The Anonymous Widower

JCB Unveils World’s First Hydrogen Digger

The title of this post is the same as that of this article on International Vehicle Technology.

The signs have been there for some time.

  • JCB are one of the backers of ITM Power, who make large scale electrolysers in Rotherham.
  • Jo Bamford has a hydrogen company called Ryse.
  • Jo Bamford took over Wrightbus and is saying he’ll be building thousands of hydrogen buses a year.
  • Ryse have planning permission for a giant hydrogen electrolyser at Herne Bay.

To me, it is totally logical, that JCB build a hydrogen-powered digger.

And it appears they have got there first!

July 2, 2020 Posted by | Hydrogen | , , , , , , , | Leave a comment

15 More Fuel Cell Electric Buses For UK Roads

The title of this post, is the same as that of this article on H2 View.

This is the introductory paragraph.

A further 15 fuel cell electric buses (FCEBs) are planned for the UK this year, as the country works towards its goal of deploying 4,000 zero emission buses over the next five years.

These futher points are made.

The fuel cells are 85KW heavy-duty FCveloCity®-HD fuel cell modules from Ballard Power Systems.

This will take Wrightbus’s order book for hydrogen-powered buses to fifty. all of which will be delivered this year.

Twenty buses are for London and fifteen are for Aberdeen.

I have some thoughts on the 85KW heavy-duty FCveloCity®-HD Fuel Cell Module.

This pdf file on the Ballard web site is the data sheet and this is selected data.

  • The net power is 85 kW
  • The fuel cell weighs 256 Kg.
  • It needs a coolant sub-system that weighs 44 Kg.
  • It needs an air sub-system that weighs 61 Kg.
  • It is a true zero-emission product.

It is worth looking at the power train of a New Routemaster bus, which although very different will probably give clues as to the weight that can be carried and the power and battery size needed for a full-size bus.

  • The Cummins ISBe diesel engine develops 138 kW and weighs 499 Kg.
  • The engine is mounted half-up the back stairs.
  • The Microvast Lithium Titanate battery has a capacity of 18 kWh.
  • The battery is placed under the front stairs.
  • The braking on the New Routemaster bus is regenerative.

These are some of my observations.

  • If you sit at the back of a New Routemaster bus, you can hear the engine, when it is running. On most routes in Central London, it certainly isn’t running all the time.
  • The battery doesn’t seem very large at 18 kWh.
  • The fuel cell with its sub-systems would appear to be lighter than the diesel engine, but of less power.
  • The fuel-cell won’t need the generator of the diesel bus.

I very much feel getting all the components into a standard double-decker bus will be a tight squeeze, but none of the individual components are that large or heavy.

Conclusion

I can’t wait to have my first ride in a hydrogen-powered double-decker bus.

 

June 19, 2020 Posted by | Transport | , , , | Leave a comment

Government’s Bias Against Hydrogen Buses Challenged

The title of this post, is the same as that of this article on Fleetpoint.

This is the introductory paragraph.

Industry leaders, campaign groups and academics today challenged the Government’s “deliberate” and “misjudged” bias against hydrogen buses in its pursuit of decarbonising public transport.

I do find this article a bit surprising.

  • We have had a couple of trials of hydrogen buses in London and Aberdeen and I can’t remember any serious adverse stories.
  • Jo Bamford has rescued Wrightbus and plans to make thousands of hydrogen-powered buses.
  • Councils seem keen on hydrogen-powered buses.
  • There has been articles praising hydrogen in quality newspapers.
  • It’s almost, as if someone in the Department of Transport, is saying No, for an illogical reason.

The government also seems to have given Alstom the nod to develop hydrogen trains.

Or has it?

I wrote Breeze Hydrogen Multiple-Unit Order Expected Soon, almost exactly a year ago and nothing has happened.

The only valid excuse is that the Department for Transport is up to its neck in work for COVID-19!

 

May 20, 2020 Posted by | Transport | , , , | Leave a comment

Surplus Electricity From Wind Farms To Make Hydrogen For Cars And Buses

The title of this post, is the same as that as this article in The Times.

