think that this station was designed, so that it was quick and easy to build.

Once the tracks are aligned correctly, it shouldn’t be too complicated to build.

The bridge only has to span two tracks, so that must be half the work of crossing four tracks.

Passenger Safety

I have used real time trains to check the platform of freight trains passing through Caledonian Road And Barnsbury station.

It seems that only rarely do trains use the tracks in the two platforms.

This must surely be safer, when compared with the standard arrangement.

These pictures were taken at Highbury & Islington station.

The wide platform, also allows passengers to keep well out of the way of any trains that do pass through.

Would The Layout Work With High Speed Trains?

I don’t see why not!

The space between the outside lines and the platform, almost acts like a moat in a zoo, that keeps visitors away from dangerous animals.

Costs

It was probably not an expensive station to build.

Conclusion

Why are other four-track stations not built like this?

The main reason is probably, that most four-track main lines were laid out decades or even centuries ago and their builders used their own layouts.

June 19, 2021 Posted by | Design, Transport | , , , , , , | 6 Comments

Thoughts On Step-Free Access At Manor House Station

I use Manor House station regularly, as I have a bus-stop by my house, that is perhaps fifty metres from my front door, that connects to the station.

  • There is also a zebra crossing to get to the other side of the road.
  • The 141 bus actually connects me to Manor House, Turnpike Lane and Wood Green stations on the Piccadilly Line.
  • This is because it was a replacement for the 641 trolley-bus route that used to run between Winchmore Hill and Moorgate via. Milmay Park.
  • I also use the station as a convenient station to go West on the Piccadilly Line.
  • As it connects step-free at Finsbury Park station to the Victoria Line, it certainly has its uses.

Click this link to see an excellent photo of a 641 trolley-bus at Manor House station.

The pub in the photo was the Manor House, where I saw such performers as John Mayall and Eric Clapton amongst others.

I took these pictures today

The station has an unusual layout.

      • Two major roads; the Seven Sisters Road (A503) and Green Lanes (A 105) cross at the station.
      • The four major roads are all controlled by traffic lights, which also allow pedestrians to cross the major roads safely on the surface.
      • There are a couple of staircases at each corner of the junction and these lead down to a maze of passages that connect these entrances to the escalators that lead up and down to the platforms.
      • The former Manor House pub and a new Travel Lodge sit opposite each other on the junction.
      • The Travel Lodge sits on the South-West corner.
      • The North-West corner leads directly into Finsbury Park., which is not a bad place to go for a walk or a jog.

The below ground subways in the station are all level.

The staircases between subway and street level are very reminiscent of those at Piccadilly Circus or Leicester Square stations.

The staircases also have some excellent period details.

But then they tend to do things as they should in my part of North London.

This picture was taken after a World Cup Third!

What will happen, if England win the Euros?

Manor House station’s design can best be summed up as two level areas connected by a series of staircases.

  • Central London stations with this layout include Bank, Cockfosters, Kings Cross St. Pancras,Leicester Square, Manor House, Piccadilly Circus. Tottenham Court Road and Victoria.
  • At least Cockfosters, Kings Cross St. Pancras, Tottenham Court Road and Victoria have lifts between the two levels.
  • Bank station will have more lifts than Oti Mabusi in a dance routine, after the rebuild.
  • Old Street was similar, but Transport for London (TfL) are rebuilding the station.

Cockfosters has level access at both the surface and the platform level and they have sneaked in a lift in a corner of the station.

Grandparents in a wheel-chair or Louis or Lilibet in a pushchair can easily be taken easily between train and the car-park.I am certain, that if there are a number of lifts at the four corners of the road junction at Manor House, then access both to the station and across the junction will be substantially eased.

That just leaves us with the problem of getting between subway and platform levels.

This map from cartometro.com shows the platform layout.

Note that as at Turnpike Lane station in this platform layout, there is also a generous space between the platforms.

The two escalators and a set of stairs face North.

Wood Green station is a bit different, as it has a turnback siding

The two escalators and a set of stairs also face South.

When I used to use the Piccadilly Line in the 1960s, it tended to be pain, if a Wood Green train turned up, when you wanted  to go to Oakwood or Cockfosters.

Bounds Green station is shown in this map.

Again the tracks appear to have been curved to allow generous space.

The two escalators and a set of stairs face North.

Arnos Grove station is a station with sidings and four platforms on the surface.

The car parks are likely to be developed for housing, so there will be major changes at the station.

Southgate station is the last station, that doesn’t have step-free access.

But again there is some space between the tracks.

The two escalators and a set of stairs face North.

So did the designers of the Northern Extension of the Piccadilly Line leave space to put in more equipment or even lifts?

After all they didn’t stint themselves on the design of the stations.

Designing Step-Free Access

This is not easy and various considerations must be taken into account.

Revenue Protection

At Cockfosters station, the new lift goes between two areas that are outside the ticket barriers.

If as I have proposed at Manor House station, where there would be lifts between the surface and the subway level, both areas are outside the ticket barriers.

At Tottenham Hale station, there several lifts all of which are inside the ticket barrier.

Staff At The Barrier

Nearly all ticket barriers in London are watched by staff to sort out problems like passengers, who don’t know how to use the system.

Costs

It is unlikely, that large sums of money will be available to add step-free access to all stations on the Underground.

I also think, that step-free access at stations will be funded by developments close to stations.

A London-Wide Solution

It is for these and other reasons, that I think London needs to look in detail at all stations and see if a series of solutions can be developed for all stations.

