The Anonymous Widower

Energy Storage Will Deliver ‘Tens Of Billions Of Pounds A Year’

The title of this post, is the same as that of this article on Energy Live News.

This is the first paragraph.

This week’s Net Hero Podcast delves into how energy storage is being underappreciated as a key to cutting costs on our energy bills.

I have listened to the half-hour podcast and it is a fascinating interview with Rupert Pearce, who is the CEO of Highview Power.

He talks about.

  • Green stability services
  • Power stations in a box
  • Vehicle-to-grid storage
  • How Highview Power is location agnostic.
  • And lots of other topics.

He also talks about the twenty Highview Power CRYOBatteries located around the country and financed traditionally, as there is money to be made.

Listen to what he has to say!

Conclusion

Rupert Pearce is a man with vision. And I like what he says!

September 4, 2022 Posted by | Energy, Energy Storage | , , , | 1 Comment

Where Are The Magnificent Eighteen?

In the two classic Japanese and American films of the fifties, there were seven saviours, who worked together.

This page on the Highview Power web site talks about their proposed CRYOBattery in Yorkshire, where this is said.

Highview Power’s second commercial renewable energy power station in the UK is a 200MW/2.5GWh facility in Yorkshire. This is the first of 18 sites for UK wide deployment strategically located to benefit from the existing transmission infrastructure.

As the UK’s energy problem is much worse than the problems in the films, perhaps we need more saviours.

In this article on the Telegraph, which is entitled Britain Will Soon Have A Glut Of Cheap Power, And World-Leading Batteries To Store It, Rupert Pearce, who is Highview’s chief executive, is quoted as saying the following.

Highview is well beyond the pilot phase and is developing its first large UK plant in Humberside, today Britain’s top hub for North Sea wind. It will offer 2.5GW for over 12 hours, or 0.5GW for over 60 hours, and so forth, and should be up and running by late 2024.

Further projects will be built at a breakneck speed of two to three a year during the 2020s, with a target of 20 sites able to provide almost 6GW of back-up electricity for four days at a time, or whatever time/power mix is optimal.

Is this Humberside CRYOBattery, the one on the web site described as in Yorkshire? It’s certainly in the old East Riding.

In Highview Power’s Plan To Add Energy Storage To The UK Power Network, I came to the conclusion, that the Humberside CRYOBattery will most likely be built near Creyke Beck substation, which is close to Cottingham.

  • Dogger Bank A, Dogger Bank B and Hornsea 4 offshore wind farms will all be connected to the Creyke Beck substation.
  • These wind farms have a total capacity of 3.4 GW.
  • The Humberside CRYOBattery, now looks to have a maximum output of 2.5 GW.
  • It looks like the Humberside CRYOBattery would be a well-matched backup to the three planned wind farms and perhaps even a few more turbines.

Building the Humberside CRYOBattery at Creyke Beck substation would appear to be a sensible decision.

We Only Have Half A Story

It looks like we’ve only got half a story, with a lot of detail missing.

  • Will there be eighteen or twenty of Highview Power’s CRYOBatteries?
  • Will they have a power output of 400 MW or nearly 6 GW for four hours?
  • Will they have a storage capacity of 2.5 GWh or 30 GWh?
  • Is the web site or the CEO correct?
  • Have Highview Power and National Grid signed a deal for the next few CRYOBatteries?

I am expecting to see a big press statement at some time, perhaps even in the next few days, that will clear everything up.

If it was me, I would invite the new Prime Minister to the opening of the Carrington CRYOBattery and make the statement there.

The joint publicity could be equally valuable to both the Prime Minister and Highview Power.

August 28, 2022 Posted by | Energy, Energy Storage | , , , , | Leave a comment

New Octopus Energy Makes First Investment To Develop UK’s Largest Battery

The title of this post, is the same as that of this article on Renewable Energy Magazine.

This is the first paragraph.

Octopus Energy Group has launched its new renewables fund Octopus Energy Development Partnership (OEDP) which has just made its debut investment in renewables developer Exagen to build new green energy and rapidly grow the UK’s energy storage capacity.

These three paragraphs outline the deal with Exagen.

This latest multi-million pound deal sees OEDP take a 24 percent stake in Exagen, which is working on large-scale solar and battery facilities, partnering with farmers, landowners and local communities to build projects that help bring energy security.

