The Anonymous Widower

UK Ditches Electrification Plans In Wales, The Midlands And The North

The title of this post is the same as that of an article in Global Rail News. This is the first two paragraphs.

The UK government has abandoned plans to electrify the railway between Cardiff and Swansea, the Midland Main Line north of Kettering and the line between Windermere and Oxenholme in favour of bi-mode, or ‘alternative-fuel’, trains.

An announcement from the Department for Transport (DfT) this morning said electrification of the lines was no longer needed and that cancelling the work would result in less disruption for passengers.

So do I agree with the Government’s decision?

Before I answer that question, I will put a few facts into this post!

All Trains Should Be Powered By Electricity

Most trains in the UK are actually powered by electricity.

If you take the noisy and smelly Class 66 locomotive, the wheels are actually turned by electricity, although that electricity is generated by a 2,460 kW diesel engine and an alternator, which is then fed to the traction motors.

The great advantage of electricity is that when you need to deliver precise power to move the train, it is very easy to control.

As an example of precise electric control, think of a variable-speed drill or food mixer.

What makes some trains more efficient than others, is the way they handle the electricity and get it to the traction motors.

Electrification; Overhead Or Third Rail

Ptobably the most efficient way to get electrical power to a train is from an electrification system, which in the UK can be 25 KVAC overhead wire or 750 VDC third rail.

25 KVAC overhead electrification has the following problems.

  • Bridges and tunnels must be raised to give sufficient clearance for the wires.
  • Stations must be designed so that passengers can’t get near the wires.
  • Overhead wires are liable to damage.
  • Overhead gantries can be unsightly and subject to objection by local interest groups.
  • Erecting overhead gantries on an existing railway seems subject to various problems.

I could add that in the UK, we seem to be particularly bad at overhead electrification, but then most other countries electrified their lines decades ago.

750 VDC third rail electrification has one main problem, which is one of Health and Safety.

What is the purpose of this palisade fence at Abbey Wood station?

It certainly doesn’t protect passengers on the North Kent Line platform from where I took the photo from the 750 VDC third rail electrification in front of the fence.

The Crossrail tracks behind the fence are electrified with 25 KVAC, which is several metres in the air.

So is the fence to protect passengers on the platform behind the fence from running across the electrified track?

I think it probably is!

Electrification of both types has problems in certain track layouts.

  • Switches and crossings sometimes need very complicated layout of the power system.
  • Level crossings can present difficult Health and Safety problems.
  • Depots can be dangerous places, even without live rails and overhead wires.

Engineers are constantly coming up with ideas to make electrification safer and more efficient.

Diesel Power

Putting an appropriate diesel engine on a train coupled to an alternator is a common way to generate electricity to power the train.

But.

  • There is the noise and the smell.
  • Diesel engines are very heavy.
  • Diesel fuel has to be carried.
  • Diesel trains have to be regularly refuelled.

To cap it all, diesel trains are not very green.

Gas Turbine Power

One version of he Advanced Passenger Train of the 1970s was intended to be powered by gas turbines and this shows how engineers tried all sorts of power for trains.

Gas turbine power, although very successful in aircraft is probably not suitable for trains.

Hydrogen Power

The Alstom Coradio iLint is a train powered by a hydrogen fuel cell. This is said in the Wikipedia entry.

Announced at InnoTrans 2016, the new model will be the world’s first production hydrogen-powered trainset. The Coradia iLint will be able to reach 140 kilometres per hour (87 mph) and travel 600–800 kilometres (370–500 mi) on a full tank of hydrogen. The first Coradia iLint is expected to enter service in December 2017 on the Buxtehude-Bremervörde-Bremerhaven-Cuxhaven line in Lower Saxony, Germany. It will be assembled at Alstom’s Salzgitter plant. It began rolling tests at 80km/h in March 2017.

As we have successful hydrogen-powered buses in London, I suspect we might see trains powered by hydrogen fuel cells.

Battery Power

Powering a heavy train for a long distance, by means of batteries seems very much of a fantasy.

I was sceptical until I rode inn Bombardier’s Class 379 train, that took part in the BEMU trial.

I believe strongly, that the place for a battery in a train is not normally as a primary power source, but as an intermediate electricity store in much the way the battery is used in a hybrid bus or car.