This is the introductory paragraph.

Surplus power from wind farms will be used to run a network of giant electrolysers to make hydrogen for vehicles, under plans drawn up by a green energy company.

The following are points from the article.

  • The electrolysers will be installed by Ryse.
  • Ryse have submitted plans to build the UK’s largest electrolyser at Herne Bay in Kent.
  • It will produce ten tonnes of hydrogen a day.
  • The hydrogen will be sent by road to London to power buses.
  • More electrolysers could be built in Aberdeen, Northern Ireland, Runcorn, South Wales and other places.
  • It looks like the electrolysers will be built by ITM Power in the world’s largest electrolyser factory in Rotherham.
  • Keele University is replacing 20% of the natural gas in its gas network with hydrogen to heat buildings. I wrote about this in HyDeploy.

Note.

  1. The owner of Ryse is Jo Bamford, who also owns Wrightbus. I wrote about his plans in JCB Heir And Wrightbus Owner Jo Bamford: ‘We Can Sell Our Hydrogen Bus Around The World’.
  2. Jo Bamford also has a plan for Ireland, which I wrote about in Wrightbus Boss Eyes All-Island Green Transport Plan. He could build the Northern Ireland electrolyser conveniently for the border.
  3. Jo Bamford is the son of Lord Bamford; the chairman of JCB.
  4. According to Wikipedia, JCB made a £4.9m strategic investment in ITM Power in 2015. The early bird catches the worm?
  5. ITM Power recently had an order for an 8MW electrolyser, which I wrote about in Funding Award to Supply An 8MW Electrolyser.

It all seems to fit together like a large zero-carbon jigsaw.

I do have some questions.

How Much Electricity Is Needed To Produce Ten Tonnes Of Hydrogen?

I found an answer to this question on this page of the Clean Energy Partnership web site.

To produce hydrogen by electrolysis directly at the filling station, the CEP currently requires about 55 kWh/kg H2 of electricity at an assumed rate of efficiency of > 60 percent.

To produce 1 kg of hydrogen, nine times the amount of water is necessary, i.e. nine litres.

Scaling up means that to produce ten tonnes of hydrogen will require 550 MWh and ninety tonnes of water. For comparison an Olympic swimming pool holds 2,500 tonnes of water, based on the fact that a cubic metre of water weighs a tonne and contains a thousand litres.

Is It Safe To Move Hydrogen In Trucks Around The UK?

I used to work as an instrument engineer in ICI’s hydrogen factory at Runcorn around 1970.

That plant electrolysed brine using the Castner-Kellner process to produce sodium hydroxide, chlorine and hydrogen. The first two products were used as feedstock to make various chemical products and the hydrogen was taken away by Air Products and BOC, in specially-designed trucks.

It can be said, that we have been moving hydrogen safely on the roads of the UK for at least fifty years and probably longer.

As an aside, I think, ICI found the hydrogen a bit of a problem, as in those days it didn’t have that many uses.

Are Ryse Building A Network Of Electrolysers To Serve The Whole Of The UK?

The five electrolysers named in The Times article, are in Ireland, North-West England, Scotland, South-East England and South Wales.

  • All electrolysers would be sited near to large offshore wind farms, except for Northern Ireland, where the wind power is onshore.
  • All areas of the British Isles would be close to an electrolyser for hydrogen delivery, except the South West and the North East of England and the Midlands.
  • The Midlands is to be served by a planned ITM Power electrolyser at Tyldesley.
  • The North East of England has a hydrogen supply from INEOS on Teesside.
  • The South West of England could probably support another electrolyser. But there is not the same amount of nearby wind power.

Ryse with a little help from their friends, could make sure that every bus depot in the UK has a reliable source of green hydrogen.

The Electrolyser At Herne Bay

This Google Map shows the Herne Bay and the surrounding area on the North Kent coast.

What is not shown is all the wind farms to the North of the town in the Thames Estuary. These include.

That is a total of 1241 MW, so working for twenty-four hours with a capacity factor of 30% would create almost 9 GWh of electricity.