This deal includes the option to purchase one of the UK’s largest batteries at 500 MW/1 GWh located in the Midlands, England, scheduled to be operational by 2027. This standalone battery would be the UK’s largest, and with the capacity to export the equivalent electricity usage of 235,000 homes in a single day. Batteries provide grid-balancing services by storing cheap green energy when it is abundant, and releasing it when it is needed.

As part of the agreement, OEDP has also acquired three solar farms with batteries on-site in the Midlands and North East of England, which Exagen is currently developing. The solar farms have a combined capacity of approximately 400 MW. Exagen already has 2 GW of solar and battery storage projects in their pipeline, which Octopus will be able to invest in once they’re ready to build.

I am intrigued about the 500 MW/1 GWh battery!

Will it be lithium-ion?

The largest lithium-ion battery in the world is currently the 400 MW/1.6 GWh battery at Moss Landing Power Plant in California, which offers more storage capacity, but less output than Exagen’s proposed battery.

Exagen’s battery needs to be operational by 2027, which means that there is almost five years for an alternative technology to be thoroughly tested.

Highview Power say this about their proposed CRYOBattery in Yorkshire, on their web site.

Highview Power’s second commercial renewable energy power station in the UK is a 200MW/2.5GWh facility in Yorkshire. This is the first of 18 sites for UK wide deployment strategically located to benefit from the existing transmission infrastructure.

A battery similar to Highview’s proposed battery in Yorkshire, would surely be big enough.

Exagen’s battery could be one of the eighteen mentioned on Highview Power’s web site.

As Highview are currently building their first commercial system at Carrington in Manchester and hope to commission it this year, there should be enough time to debug the design.

But there are other companies, who may have the capability to build a large enough battery in the timescale.

On the other hand, lithium-ion would be the conservative choice.

August 25, 2022 Posted by | Energy, Energy Storage | , , , , , | Leave a comment

Significant Step Forward For Keadby 3 Carbon Capture Power Station

The title of this post, is the same as that of this press release from SSE.

These three paragraphs outline the project.

A landmark project in the Humber which could become the UK’s first power station equipped with carbon capture technology has taken a major leap forward following an announcement by the UK Government today.

Keadby 3 Carbon Capture Power Station, which is being jointly developed by SSE Thermal and Equinor, has been selected to be taken forward to the due diligence stage by the Department for Business, Energy and Industry Strategy (BEIS) as part of its Cluster Sequencing Process.

This process will give the project the opportunity to receive government support, allowing it to deploy cutting edge carbon capture technology, and to connect to the shared CO2 pipelines being developed through the East Coast Cluster, with its emissions safely stored under the Southern North Sea. The common infrastructure will also supply low-carbon hydrogen to potential users across the region.

The press release also says this about the power station.

  • Keadby 3 power station could have a generating capacity of up to 910MW.
  • It could be operational by 2027.
  • It would capture up to one and a half million tonnes of CO2 a year.

It would provide low-carbon, flexible power to back-up renewable generation.

The H2H Saltend Project

The press release also says this about the H2H Saltend project.

Equinor’s H2H Saltend project, the ‘kick-starter’ for the wider Zero Carbon Humber ambition, has also been taken to the next stage of the process by BEIS. The planned hydrogen production facility could provide a hydrogen supply to Triton Power’s Saltend Power Station as well as other local industrial users. In June, SSE Thermal and Equinor entered into an agreement to acquire the Triton Power portfolio.

I wrote about H2H Saltend and the acquisition of Triton Power in SSE Thermal And Equinor To Acquire Triton Power In Acceleration Of Low-Carbon Ambitions.

In the related post, I added up all the power stations and wind farms, that are owned by SSE Thermal and it came to a massive 9.1 GW, which should all be available by 2027.

Collaboration Between SSE Thermal And Equinor

The press release also says this about collaboration between SSE Thermal and Equinor.

The two companies are also collaborating on major hydrogen projects in the Humber. Keadby Hydrogen Power Station could be one of the world’s first 100% hydrogen-fuelled power stations, while Aldbrough Hydrogen Storage could be one of the world’s largest hydrogen storage facilities. In addition, they are developing Peterhead Carbon Capture Power Station in Aberdeenshire, which would be a major contributor to decarbonising the Scottish Cluster.

This collaboration doesn’t lack ambition.

I also think, that there will expansion of their ambitions.