The battery would be charged, when running on electrified track or by using an onboard diesel engine or hydrogen fuel cell.

It could then power the train on a length of track without electrification.

Regenerative Braking

Regenerative braking can save as much of twenty percent of the electricity use of a train.

Every time the train brakes, the traction motors turn into generators and transform the train’s kinetic energy into electricity.

On some systems like the London Underground, the electricity is returned to the network and used to power nearby trains.

But on some trains, it is passed through resistors on the train roof and just turned into heat.

Hybrid vehicles have shown how it is possible to use batteries to store and reuse the energy and I believe that this technique is now starting to be used on trains.

In Thoughts On Batteries, I said this.

A typical four-car electric multiple unit like a new Class 710 train, weighs about 130 tonnes or 138 tonnes with passengers. Going at a line speed of 100 kph, it has a kinetic energy of 15 KwH. So this amount of kinetic energy would be well within the scope of a 75 KwH battery from a Routemaster bus.

I think that the typical four-car electric multiple unit can easily be fitted with a battery to handle the braking for the train.

The physics of steel-wheel-on-steel-rail are also very efficient, as Robert Stephenson, if not his father, would have known.

So it would appear that combining regenerative braking with batteries of a practical size can improve the efficiency of a train.

One of the great advantages of handling the regenerative braking on the train with batteries, is that expensive transformers to handle the return currents are not needed at trackside.

Putting It All Together

I very much feel that the ultimate train should have the following characteristics.

  • The ability to work on 25 KVAC overhead and/or 750 VDC third rail electrification.
  • A suitable independent power source, which today would probably be diesel.
  • Regenerative braking.
  • A battery of sufficient size.
  • The ability to switch modes automatically.

As a Control Engineer, I feel sure that some form of Automatic Power Management would be welcomed by the driver.

The Class 800 Train

The Class 800 trains, have the following maximum speeds.

  • 125 mph on 25 KVAC overhead wires
  • 140 mph on 25 KVAC overhead wires with ETCS in-cab signalling.
  • 100 mph on diesel.

I think it is true to say, that on 125 mph lines, they may be capable of going faster.

But whatever they can do is probably well known now as Hitachi have over two years of experience of running the trains on British tracks.

In Do Class 800/801/802 Trains Use Batteries For Regenerative Braking?, I analyse the posed question.

After spending several hours searching the Internet, I found this very helpful document on the Hitachi web site.

Reading every word several times, I came to the conclusion, that it is more likely than not, that all variants of Class 80x trains have batteries, that are used for the following.

  • Handling regenerative braking
  • Providing hotel power for the train in case of complete power failure.
  • Providing emergency train recovery in case of complete power failure.

I also discovered the following.

  • The all-electric Class 801 train, has at least one onboard diesel engine for emergency situations.
  • All Class 80x trains could be modified to use third rail electrification.
  • All Class 80x trains can couple and uncouple in under two minutes.
  • Class 80x trains can rescue another.
  • Class 80x trains can be locomotive-hauled.

Hitachi have worked hard to produce a seriously comprehensive train.

This specification will lead to some interesting operational strategies.

More Destinations

Great Western Railway currently has services between London Paddington and the following destinations in South Wales

  • Bridgend
  • Carmarthen
  • Cardiff
  • Llanelli
  • Neath
  • Newport
  • Pembroke Dock
  • Port Talbot
  • Swansea

But how many other stations in South Wales could benefit from a direct service?

The intriguing thing is that a Class 800 train is narrower at 2.7 metres, than the following trains.

A five-car Class 800 train is also considerably shorter and a lot quieter than an InterCity 125.

So it raises the possibility of direct services between London and the following stations.

  • Smaller stations in West Wales like Fishguard Harbour and Milford Haven
  • Important stations in the Cardiff Valley Lines.

Could a five-car Class 800 train reach Aberdare, Ebbw Vale and Merthyr Tydfil, with some platform and track modifications?

Or if not a five-car, what about a four- or three-car train, which due to the flexible nature of the trains, I’m feel is very much possible?

Joining And Splitting Of Trains

In Wales, smaller separate trains could join into a train of up to twelve-cars at say Cardiff or Newport stations and then run to London as a single train.