  • A small fraction of this 9 GWh of renewable electricity would provide enough to run the electrolyser at full power.
  • The smallest wind farm; Kentish Flats will produce 139 x 24 x 0.3 = 1000 MWh on an average day.
  • Just 23 MWh of electricity per hour is needed to create the ten tonnes of hydrogen.

Where are these wind farms connected to the National Grid?

  • If just one connection is close to Herne Bay, then co-location must be desirable.
  • If there is no connection, only 23 MW would be needed from the National Grid.

Reading the Wikipedia entry for Herne Bay, it appears to be an improving town.

  • It has both a fast rail and a High Speed One connection to and from London.
  • There is a dual-carriageway road connection to the motorway network.
  • The town would probably welcome the jobs, that the development would create.

Herne Bay seems to be a good place to build the first electrolyser.

The Electrolyser At Aberdeen

I don’t know the Aberdeen area well, although the oil industry in the area has been good for my financial well-being.

There must be a good reason for building an electrolyser in the area.

  • Aberdeen have experience of hydrogen buses.
  • There are some large wind farms; both onshore and offshore close by.
  • Is there a convenient site, that once had a coal-fired power station, but still has good electrical connections?

According to the Wikipedia entry for Wind Power In Scotland, the country had 8423 MW of installed wind power in December 2018 and has the aim of using only renewable energy by 2020.

Searching the Internet, I found the Peterhead power station.

The power station is gas-fired.

The power station has changed technology over the years.

There was a plan to fuel the power station with hydrogen produced from methane, where the carbon dioxide would have been captured and stored in the Miller field.

This Google Map shows the power station, to the South of Peterhead.

Note, that the power station is close to the A90 road, which forms the Aberdeen Western Peripheral Route, that goes past Aberdeen to the South of Scotland.

Could this power station be the site of the Aberdeen electrolyser?

  • It looks to have good road connections.
  • It obviously has good electrical connections.
  • Peterhead would probably welcome the employment.

As you can see from the map, the power station is owned by SSE plc, who generate about a third  of their energy from renewables.

And then there is Hywind Scotland, which is the world’s first commercial floating wind farm.

  • This is a 30 MW wind farm.
  • It comprises five 6MW floating wind turbines.
  • It is situated eighteen miles off Peterhead.
  • In the first two years of operation it had a capacity factor of 50 %, according to Wikipedia.

On an average day, Hywind Scotland will generate 360 MWh. This is 65 % of the 550 MWh of energy needed to produce ten tonnes of hydrogen.

Are there undisclosed plans to create a fleet of floating wind turbines, out to sea from Peterhead, which would be ideal for both Scotland’s electricity and hydrogen supplies?

It should also be noted, that in the UK and I suspect other developed countries, if someone needs a large amount of electricity for a commercial purpose, like an aluminium smelter or a steelworks, electricity companies, whether state or privately-owned, have always been keen to oblige.

I suspect that everything could be coming together in Peterhead.

The Electrolyser In Northern Ireland

The Wrightbus factory, owned by Jo Bamford builds its buses at Ballymena.

  • Ballymena is 28 miles North of Belfast.
  • Dublin is 130 miles to the South.

I can see the mother of all arguments happening, as to whether the electrolyser is North or South of the border.

If you look at the Wikipedia entry entitled Electricity Sector In Ireland, this is the opening paragraph.

The electricity sectors of the Republic of Ireland and Northern Ireland are integrated and supply 2.5 million customers from a combination of coal, peat, natural gas, wind and hydropower.

The grid runs as a synchronous electrical grid and in terms of interconnections has undersea DC-only connection to the UK National Grid, alongside plans in the advanced stage for a higher power, planned Celtic Interconnector to France.

It looks like Jo Bamford will only have to deal with one entity, no matter, which side of the border, the electrolyser is situated.

This would surely make it easier for his All-Ireland Green transport plan, which  I wrote about in Wrightbus Boss Eyes All-Island Green Transport Plan.

My feeling is that he’ll get less grief, if the electrolyser was just on the North side of the border with a good road connection to the South. As there is a dual carriage-way road, all the way between Belfast and Dublin, this could probably be arranged.