Horticulture

Lincolnshire is about horticulture and it is a generally flat county, which makes it ideal for greenhouses.

I wouldn’t be surprised to see a large acreage of greenhouses built close to the Humber carbon dioxide system, so that flowers, salad vegetables, soft fruit, tomatoes and other plants can be grown to absorb the carbon dioxide.

It should also be noted that one of the ingredients of Quorn is carbon dioxide from a fertiliser plant, that also feeds a large tomato greenhouse.

We would have our carbon dioxide and eat it.

Other Uses Of Carbon Dioxide

Storing carbon dioxide in depleted gas fields in the North Sea will probably work, but it’s a bit like putting your rubbish in the shed.

Eventually, you run out of space.

The idea I like comes from an Australian company called Mineral Carbonation International.

We would have our carbon dioxide and live in it.

I also think other major uses will be developed.

A Large Battery

There is the hydrogen storage at Aldbrough, but that is indirect energy storage.

There needs to be a large battery to smooth everything out.

In Highview Power’s Second Commercial System In Yorkshire, I talk about Highview Power’s proposal for a 200MW/2.5GWh CRYOBattery.

This technology would be ideal, as would several other technologies.

Conclusion

Humberside will get a giant zero-carbon power station.

 

 

 

August 14, 2022 Posted by | Energy, Energy Storage, Hydrogen | , , , , , , , , , , , , , , , , | Leave a comment

Long Duration Energy Storage Would Reduce The UK’d Gas Usage By 10 Megatonnes By 2035

The title of this post, is the same as that of this press release on the Highview Power web site.

The press release gives these three bullet points.

  • UK has wasted over 1,300 GWh of wind since the start of the energy crisis in September 2021 due to an inability to store excess generation – enough to power 500,000 homes a day.
  • A new survey from YouGov, commissioned by Highview Power, reveals that 43% of UK adults think the UK imports too much gas, rising to 54% among Conservative voters at the 2019 General Election.
  • Long-duration energy storage (LDES) would reduce UK’s gas usage by 10 megatonnes in 2035 and save the grid around £2 billion a year, passing on savings of up to £50 a year.

In Highview Power’s Plan To Add Energy Storage To The UK Power Network, I talked about Highview Power’s possible 30 GWh CRYOBattery.

This project has not been fully revealed and I expect something will be announced before the end of this year.

August 6, 2022 Posted by | Energy, Energy Storage | , , , | Leave a comment

BP To Charge Up Vehicle Battery Research

The title of this post is the same as that of this article in The Times.

This is the title on a stock picture at the top of the page.

BP, whose profits benefited from soaring oil and gas prices, plans to invest heavily in research to develop solutions to help to decarbonise the transport sector.

I’m unsure about the picture, but it could be a number of buses or trucks connected to a large battery.

This press release on the BP web site, is the original source for The Times article and it is entitled BP To Invest Up To £50 million In New Global Battery Research And Development Centre In Britain.

The press release starts with these bullet points.

  • bp continuing to invest in the UK, with new investment of up to £50 million for new electric vehicle battery testing centre and analytical laboratory in Pangbourne.
  • Aims to advance development of engineering, battery technology and fluid technology and engineering into new applications such as electric vehicles, charging and data centres.
  • New facilities at its Castrol headquarters and technology centre expected to open in 2024, supporting the technology, engineering and science jobs housed there today.

I find these sentences interesting.

new applications such as electric vehicles, charging and data centres

This sentence is a bit of a mess as electric vehicles are not new, charging is well established and what have data centres got to do with batteries.

I have a friend, who runs a large fleet of electric buses and charging is a problem, as getting the required number of MWhs to the garage can be a problem in a crowded city.

But could it be, that BP are thinking of a battery-based solution, that trickle-charges when electricity is affordable and then charges buses or other vehicles as required, throughout the day?

I believe that a battery based on process engineering like Highview Power’s CRYOBattery could be ideal in this situation.

  • Effectively, the bus garage or transport parking would have its own high capacity battery-powered charging network.
  • The storage capacity of the battery would be geared to the daily charge load of the vehicles.
  • It would reduce the cost of electricity to the operator.

Such a battery might also be ideal to power a battery charging station.

I don’t know much about data centres, except that they need a lot of electricity.