Similar processes could apply in West Wales, with trains joining at perhaps Port Talbot Parkway station.

Returning from London, the trains would split at an appropriate station.

The big advantage of this approach, is that two or even three services share one path and driver between the join/split station and London, which means an increased number of separate services and total seats between Wales and London.

Similar processes will be possible on the following sets of routes, which will or could be run by Class 80x trains.

  • London Paddington to Cheltenham, Gloucester, Hereford, Oxford and Worcester.
  • London Paddington to Devon and Cornwall.
  • Midland Main Line services.
  • East Coast Main Line services.

How many stations on these lines will receive a new direct service to and from London?

Network Rail’s Secret Weapon

I have been suspicious for some time, that Network Rail have a very sophisticated simulation of the UK rail network. In fact, I’d be very surprised if they didn’t have one.

But that’s because I’ve done extensive dynamic simulation and scheduling in my working life and know the power and capabilities of such a system.

It’s just that some of the new franchises have developed some quite radical train patterns.

So I would suspect, a lot of the thinking behind the dropping of electrification has been thoroughly tested on the computer.

So how will the three lines quoted in the article be handled?

Oxenholme To Windermere

The Windermere Branch Line is just ten miles long with four stations.

This article in the Railway Gazette, says this.

‘We have listened to concerns about electrification gantries spoiling protected landscapes’, Grayling said when confirming the cancellation of plans to electrify the Windermere branch in the Lake District, adding that Northern would begin work to trial an ‘alternative-fuelled’ train on the route by 2021. Grayling mentioned the ongoing development of battery and hydrogen power in his statement, but Northern said it had only just begun to explore possible options following the cancellation of the electrification, and so any decision on the technology to be used was still some way off.

From May 2018 Northern plans to operate services to Windermere using Class 769 Flex electro-diesel units to be formed by fitting diesel powerpacks to Class 319 EMUs. New CAF DMUs would then be introduced to the route from December 2019.

It is both a short-term and a long-term solution, that is probably to the benefit of all stakeholders.

Given that the Class 769 train has been designed to serve Manchester to Buxton, you can’t accuse Porterbrook and Northern of hiding their creation under a bushel.

Cardiff To Swansea

The South Wales Main Line between Cardiff Central and Swansea stations is a forty-five mile double-track with the following operating speeds.

  • 90 mph from Cardiff Central to East of Bridgend station
  • 75 mph from Bridgend to   Swansea Loop North Junction
  • 40 mph from  Swansea Loop North Junction to Swansea

But there is a short section at 100 mph through Pyle station.

This is said in the article in Global Rail News.

Referring to the Cardiff-Swansea route, the statement said, “Rapid delivery of passenger benefits, minimising disruption and engineering work should always be our priority and as technology changes we must reconsider our approach to modernising the railways.”

The argument is based on the planned introduction of bi-mode Class 800 trains later this year.

I have flown my virtual helicopter along the tracks and it doesn’t seem a badly designed route.

  • It appears to be fairly straight with flowing curves.
  • There are only eleven stations to pass through.
  • Looking at the current timetables, it would appear that the fastest trains take about 51-53 minutes to go between Cardiff and Swansea.
  • Wikipedia says this about the South Wales Main Line, “resignalling and line speed improvements in South Wales, most of which would be delivered in 2010–2014”.

So have Network Rail found a way to increase the operating speed nearer to the 100 mph of the Class 800 trains, when running on diesel?

I obviously don’t know for sure, but given the improvements to the South Wales Main Line and the performance of the new trains, I wonder if Network Rail’s calculations have shown that there is very little to be gained by full electrification.

As I indicated earlier, by joining and splitting services, the number of trains and the total number of seats can be increased to West Wales without needing more train paths between London and Cardiff.

Midland Main Line

There has been discussions in Modern Railways recently about the problems of devising a timetable for the Midland Main Line.

The article in the Railway Gazette says this.

Hitachi is supplying bi-mode trainsets for Great Western services under the Department for Transport’s Intercity Express Programme, while the operator of the next East Midlands franchise will be required to introduce bi-mode trainsets from 2022. DfT said the use of electro-diesel trainsets instead of electrification would mean passengers would ‘benefit sooner’, because ‘disruptive’ work to install ‘intrusive wires and masts’ would ‘no longer be needed’.

