The Anonymous Widower

BP And EnBW Hire Kent For 2.9 GW Scottish Offshore Wind Project

The title of this post, is the same as that of this article on offshoreWIND.biz.

This is the sub-heading.

Engineering and design service provider Kent has been awarded a contract by EnBW and BP to carry out pre-Front End Engineering Design (FEED) studies for the 2.9 GW Morven offshore wind project in Scotland.

Morven offshore wind farm would appear to be on its way.

According to Wikipedia’s list of UK offshore wind farms, the water depth  in the Morven wind farm is between 65-75 metres.

  • Total power is given as 2907 MW, which indicates that 14 MW turbines could be used.
  • Siemens Gamesa 14 MW turbines have a blade length of 108 metres and their 10 MW have a blade length of 94 metres.
  • This would seem to indicate that the wind turbine will be as much as 160 to 185 metres above the sea-bed.

A radical design of fixed foundation will be needed.

In Entrion Wind Wins ScotWind Feasibility Deal For Its 100-Metre Depth Foundation Tech, I look at technology that might work.

I also say this about work I did in Cambridge in the early 1970s.

The structures, I mathematically-modelled were for a company called Balaena Structures, that had been started by two Cambridge University engineering professors. The structures were about a hundred metres high and perhaps thirty metres in diameter.

They would have been built horizontally in the sort of dock, where you would build a supertanker and would have been floated into position horizontally. Water would then be let in to the cylinder and they would turn to the vertical. From that position, they would be lowered to the sea-bed by adjusting the water in the cylinder. They had a method of holding the Balaena to the seabed, which relied mainly on the weight of the structure and what they called the gum-boot principle.

Sadly, they never sold any platforms and the company folded.

Until recently, you could find the expired patents on the Internet.

I believe that a development of the Balaena design could be the solution to deep water fixed foundations.

April 13, 2023 Posted by | Energy | , , , , , | Leave a comment

Morecambe Offshore Windfarm

I found this article on beyondradio, which is entitled Plans Unveiled To Build New Offshore Windfarms Off Morecambe Bay.

These care the first two paragraphs.

Plans are being developed to build new offshore windfarms off the Morecambe Bay coast.

Proposals have been unveiled for ‘Morecambe’ and ‘Morgan’, two new offshore wind farms being developed in the Irish Sea.

I’ve discussed Morgan and its sister; Mona before in Mona, Morgan And Morven, which describes the three projects BP are developing in a joint venture with enBW.

I haven’t come across the Morecambe Offshore Windfarm before and it has its own web site.

It has this summary of the wind farm.

Renewable energy is central to supporting the UK’s ambitions to lead the world in combatting climate change, reducing our reliance on fossil fuels and embracing a future where renewable energy powers our homes and businesses.

Morecambe Offshore Windfarm which has a nominal capacity of 480MW. That’s enough to power over half a million households. It will also contribute to the UK Government’s commitment to:

  • Generate 50GW of power from offshore wind by 2030
  • Reach net zero by 2050.

It is located approximately 30km from the Lancashire coast.

This EnBW-BP infographic describes the Morgan and Mona projects.

it appears that the proposed Morecambe Offshore Windfarm will fit in the notch on the Eastern side of EnBW-BP’s two wind farms; Mona and Morgan.

  • All three wind farms are fixed foundation wind farms.
  • They have a total output of just under 3.5 GW.
  • Could they share infrastructure like cables and substations?
  • Heysham 1 is a 485 MW nuclear station, that will be decommissioned in 2024.
  • Heysham 2 is a 1815 MW nuclear station, that will be decommissioned in 2028.
  • What’s left of the two Heysham nuclear stations can probably generate 2.3 GW

Could it be that over 2.3 GW of wind power is being planned in the Irish Sea to make up for the loss of the four reactors at Heysham?

Could also the 480 MW Morecambe Bay wind farm be replacing what’s left of Heysham 1?

There would probably need to be a battery at Heysham, but it looks like the wind farms could be replacing the Heysham nuclear power station!

There will be consultation with the locals about the Morecambe ans Morgan wind farms, which will take place on Saturday, November 19, 2.30pm – 6.30pm, at Morecambe War Memorial Hall on Church Street.