This Google Map shows where the main dual-carriageway crosses the border.

Note.

  1. The border is shown as a white line to the North of the Centrepoint Business Park.
  2. The railway line between Dublin and Belfast can be seen to the West of the main cross-border road.

I certainly think, that a solution can be found to fuel all those Irish hydrogen buses, that Jo Bamford has proposed.

The Electrolyser At Runcorn

If Runcorn already has a good source of hydrogen at the former ICI factory, that is now owned by INEOS, why build an electrolyser at Runcorn?

There are several reasons.

  • Runcorn is involved in the hydrogen plans for North-West England, that I wrote about in A Hydrogen Mobility Roadmap For North-West England.
  • Runcorn can connect into the North West’s proposed hydrogen network.
  • Runcorn is close to the zero-carbon wind energy of Liverpool Bay.
  • INEOS can pool their zero-carbon hydrogen into that produced by Ryse.
  • Will INEOS with all their hydrogen experience in the area, host the electrolyser?
  • Runcorn is convenient for the large cities of Liverpool and Manchester.
  • Runcorn has good access to the motorway network for the Midland of England and North Wales.
  • There must be the possibility of building a rail terminal to deliver hydrogen.

Runcorn would also connect the interests of Jim Ratcliffe and the Bamfords.

The Electrolyser In South Wales

South Wales has an extensive public transport network.

  • The South Wales Main Line runs between the Severn Tunnel and Swansea and the West via Newport and Cardiff.
  • The Cardiff Valley Lines are being transformed into a modern South Wales Metro, which will make use of electric and battery technology.
  • There are a lot of buses, running around in South Wales.

The buses and possibly some of the trains must be candidates for hydrogen power.

Transport for Wales Rail Services have ordered 77 Class 197 diesel trains from CAF, who have a factory at Newport.

Given CAF’s record on innovation and the Welsh Government’s stance on the environment, I wouldn’t be surprised to find out that these trains could be converted to zero-carbon trains. I’m sure Ryse would be pleased to provide green hydrogen for Welsh trains.

I think there are two possible sites for a large electrolyser in South Wales.

The first is the site of the former Aberthaw power stations, which are shown in this Google Map.

Note.

  1. Aberthaw power stations were South of Gileston.
  2. The complex stopped generating power at the end of March this year.
  3. The site has rail access.
  4. Road access would need to be improved.
  5. The power station must have had a good very connection to the National Grid.
  6. The site is near to Cardiff Airport, who might want to go zero-carbon for all their ground vehicles.

The second possible site, is on the site of the former Llanwern steel works, which is shown in this Google Map.

Note.

  1. It is a very large site, which probably has a very good connection to the National Grid.
  2. The CAF rolling stock factory is marked by a red arrow.
  3. CAF could start building and/or selling hydrogen-powered trains in the UK, at some date in the future.
  4. The site has rail and road access.
  5. The site is fifteen miles to the East of Cardiff.
  6. The site is thirty miles to the West of Bristol.

If it was my decision, I’d put the electrolyser on the Llanwern site.

Will The Electrolysers Need A Battery To Cover On Days Without Wind?

I can envisage a system, where several trailer-tankers are filled at once in a continuous process. Once filled, they would be disconnected and replaced by an empty one. It would act like a automatic bottling plant for beer, but with much bigger bottles.

The filled trailer-tankers would be energy stores, whilst they awaited being taken to the customers.

What Infrastructure Will Be Needed At Bus Depots?

The infrastructure is minimal and would be a tank and the means of filling the buses.

I also wonder, if trucks with a proven design of hydrogen trailer-tanker were to be used, these could be filled up at the electrolyser and the trailer-tankers would then be taken to the bus depots, where they would be plugged into the hydrogen delivery system for the buses.