In this section of the Piccadilly Line, there are five stations with three escalators or two escalators and a staircase.

But there are others on the other deep tube lines.

So should a standard solution be developed for all stations like this? And for all groups of similar stations.

Could An Inclined Lift Be Used At This Group Of Stations?

This picture shows the first inclined lift, I ever saw, which was on the Stockholm Metro.

Looking at the picture shows it was installed on a very long set of escalators.

At present, there is only one inclined lift on the London Underground and that one is at Greenford station.

It is a very neat and compact installation, that incorporates a double-staircase, an up escalator and an inclined lift in a confined space.

I think we’ll see similar solutions to Greenford employed in some stations on the Underground. In Is This A Simple And Affordable Solution To Providing Step-Free Access At Essex Road Station?, I outline how an inclined lift could be used at Essex Road station.

These pictures show the three escalators at Manor House station.

Note.

  1. The middle escalator was switched off.
  2. There is a spacious lobby at the bottom of the escalators.

The other four below-ground stations North of Finsbury Park; Turnpike Lane, Wood Green, Bounds Green and Southgate all have two escalators and a central staircase

These pictures show Bounds Green station.

Note that the stairs are in the middle.

It looks to me, that all five escalator systems to the North of Finsbury Park are more or less identical.

  • Only Manor House has a third escalator.
  • There is a large lobby at the bottom.
  • All stairs are in the middle escalator slot.
  • Are the stairs designed to be replaced with a third escalator?

So would it be possible to design an inclined escalator solution for all stations, that fitted all of the stations?

I think it might be very much a possibility.

  • The central staircase would be replaced by a third escalator.
  • One of the outside escalators would be replaced with an inclined lift.

Note

  1. Many of these escalators were probably  installed in the early 1990s, a few years after the Kings Cross Fire.
  2. Escalators are replaced regularly every ten or twenty years.

So could the installation of the inclined lifts, be worked into the schedule of escalator maintenance and replacement?

I believe with good project management it could be arranged.

  • At no time during the works would any station have less than two escalators.
  • If there were to be an escalator failure, all of the stations are connected by frequent buses and some are even within walking distance.

The works could also be arranged to fit in with available cash-flow.

I believe that eventually all these stations will need to be provided with full step-free access.

Conclusion

I believe that a sensible program of works can be developed to make all deep-level stations North of Finsbury Park step-free on the Piccadilly Line.

  • The deep-level platforms would be served by two escalators and an inclined lift.
  • The works would be performed alongside the regular maintenance and replacement of the current escalators.
  • There would be no substantial tunneling.
  • The works could also be arranged to fit in with available cash-flow.

The technique would be applicable to other stations on the Underground network.

Turnpike Lane Station

In Is Turnpike Lane Tube Station Going Step-Free?, I tried to explain the puzzling works going on at Turnpike Lane station.

Could those works be digging a lift-shaft or something in a more engineering line, like installing more ventilation or new power cables?

There’s certainly no clues on the Internet.

This table shows step-free status and 2019 passenger numbers at the Piccadilly Line stations to the North of Kings Cross St. Pancras station.

  • Cockfosters – Step-Free – 1.86 million
  • Oakwood – Step-free – 2.78 million
  • Southgate – 5.43 million
  • Arnos Grove – 4.44 million
  • Bounds Green – 5.99 million
  • Wood Green – 12.13 million
  • Turnpike Lane – 10.6 million
  • Manor House – 8.55 million
  • Finsbury Park – Step-free – 33.40 million
  • Arsenal – 2.77 million
  • Holloway Road – 6.69 million
  • Caledonian Road – Step-free – 5.60 million
  • Kings Cross St. Pancras – Step-free – 88.27 million

Note.

  1. The high passenger numbers at Finsbury Park and Kings Cross St. Pancras, where there is interchange with lots of other services.
  2. The long gap of step-free access between Oakwood and Finsbury Park.
  3. Arnos Grove could be an easier station to make step-free.

I just wonder, if a lift at Turnpike Lane station could be the interim solution, until inclined lifts are installed in the distant future.

 

 

June 16, 2021 Posted by | Design, Sport, Transport | , , , , , , , , , , , | 4 Comments

Cargo Sous Terrain

This is a Swiss idea to move small parcels around the country.

This is the project’s web site.

There will be a network of tunnels under Switzerland serving all the major centres.

This article on LeNews is entitled Switzerland’s Underground Tunnel Project Gets Green Light From Upper House, describes the project.

This is the first paragraph.

On 1 June 2021, a project to build an underground freight tunnel network stretching from Geneva to St Gallen, gained almost unanimous support in the Council of States, Switzerland upper house.

These are a few points from the article.

  • It appears to be privately funded.
  • There will be a three-lane tunnel network across the country.
  • It will use driverless electric vehicles.
  • Speed will be 30 kph.
  • It will run twenty-four hours per day.
  • There will be a track in the roof of the tunnel for smaller parcels.
  • There will be a total of 500 km of tunnels.
  • Completion date is set for 2045.
  • It will cost around £24 billion.

It’s as though all of Switzerland were to be turned into a giant Amazon or Ocado warehouse.

Will It Work?

I don’t see why not, although it would be an immense project!

This paragraph indicates they will start small.

The first 70 km section of the tunnel network, which will connect a hub in Härkingen-Niederbipp with Zurich, is scheduled for completion in 2031.

But even that will cost around £2.5 billion!

It certainly, is a bold idea, that has possibilities.

June 15, 2021 Posted by | Design, Transport | , , , , | Leave a comment