Would driving data centres from a battery, that was trickle-charged overnight mean that the cost of electricity was reduced?

bp today unveiled plans to invest up to £50 million (around $60 million) in a new, state-of-the-art electric vehicle (EV) battery testing centre and analytical laboratory in the UK

There are a lot of battery ideas in the pipeline, so will one of the tasks be to find the best batteries for BP’s needs?

The site already undertakes research and development of fuels, lubricants and EV fluids and aims to become a leading hub for fluid technologies and engineering in the UK

You don’t think of lubricants being associated with electric vehicles, but obviously BP thinks it’s a serious enough topic to do some research.

The new facilities will help advance the development of leading fluid technologies and engineering for hybrid and fully battery electric vehicles, aiming to bring the industry closer to achieving the key tipping points for mainstream electric vehicle (EV) adoption.

This is self-explanatory.

Castrol ON advanced e-fluids manage temperatures within the battery which enables ultra-fast charging and improves efficiency, which help EVs to go further on a single charge and extend the life of the drivetrain system

Lubrication helps the world go round.

In addition, the advanced e-fluid technologies and engineering can be applied to other industries such as thermal management fluids for data centres where demand is rising exponentially

This is an interesting application and it will become increasingly important.

The growth of EV fluids is a huge opportunity, and we aim to be the market leader in this sector

I didn’t realise that EV fluids were so important.

The press release says this about the current status.

Two thirds of the world’s major car manufacturers use Castrol ON EV fluids as a part of their factory fill and we also supply Castrol ON EV fluids to the Jaguar TCS Racing Formula E team.

This press release on the Castrol web site is entitled CASTROL ON: Range Of Advanced E-Fluids For Mobility On Land, Sea And In Space.

This is the Castrol ON E-Fluids home page.

Where Will BP Need Batteries?

I can see the following applications are in BP’s sight from this press release.

  • Charging fleets of buses and trucks at their garage.
  • Powering battery-charging stations at filling stations.
  • Providing uninterruptable electricity feeds.
  • Powering data centres.

I will give a simple example.

Suppose a bus company wants to electrify the buses in a town.

  • They will have thirty double-deck buses each with a 500 kWh battery.
  • Wrightbus electric buses charge at 150 kW.
  • Charging all buses at the same time would need 4.5 MW
  • Each bus will need to be charged overnight and once during the day.
  • This means the bus company will need 30 MWh of power per day.
  • The largest wind turbines today are around 12 MW and have a capacity factor of 30 %.
  • A single turbine could be expected to generate 86 MWh per day.

It looks to me, that a battery in the garage which could provide an output of 5 MW and had a capacity of 100 MWh would link everything together and support the following.

  • A fleet of thirty buses.
  • All buses charged overnight and at one other time.
  • A 12 MW wind turbine.
  • Power for the offices and other facilities.
  • The battery would provide backup, when there is no wind.
  • There would also be a mains connection to the battery for use, when the wind turbine failed.

The size of the battery and the turbine would depend on the number of vehicles and how often, they were to be charged.

BP could replace diesel sales to the bus or transport company, with leasing of a zero-carbon charging system.

Simple systems based on one or two wind turbines, solar panels and a battery would have several applications.

  • Charging fleets of buses and trucks at their garage.
  • Powering battery-charging stations at filling stations.
  • Providing uninterruptable electricity feeds.
  • Powering data centres
  • Powering farms
  • Powering new housing estates
  • Powering factories

I can see this becoming a big market, that big energy companies will target.

Are BP planning to develop systems like this, as many of those, who might buy a system, are already their customers?

Choosing the best batteries and designing the system architecture would appear to be within the remit of the new Research Centre at Pangbourne.

Supporting Wind Farms

BP could certainly use a 2.5 GW/30 GWh battery at each of the three large wind farms; Mona, Morgan and Morven, that they are developing in the Irish Sea and off Aberdeen. These wind farms total 5.9 GW and a battery at each one, perhaps co-located with the offshore sub-station could mean that 5.9 GW was much more continuous.

The wind farms would be like virtual nuclear power stations, without any nuclear fuel or waste.

It would also mean that if the wind farm wasn’t needed and was told to switch off, the electricity generated could be stored in BP’s battery.

How many of BP’s other developments around the world could be improved with a co-located battery?

Process Technology

I am very keen on Highview Power’s CRYOBattery, but I do think that some parts of the design could benifit from the sort of technology that BP has used offshore and in the oil industry.

So will BP’s new battery research include offering advice to promising start-ups?