  • Each delivery would be a drop-off and connection of a full trailer-tanker of hydrogen and a return with the empty trailer-tanker to the electrolyser.
  • The trailer-tankers could be fitted with a hydrogen vehicle-filling connection, so that bus operators could trial a small fleet of hydrogen buses or other vehicles, without putting in any infrastructure, other than safe parking for the trailer-tankers. But then most bus depots have lots of secure parking for large buses.
  • This would surely be faster and more efficient, as the delivery driver wouldn’t have to wait, whilst the hydrogen is transferred.
  • Deliveries could be arranged during the night.

I would also use a fleet of quiet, emission-free zero-carbon hydrogen-powered trucks. Do what I say and do what I do!

Why Not Generate The Hydrogen At The Depot?

At Pau, ITM Power have installed a hydrogen generator for the hydrogen-powered buses.

So why not do this all over the UK?

  • A large bus depot could need a very large amount of electricity in a congested part of a city, where the electricity supply may be dodgy.
  • It could also be safer, as venting the oxygen produced as a by-product of electrolysis, in an uncontrolled environment can be dangerous. But generated in a large electrolyser, it could be captured and used for another purpose or safely vented to the atmosphere. This section in Wikipedia, gives a brief outline of the applications of oxygen.
  • I truck-based delivery system, is ideal for trials of hydrogen-powered buses, taxis, delivery vans, trucks and local authority vehicles, as no infrastructure is needed.

I suspect that, it might be more affordable and convenient to use centralised production of the hydrogen.

Conclusion

Jo Bamford has developed a well-thought out plan.

May 17, 2020 Posted by | Transport, World | , , , , , , , | 1 Comment

Wrightbus Boss Eyes All-Island Green Transport Plan

The title of this post, is the same as that of this article on the Irish Independent.

This is the introductory paragraph.

THE new owner of manufacturer Wrightbus says 12,000 buses on the island of Ireland as well as trains could be replaced with hydrogen engines to usher in a new era of environmentally friendly transport.

These points are made in the article.

  • Jo Bamford, who is the owner of Wrightbus, plans to decarbonise all buses and trains on the island.
  • A hydrogen infrastructure would need to be setup.
  • The Enterprise train between Belfast and Dublin would be run by hydrogen.
  • Jo Bamford has yet to talk to the Irish Government.
  • Wrightbus is seeking a £500m subsidy from the UK Government to built 3,000 hydrogen-powered buses by 2024.
  • This would bring 1,500 jobs to Ballymena.
  • The ydrogen-powered buses, will be the same price as diesel.
  • New Whightbus hydrogen buses will be on the streets of London and Aberdeen later this year.

This is one of the last paragraphs of the article.

He (Jo Bamford) said that the impact of the Covid-19 lockdown on the environment, with a clearer sky and cleaner air resulting from the fall in traffic, could be an inspiration for greener transport.

It may be an ambitious plan, but then you would expect ambition to be flowing in large quantifies in the veins of someone from the family, that gave us JCB.

Will Hydrogen Double-Deck Buses Become Commonplace?

There are now three different designs of hydrogen-powered double-deck bus in design, if not production.

There is also the hydrogen-powered version of the Van Hool ExquiCity tram-bus, that I wrote about in Ballard-Powered Fuel-Cell Tram-Buses From Van Hool Now In Revenue Service In France.

There are some big players making large investments in hydrogen-powered buses. I suspect at least three and possibly all four will succeed.

Designing A Hydrogen-Powered Vehicle

Two hydrogen-powered vehicle designs have impressed me this week.

Both designs use the existing electric transmission and seem to have been relatively straightforward for experienced engineers who are working in the field.

I wouldn’t be surprised to see other suitable vehicles redesigned for hydrogen power.

April 29, 2020 Posted by | Transport | , , , , , , , | 1 Comment

Aberdeen Could Have 200 Hydrogen Buses By 2024, According To Industry Leader

The title of this post, is the same as that of this article on the Aberdeen Press and Journal.

This is the introductory paragraph.

Aberdeen could accommodate up to 200 hydrogen buses by 2024, according to an industry leader who wants to roll out thousands across the country.

These are some other points from the article.

  • Aberdeen has ten single-decker hydrogen buses.
  • Fifteen double-decker buses should be delivered from Wrightbus, this year.
  • The article also has a video of Aberdeen’s hydrogen-powered road sweeper.