I think, I might go!

November 4, 2022 Posted by | Energy | , , , , , , , , , | 2 Comments

BP To Charge Up Vehicle Battery Research

The title of this post is the same as that of this article in The Times.

This is the title on a stock picture at the top of the page.

BP, whose profits benefited from soaring oil and gas prices, plans to invest heavily in research to develop solutions to help to decarbonise the transport sector.

I’m unsure about the picture, but it could be a number of buses or trucks connected to a large battery.

This press release on the BP web site, is the original source for The Times article and it is entitled BP To Invest Up To £50 million In New Global Battery Research And Development Centre In Britain.

The press release starts with these bullet points.

  • bp continuing to invest in the UK, with new investment of up to £50 million for new electric vehicle battery testing centre and analytical laboratory in Pangbourne.
  • Aims to advance development of engineering, battery technology and fluid technology and engineering into new applications such as electric vehicles, charging and data centres.
  • New facilities at its Castrol headquarters and technology centre expected to open in 2024, supporting the technology, engineering and science jobs housed there today.

I find these sentences interesting.

new applications such as electric vehicles, charging and data centres

This sentence is a bit of a mess as electric vehicles are not new, charging is well established and what have data centres got to do with batteries.

I have a friend, who runs a large fleet of electric buses and charging is a problem, as getting the required number of MWhs to the garage can be a problem in a crowded city.

But could it be, that BP are thinking of a battery-based solution, that trickle-charges when electricity is affordable and then charges buses or other vehicles as required, throughout the day?

I believe that a battery based on process engineering like Highview Power’s CRYOBattery could be ideal in this situation.

  • Effectively, the bus garage or transport parking would have its own high capacity battery-powered charging network.
  • The storage capacity of the battery would be geared to the daily charge load of the vehicles.
  • It would reduce the cost of electricity to the operator.

Such a battery might also be ideal to power a battery charging station.

I don’t know much about data centres, except that they need a lot of electricity.

Would driving data centres from a battery, that was trickle-charged overnight mean that the cost of electricity was reduced?

bp today unveiled plans to invest up to £50 million (around $60 million) in a new, state-of-the-art electric vehicle (EV) battery testing centre and analytical laboratory in the UK

There are a lot of battery ideas in the pipeline, so will one of the tasks be to find the best batteries for BP’s needs?

The site already undertakes research and development of fuels, lubricants and EV fluids and aims to become a leading hub for fluid technologies and engineering in the UK

You don’t think of lubricants being associated with electric vehicles, but obviously BP thinks it’s a serious enough topic to do some research.

The new facilities will help advance the development of leading fluid technologies and engineering for hybrid and fully battery electric vehicles, aiming to bring the industry closer to achieving the key tipping points for mainstream electric vehicle (EV) adoption.

This is self-explanatory.

Castrol ON advanced e-fluids manage temperatures within the battery which enables ultra-fast charging and improves efficiency, which help EVs to go further on a single charge and extend the life of the drivetrain system

Lubrication helps the world go round.

In addition, the advanced e-fluid technologies and engineering can be applied to other industries such as thermal management fluids for data centres where demand is rising exponentially

This is an interesting application and it will become increasingly important.

The growth of EV fluids is a huge opportunity, and we aim to be the market leader in this sector

I didn’t realise that EV fluids were so important.

The press release says this about the current status.

Two thirds of the world’s major car manufacturers use Castrol ON EV fluids as a part of their factory fill and we also supply Castrol ON EV fluids to the Jaguar TCS Racing Formula E team.

This press release on the Castrol web site is entitled CASTROL ON: Range Of Advanced E-Fluids For Mobility On Land, Sea And In Space.

This is the Castrol ON E-Fluids home page.

Where Will BP Need Batteries?

I can see the following applications are in BP’s sight from this press release.

  • Charging fleets of buses and trucks at their garage.
  • Powering battery-charging stations at filling stations.
  • Providing uninterruptable electricity feeds.
  • Powering data centres.

I will give a simple example.

Suppose a bus company wants to electrify the buses in a town.