August 2, 2022 Posted by | Energy | , , , , , , , , , , | 3 Comments

Could A Highview Power CRYOBattery Use A LNG Tank For Liquid Air Storage?

This Google Map shows a 3D image of liquified natural gas (LNG) tanks at South Hook LNG Terminal near Milford Haven.

Note that images of these tanks under construction on the Internet, show that there is an underground portion of the tanks.

This page on the CIMC-ENRIC web site is entitled Successful Delivery Of 5,000M3 LNG Single Containment Tank Project. The page shows the design of the LNG tank.

As the density of liquid air is 870 kg/m3, a 5,000 cubic metre tank would contain 4,350 tonnes of liquid air at −194.35 °C and atmospheric pressure.

How much energy would be needed to create 4,350 tonnes of liquid air?

In this document, this is said about compressing natural gas with an electric drive.

It is the most-energy efficient technology with 230 kWh per ton of LNG.

As air and natural gas have molecules of similar weight, would 230 kWh per tonne be applicable to liquid air.

If it is, then around a GW of electricity will be needed to create the liquid air.

This Wikipedia entry is entitled Cryogenic Energy Storage and describes Highview Power’s CRYOBattery.

This section describes the operation of the CRYOBattery.

When it is cheaper (usually at night), electricity is used to cool air from the atmosphere to -195 °C using the Claude Cycle to the point where it liquefies. The liquid air, which takes up one-thousandth of the volume of the gas, can be kept for a long time in a large vacuum flask at atmospheric pressure. At times of high demand for electricity, the liquid air is pumped at high pressure into a heat exchanger, which acts as a boiler. Air from the atmosphere at ambient temperature, or hot water from an industrial heat source, is used to heat the liquid and turn it back into a gas. The massive increase in volume and pressure from this is used to drive a turbine to generate electricity.

Note.

  1. The Claude cycle is described in this Wikipedia entry.
  2. The liquid air takes up one-thousandth of the volume of the gas.
  3. Wikipedia suggests that Highview claim the process has a round trip efficiency of 70 %.

Having done calculations in the past with chemical reactions in a series of large vessels, the dynamics can be strange and I wouldn’t be surprised that as Highview learn more about the process and add more and better ways of recycling heat and coolth, efficiencies will improve.

Certainly, in the process I mathematically-modelled in the 1970s, when I worked for ICI, I remember that one large reaction vessel performed better than four or five smaller ones with the same total volume.

Hence my thought that perhaps one large containment tank could be the most efficient design.

I also think, that the design of LNG tanks must have improved significantly over the last few years, as the transport of LNG has increased in importance.

August 1, 2022 Posted by | Energy, Energy Storage | , , | 1 Comment

Highview Power’s Second Commercial System In Yorkshire

This is all that Highview Power say about their proposed system in Yorkshire, on their web site.

Highview Power’s second commercial renewable energy power station in the UK is a 200MW/2.5GWh facility in Yorkshire. This is the first of 18 sites for UK wide deployment strategically located to benefit from the existing transmission infrastructure.

I have a few thoughts.

How Does The Size Of This System Fit With Other Systems?

According to the Highview Power web site the Manchester system is a 50MW/300MWh facility, but Wikipedia has this system as a 50MW/250MWh.

In this article on the Telegraph, which is entitled Britain Will Soon Have A Glut Of Cheap Power, And World-Leading Batteries To Store It, it is stated that they are planning a battery with this specification, location and timeline.

  • 2.5 GW output
  • 30 GWh of storage
  • Located on Humberside
  • Delivery in late 2024.

This CRYOBattery is an absolute monster.

Will The Humberside CRYOBattery Be Built At Creyke Beck Substation?

In Highview Power’s Plan To Add Energy Storage To The UK Power Network, I came to the conclusion, that the Humberside CRYOBattery will most likely be built near Creyke Beck substation, which is close to Cottingham.

  • Dogger Bank A, Dogger Bank B and Hornsea 4 offshore wind farms will all be connected to the Creyke Beck substation.
  • These wind farms have a total capacity of 3.4 GW.
  • The Humberside CRYOBattery, now looks to have a maximum output of 2.5 GW.
  • It looks like the Humberside CRYOBattery would be a well-matched backup to the three planned wind farms and perhaps even a few more turbines.

Building the Humberside CRYOBattery at Creyke Beck substation would appear to be a sensible decision.