Aberdeen certainly seems to be embracing hydrogen.

April 27, 2020 Posted by | Transport | , , , | Leave a comment

Batteries Come Of Age In Railway Construction

The title of this post is the same as that of this article on Rail Engineer.

It is very much a must-read article on the subject of constructing and repairing railways in a zero-carbon manner.

These are some extra comments of mine!

Smaller And Lighter First

This is a paragraph from the article.

Smaller and lighter equipment is getting the treatment first – the batteries and motors can be smaller. Volvo Construction Equipment has already supplied its first electric compact loader, to a customer in Germany.

Volvo seems to be busy creating electric loaders.

Size Appears To Be No Limit

This extract shows how a large dump truck can go electric.

If a 25-tonne excavator is not big enough, how about a Komatsu HD605-7 off-highway truck, which weighs 51 tonnes unladen and has a payload of 63 tonnes? Kuhn Switzerland, working with Lithium Storage and the Swiss Federal Office of Energy (SFOE), has converted this 111-tonne gross vehicle weight monster into an electric vehicle.

Out came the 23-litre, 778hp (578kW) diesel engine and in went a synchronous electric motor rated at 789hp (588kW) electric motors. An additional 120kW motor is fitted just to power the hydraulic systems. The battery was a challenge – the four large packs have a combined rating of 700kWh and weigh 4.5 tonnes.

Do you get much bigger than 111 tonne, nearly 600 kW and a 700 kWh battery pack?

Regenerative Braking

The article also says that in some applications, vehicles go up and down a route and can charge the batteries using regenerative braking on the downhill run. In one application batteries only need charging every three days.

Rail Application Of Off-Road Equipment

The article says this.

While an eDumper may be too large to use on the railway, it does show what can now be done. Between JCB’s mini-excavator and eMining’s dump truck, there is room to battery-power almost any item used on the railway today.

I would suspect that there are a lot of companies, including giants like Caterpillar, JCB, Komatsu. Volvo and others working to produce electric versions of their successful products.

What About The Workers

The article says this.

These new machines are only the tip of the ‘electric’ iceberg. As pressure mounts to cut carbon emissions and to protect workers from harmful fumes, there will be more to come.

Health and safety will lead to a big push towards electric, as electric vehicles are pollution, carbon and fume-free, with a substantial noise reduction.

Hydrogen Will Have A Part To Play

This statement is from the Wikipedia entry for ITM Power.

In March 2015 JCB made a strategic investment of £4.9M in ITM Power.

Why would a construction equipment company invest in a company, that makes equipment that generates hydrogen to power vehicles?

  • It is known, that the Bamford heir has purchased Wrightbus and intend to make hydrogen-powered buses for the world.
  • JCB have built their own diesel engines, so are they building their own hydrogen engine?
  • JCB make tractors and I believe a hydrogen-powered tractor may be more than a niche market.
  • Is it possible to build a hydrogen-powered JCB?

Buy any of these products and you get a gas station in the price.

To deliver hydrogen, all you need to do is connect it to the water and electricity mains and switch on.

If you’re using it to power rail or site construction equipment, the gas station could be on wheels, so it can be moved from site to site.

Conclusion

This is the writer’s conclusion.

It seems that ‘battery is the new diesel’. It will be fascinating to see how this sector develops over the next few years.

I don’t disagree, but would add, that I feel that JCB are the elephant in this room!

March 15, 2020 Posted by | Transport, World | , , , , , , , , , , | Leave a comment

Ballard-Powered Fuel-Cell Tram-Buses From Van Hool Now In Revenue Service In France

The title of this post is the same as that of this article on Green Car Congress.

This is the introductory paragraph.

Ballard Power Systems announcedthat 8 ExquiCity tram-buses built by Van Hool NV and powered by 8 Ballard FCveloCity-HD 100-kilowatt fuel cell modules have been inaugurated at a ceremony in Pau, France and are now in revenue service in Pau’s Bus Rapid Transit System.

The Van Hool ExquiCity tram buses have the following specification.