  • They will have thirty double-deck buses each with a 500 kWh battery.
  • Wrightbus electric buses charge at 150 kW.
  • Charging all buses at the same time would need 4.5 MW
  • Each bus will need to be charged overnight and once during the day.
  • This means the bus company will need 30 MWh of power per day.
  • The largest wind turbines today are around 12 MW and have a capacity factor of 30 %.
  • A single turbine could be expected to generate 86 MWh per day.

It looks to me, that a battery in the garage which could provide an output of 5 MW and had a capacity of 100 MWh would link everything together and support the following.

  • A fleet of thirty buses.
  • All buses charged overnight and at one other time.
  • A 12 MW wind turbine.
  • Power for the offices and other facilities.
  • The battery would provide backup, when there is no wind.
  • There would also be a mains connection to the battery for use, when the wind turbine failed.

The size of the battery and the turbine would depend on the number of vehicles and how often, they were to be charged.

BP could replace diesel sales to the bus or transport company, with leasing of a zero-carbon charging system.

Simple systems based on one or two wind turbines, solar panels and a battery would have several applications.

  • Charging fleets of buses and trucks at their garage.
  • Powering battery-charging stations at filling stations.
  • Providing uninterruptable electricity feeds.
  • Powering data centres
  • Powering farms
  • Powering new housing estates
  • Powering factories

I can see this becoming a big market, that big energy companies will target.

Are BP planning to develop systems like this, as many of those, who might buy a system, are already their customers?

Choosing the best batteries and designing the system architecture would appear to be within the remit of the new Research Centre at Pangbourne.

Supporting Wind Farms

BP could certainly use a 2.5 GW/30 GWh battery at each of the three large wind farms; Mona, Morgan and Morven, that they are developing in the Irish Sea and off Aberdeen. These wind farms total 5.9 GW and a battery at each one, perhaps co-located with the offshore sub-station could mean that 5.9 GW was much more continuous.

The wind farms would be like virtual nuclear power stations, without any nuclear fuel or waste.

It would also mean that if the wind farm wasn’t needed and was told to switch off, the electricity generated could be stored in BP’s battery.

How many of BP’s other developments around the world could be improved with a co-located battery?

Process Technology

I am very keen on Highview Power’s CRYOBattery, but I do think that some parts of the design could benifit from the sort of technology that BP has used offshore and in the oil industry.

So will BP’s new battery research include offering advice to promising start-ups?

August 2, 2022 Posted by | Energy | , , , , , , , , , , | 3 Comments

Mona, Morgan And Morven

The title of this post, may sound like a high-class firm of Welsh solicitors, but it is actually the names of three wind farms to be constructed by BP Alternative Energy Investments Ltd and Energie Baden-Württemberg AG.

Mona And Morgan

This EnBW-BP infographic describes the project.

 

Mona and Morgan do seem to have web page, which gives a simple map and a rather jargon-filled timeline.

Morven

This EnBW-BP infographic describes the project.

Morven does seem to have a web page, which gives a simple map and this statement.

The Morven wind farm is named after a mountain situated in the beautiful hills of Aberdeenshire, Scotland. The name derives from the Scottish Gaelic terms “Mhor” and “bheinn” meaning ‘big’ and ‘peak’, symbolic of the scale of opportunity represented by bp’s latest offshore wind project.

This article on Offshore Engineer is entitled ScotWind: BP, EnBW Win Bid to Build 2.9GW Morven Offshore Wind Farm.

This paragraph described the Morven wind farm.

The approximately 860km2 lease is located around 60km off the coast of Aberdeen. The E1 lease is in an advantaged area, allowing the partners to develop it as a fixed-bottom offshore wind project with a total generating capacity of around 2.9 gigawatts (GW), sufficient to power more than three million homes.

And this paragraph, described what BP will do with the energy.

“Along with the offshore wind development, these investments include significant expansion of electric vehicle charging infrastructure in Scotland and green hydrogen production. Together, these represent up to £10 billion of investment in support of offshore wind and Scotland’s energy transition,” BP added.

These are two large projects, but so far there is little else on the Internet, except for this press release.

Conclusion

Wind farms can be controversial and for this and other reasons, the general public need more information.

BP and EnBW can do much better.

March 24, 2022 Posted by | Energy | , , , , , | 7 Comments