Is Cottingham In Humberside, Yorkshire Or Both?

The Wikipedia entry for the village is named Cottingham, East Riding of Yorkshire, says this.

A golf course and leisure club on Wood Hill Way, and a major (400/275 kV AC) electricity substation “Creyke Beck”, lie just outside the formal boundaries of the parish, within Skidby civil parish.

Skidby is definitely in Yorkshire.

Where Are The Other Seventeen Sites?

The Yorkshire facility is indicated to be one of 18 sites on the Highview Power web site. Where are the other seventeen?

All we know is that they will be strategically located to benefit from the existing transmission infrastructure.

This is said in the Wikipedia entry, which is entitled High-Voltage Substations In The United Kingdom.

In 2020 there were 179 400 kV substations and 137 275 kV substations.

He who pays the money, makes the choice!

Has The Company Changed Direction?

I wrote Highview Power Names Rupert Pearce Chief Executive Officer on April 12th, 2022.

  • Since then, the Vermont and Chile projects have disappeared from the web site and projects in Yorkshire and Australia have been added.
  • The web site has also been improved.
  • As new CEOs often do, is Rupert Pearce refocussing the company?

Are they also looking in detail at current projects?

Has The Yorkshire Project Grown Substantially?

Consider.

  • National Grid are a company that has improved its image and engineering in recent years.
  • It has shown it can obtain finance for infrastructure from the City of London and respected financial institutions.
  • National Grid probably have extensive computer models of their electricity network.
  • National Grid knows it must add energy storage to their electricity network.
  • National Grid pays almost a billion pounds a year to wind farm operators to shut them down.

Eventually saving up to a billion pounds would be a good reason to have a small bet on promising technology.

Did Rupert Pearce ask his engineers to design the largest CRYOBattery they can?

Did National Grid have a count up sand find that twenty CRYOBatteries would cover all the strategic points on their transmission infrastructure?

According to the figures on the Highview Power web site (200 MW/2.5 GWh), eighteen systems like the one proposed for Yorkshire would have.

  • A total output of 3.6 GW
  • A total storage capacity of 45 GWh

The figures given in the article in the Telegraph (2.5 GW/30 GWh) for the very large system, would mean that twenty systems would have.

  • A total output of 50 GW
  • A total storage capacity of 600 GWh

These figures are between thirteen and fourteen times larger than those originally proposed.

Building The System

The Highview Power web site, says this about the deployment of eighteen systems.

UK wide deployment strategically located to benefit from the existing transmission infrastructure.

This Google Map shows the Creyke Beck substation.

Could 30 GWh of liquid-air storage be accommodated on the site?

I can see a large insulated sphere, partly buried in the ground being used.

Designing, building and testing the first system will probably be the most difficult part of the project.

  • But once the first system is successfully working reliably, the roll-out of other systems can be started.
  • The biggest problem will probably be planning permissions, so the systems must be designed to be sympathetic to the local environment.

I can certainly see, twenty of these systems in the UK, but how many others will we see worldwide?

I

July 30, 2022 Posted by | Energy, Energy Storage | , , , , , | 2 Comments

Highview Power’s Plan To Add Energy Storage To The UK Power Network

The plan was disclosed in this article on the Telegraph, which is entitled Britain Will Soon Have A Glut Of Cheap Power, And World-Leading Batteries To Store It, by Rupert Pearce, who is Highview’s chief executive.

His plan is to build twenty of Highview Power’s CRYOBatteries around the country.

  • Each CRYOBattery will be able to store 30 GWh.
  • Each CRYOBattery will be one of the largest batteries in the world.
  • They will have three times the storage of the pumped storage hydroelectric power station at Dinorwig.
  • They will be able to supply 2.5 GW for twelve hours, which is more output than Sizewell B nuclear power station.

The first 30 GWh CRYOBattery is planned to be operational by late 2024.

  • It will be built on Humberside.
  • Humberside is or will be closely connected to the Dogger Bank, Hornsea and Sofia wind farms.
  • When fully developed, I believe these wind farms could be producing upwards of 8 GW.

The Telegraph quotes Rupert Pearce as saying this.

We can take power when the grid can’t handle it, and fill our tanks with wasted wind (curtailment). At the moment the grid has to pay companies £1bn a year not to produce, which is grotesque.