  • Two sections
  • Length – 18.6 metres (New Routemaster – 11.2 metres)
  • Width – 2.6 metres (New Routemaster – 2.52 metres)
  • Weight – 18.5 tonnes (New Routemaster – 12.8 tonnes)
  • Passengers – 125 (New Routemaster – 80-87 – More on a 21/38/73 in the Peak)
  • Hydrogen Range – 300 km.
  • Power – 100 kW (New Routemaster – 138 kW)

I have compared with a New Routemaster, as both vehicles are designed as hybrids with a power source charging a battery which drives the vehicle, through a Siemens traction motor.

The Glider buses in Belfast are diesel-electric hybrid versions of the ExquiCity.

Conclusion

I do wonder from looking at the comparison with a New Routemaster, that the ExquiCity could be an interesting way to get 56 % more passengers into 66 % more road space. But it may be more efficient to use two New Routemasters to carry 28 % more passengers in 29 % more road space than the ExquiCity.

It is interesting to note that the Mercedes Citaro bendy buses in London, which were so hated by motorists because they blocked junctions were also eighteen metres long like the ExquiCity.

Obviously, if buses ran on a separated bus way, the length is not a problem.

I do feel though, that a purpose-built hydrogen-powered double-deck bus, will be better for most UK towns and cities.

This article on the BBC is entitled Wrightbus Owner Jo Bamford Says Coming To NI Is Revelation.

This is a paragraph.

Mr Bamford, the son of JCB chairman Lord Bamford, told BBC News NI he has a keen interest in the use of hydrogen to power buses and that was the main reason he got involved with Wrightbus.

Consider.

  • Wrightbus designed and built the chassis for the diesel-electric hybrid New Routemaster.
  • Wrightbus pioneered the low-floor bus.
  • In March 2015 JCB made a strategic investment of £4.9M in hydrogen company; ITM Power.
  • ITM Power built the hydrogen filling station for the ExquiCity tram-buses in Pau.

It looks to me, that Jo Bamford, with some help from his father, has assembled the components for a serious assault on the hydrogen bus market.

 

February 10, 2020 Posted by | Transport | , , , , , , , | 1 Comment

Could New Routemaster Buses Be Converted To Hydrogen Power?

London has a thousand New Routemaster buses.

They are generally liked by passengers and drivers, although some Labour politicians think they should be replaced, because of their association with Boris.

They were introduced in 2011, so with a refurbishment, I suspect that they could be in service for perhaps another ten years.

The big feature in the design is that they are genuine hybrid buses with a small Cummins engine halfway up the back stairs, a battery under the front stairs and electric drive with regenerative braking.

I do wonder though, that because of the electric transmission, that these buses could be converted to hydrogen-powered buses.

It could be a more affordable route to create a thousand new zero-carbon buses for the streets of London or any other city for that matter.

Given that Wrightbus, who built the New Routemasters, is now owned by a member of the Bamford family of JCB fame and the company is reported to be going down the hydrogen bus route, I would suspect that conversion to hydrogen is on somebody’s mind.

 

February 8, 2020 Posted by | Transport | , , , | Leave a comment

London To Have World-First Hydrogen-Powered Double-Decker Buses

The title of this post, is the same as that of this article in the Guardian.

This is the first three paragraphs.

London will have the world’s first hydrogen-powered doubledecker buses on its streets next year, as the capital steps up attempts to tackle its polluted air.

Transport for London (TfL) has ordered 20 of the buses, which cost around £500,000 each and only emit water as exhaust.

As well as cutting polluting exhaust emissions, the buses will run on green hydrogen produced via North Kent offshore wind farms, according to TfL.

After the announcement of the Alexander Dennis hydrogen buses for Liverpool, that I wrote about in New Facility To Power Liverpool’s Buses With Hydrogen, I wondered how long it would take Wrightbus to respond?

It appears to be less than a month.

This is also said about the buses.

The buses will also feature amenities such as USB charging points, and promise a smoother, quieter ride. They will operate first on three routes in west London and to Wembley, which served over 10 million passenger journeys last year.

I will add these comments.

USB Charging Points

I’ve only ever used USB charging points three times on the move.

All installations were under a few years old and it is definitely the way passenger transport is going.

London Overground’s new Class 710 trains will be fitted with USB charging points and wi-fi.

Smoother, Quieter Ride

I have ridden in the following electric or hydrogen-powered vehicles

  • A battery-electric Vivarail Class 230 train
  • A battery-electric Class 379 train
  • Several battery-electric and hydrogen-powered buses in London.
  • A hydrogen-powered Alstom Coeadia iLint train.
  • An LEVCC TX electric black cab.

With the exception of the iLint train, which has a mechanical transmission, all are smooth and quiet.

So I have no reason to disbelieve this claim in The Guardian article.

Three Routes In West London

This article in Air Quality News gives more details on the routes.

The vehicles will be introduced on routes 245, 7 and N7, with people travelling to Wembley Stadium, or from west London to the West End.

  • Route 7 runs between East Acton and Oxford Circus.
  • Route 245 runs between Alperton Sainsburys and Golders Green station.

Both are operated by Metroline from Perivale East garage, where they appear to be the only routes served from the garage, which has a capacity of forty buses.

This Google Map shows a 3D picture of Perivale East garage.

The garage is squeezed into a triangle of land between the Acton-Northolt Line, the Central Line and the six-lane A40 road.

  • It’s not near any houses.
  • It’s surrounded by trees and industrual units.
  • Is the site large enough to generate hydrogen on site?
  • Could hydrogen be brought in by rail?
  • It could easily hold the twenty hydrogen buses and a few others.

I can certainly see why Transport for London have chosen to use hydrogen buses on routes 7, 245, N7, based at Periavale East garage.

Design

This is a paragraph from the Air Quality News article.

TfL says they are investing £12m in the new buses and the fuelling infrastructure with Northern Ireland firm Wrightbus as the manufacturer, which uses a fuel cell from Ballard to power a Siemens drivetrain.

Wikipedia says this about the transmission of a New Routemaster bus, that was built by Wright.

Hybrid diesel-electric in series; 18 kW] Microvast Lithium Titanate battery,Microvast LpTO, Siemens ELFA2 electric traction motor.

I should point out that it appears that originally, the New Routemaster had a larger 75 kWh battery. Has the technology improved?

Is the transmission and the chassis based on the Wright-designed New Routemaster chassis and transmission, substituting a Ballard fuel cell for the Cummins diesel engine?

The Cummins diesel engine in the New Routemaster is rated at 185 hp or 138 kW.

This page on the Ballard web site is the data sheet of Ballard’s FCveloCity family of fuel cells.

  • The fuel cells come in three sizes 60, 85 and 100 kW
  • The largest fuel cell would appear to be around 1.2 m x 1 m x 0.5 m and weigh around 400 Kg.
  • The fuel cell has an associated cooling subsystem, that can provide heat for the bus.

It strikes me that this fuel cell is smaller and weighs less than a typical diesel engine fitted to a double-decker bus.

With a larger battery, regenerative braking and a clever transmission would a 100 kW fuel-cell provide enough power for the bus?

Wright have obviously solved the problem and found space for the hydrogen tank, otherwise they wouldn’t have received the order.

Drawing on their experience with the New Routemaster and adding the proven fuel cell technology of Ballard looks at first glance to be a low-risk route to a hydrogen-powered bus.

Conclusion

Wright Group and Transport for London appear to have designed a well-thought out solution to the problem of providing zero-emission buses for London and delivering the first buses next year!

We now have two hydrogen double-decker bus projects under way.

  • London and Wright Group
  • Liverpool and Alexander Dennis

Both appear to be fully-integrated projects, which include the supply of hydrogen to the buses.

When both are proven, there could be very keen competition between the two companies to sell systems all over the UK and the wider world.

It should be noted, that double-decker buses are not that common outside of the UK, Ireland, Hong Kong and Singapore.

But could these two zero-emission projects open up the rest of the world, to these most British of products?

May 11, 2019 Posted by | Transport | , , , | 1 Comment