I certainly agree with what he says about it being a grotesque practice.

It sounds to me, that Rupert’s plan would see Highview Power in the waste electricity management business.

  • The wasted wind would just be switched to the Humberside CRYOBattery, if there was too much power in the area.
  • The CRYOBattery might be conveniently located, where the wind farm cables join the grid.
  • Dogger Bank A and B wind farms are connected to Creyke Beck substation, which is North of the Humber.
  • Hornsea 1 and Hornsea 2 wind farm are connected to Killingholme substation, which is South of the Humber.
  • Hornsea 3 wind farm will be connected to Norfolk.
  • Hornsea 4 wind farms will be connected to Creyke Beck substation
  • It looks like the combined capacity of Dogger Bank A, Dogger Bank B and Hornsea 4 could be around 3.4 GW.
  • Sofia wind farm will be connected to Lazenby substation near Redcar.
  • As the CRYOBattery is buying, selling and storing electricity, I would assume that there’s money to be made.

This Google Map shows Creyke Beck substation.

Note.

  1. It is a large site.
  2. Creyke Beck Storage have built a 49.99 MW lithium-ion storage battery on the site.
  3. The Northern part of the site is used to store caravans.
  4. It looks like the combined capacity of Dogger Bank A, Dogger Bank B and Hornsea 4 could be around 3.4 GW.

It looks like a 30 GWh CRYOBattery with a maximum output of 2.5 GW would be an ideal companion for the three wind farms connected to Creyke Back substation.

The combination could probably supply upwards of 2.5 GW to the grid at all times to provide a strong baseload for Humberside.

Conclusion

Will the income from the Humberside CRYOBattery be used to fund the next CRYOBattery?

I very much think so as it’s very sensible financial management!

July 30, 2022 Posted by | Energy, Energy Storage | , , , , , , | 12 Comments

Can Highview Power’s CRYOBattery Compete With Pumped Storage Hydroelectricity?

In this article on the Telegraph, Rupert Pearce, who is Highview’s chief executive and ex-head of the satellite company Inmarsat, discloses this.

Highview is well beyond the pilot phase and is developing its first large UK plant in Humberside, today Britain’s top hub for North Sea wind. It will offer 2.5GW for over 12 hours, or 0.5GW for over 60 hours, and so forth, and should be up and running by late 2024.

The Humberside plant is new to me, as it has not been previously announced by Highview Power.

  • If it is built it will be megahuge with a storage capacity of 30 GWh and a maximum output of 2.5 GW.
  • Humberside with its connections to North Sea Wind, will be an ideal location for a huge CRYOBattery.
  • The world’s largest pumped storage hydroelectric power station is Fengning Pumped Storage Power Station in China and it is 40 GWh.

Pumped storage hydroelectric power stations are the gold standard of energy storage.

In the UK we have four pumped storage hydroelectric power stations.

With two more under construction.

As energy is agnostic, 30 GWh of pumped storage hydroelectric power at Coire Glas is the equivalent of 30 GWh in Highview Power’s proposed Humberside CRYOBattery.

Advantages Of CRYOBatteries Over Pumped Storage Hydroelectric Power

I can think of these advantages.

  • Cost
  • Could be build on the flat lands of East Anglia or Lincolnshire
  • Factory-built
  • NIMBYs won’t have much to argue about
  • No dams
  • No flooding of valleys
  • No massive construction sites.
  • No mountains required
  • No tunnels
  • Small footprint

I suspect that a large CRYOBattery could be built well within a year of starting construction.

Rupert Pearce’s Dream

The Telegraph article says this and I suspect it’s a quote from Rupert Pearce.

Further projects will be built at a breakneck speed of two to three a year during the 2020s, with a target of 20 sites able to provide almost 6GW of back-up electricity for four days at a time, or whatever time/power mix is optimal.

6 GW for four days is 576 GWh, which if it were spread around twenty sites is 28.8 GWh per site, which is just under the 30 GWh of the proposed Humberside CRYOBattery.

Conclusion

You can just imagine the headlines in The Sun!

Man In Bishop’s Stortford Shed Saves The World!

This story on the BBC, which is entitled Meet The British Inventor Who Came Up With A Green Way Of Generating Electricity From Air – In His Shed, explains my suggested headline.

Now that’s what I call success!

 

July 29, 2022 Posted by | Energy, Energy Storage | , , , , , , , | 4 Comments