It looks to me that simulation has shown, as in South Wales, there is little to be gained from full electrification.

But there could be a lot to gain from the following.

  • Creative joining and splitting of trains.
  • Improved track layouts.
  • Improving the electrification South of Bedford.
  • Adding new stations.

With these intelligent bi-mode trains, electrification can be added selectively, if it is shown to be worthwhile.Control systems linked to GPS,  can raise and lower the pantograph appropruiately.

Conclusion

I think that someone asked the heretical question.

What would happen if instead of electrification, we used bi-mode trains?

Both the South Wales Main Line and the Midland Main Line have similar characteristics.

  • Operating speed upwards of 90 mph.
  • Sections where the operating speed could be raised.
  • Partial electrification at the London end.
  • All London suburban trains sharing the routes are 100 mph trains.
  • Modern signalling

Couple this with the Class 800 trains and a very good simulation, and I suspect that Network Rail have found ways to improve the service.

I very much feel that similar techniques are being used to increase the capacity of the electrified Great Eastern Main Line to achieve Norwich-in-Ninety.

I can’t of course prove my feelings, but then I started writing computer simulations in the mid-1960s and like to think,  I know when I see others have done some good numerical analysis.

Where Else Could Bi-Mode Trains Be Used In This Way?

This is very much speculation on my part.

Basingstoke To Exeter Via Salisbury

Consider.

  • There have been ambitions to electrify this route for decades.
  • The new operator of the route; South Western Railway and Great Western Railway, who will operate Class 800 trains, are partially in the same ownership.
  • Third rail or dual voltage Class 800 trains are possible.
  • The trains are 100 mph units on diesel against the current 90 mph Class 158 trains.
  • The trains would save four minutes between London Waterloo and Basingstoke.
  • The trains could take advantage of speed improvement South of Basingstoke.
  • If Basingstoke to Exeter was a 100 mph line, then up to fifteen minutes could be saved.
  • The trains could join and split to serve multiple destinations.

But perhaps the biggest advantage would be that all trains between London Waterloo and Basingstoke would be 100 mph trains, which must mean that more trains could use the line.

Cardiff to Brighton via Southampton, Portsmouth Harbour and Bristol

Consider.

  • This route has significant overcrowding according to Wikipedia.
  • Cardiff to Bristol should eventually be electrified with 25 KVAC overhead wires.
  • Brighton to Southampton is electrified with 750 VDC third rail.
  • Great Western Railway run this route and have Class 800 trains.
  • Dual voltage Class 800 trains are possible.

To run this route efficiently, Great Western Railway would need an appropriate number of five-car dual voltage Class 800 trains.

Norwich To Stansted Airport via Ely and Cambridge

The Breckland Line between Norwich and Cambridge has the following characteristics.

  • Double-track throughout its just over fofty miles.
  • Sections of electrification at Norwich and South of Ely.
  • A variable operating speed of up to 90 mph.

The line has recently been upgraded with improved track, removal of level crossings and modern signalling.

As part of their new franchise proposal, Greater Anglia decided to run services from Norwich to Stansred Airport using new Stadler Class 755 trains, with the following characteristics.

  • Three- or four-car
  • Bi-mode power.
  • 100 mph capability.
  • Running on 25 KVAC, where available.

I think this is a good plan and is an example of the sort of use of bi-mode trains that will be seen increasingly.

Consider.

  • Norwich gets a much better connection to Cambriodge and Stansted Airport.
  • Some services on the route are still run by 90 mph Class 158 trains.
  • Speed improvements will come because of the nearly fifty miles of electrification between Ely and Stansted Airoport.
  • There may be further track improvements possible.

There is also the big possibility of being able to run a direct service between Norwich and London via Cambridge. I estimate that this could be done in about two and a half hours.

This is obviously not as fast as the route via Ipswich, where the current timing is around one hour fifty minutes and plans are in progress to reduce it by twenty minutes, but as an engineering work diversion, it is faster than a bus replacement service.

Peterborough To Colchester via Bury. St. Edmunds and Ipswich

This is an extension of the current Peterborough to Ipswich service that will be run by a bi-mode Class 755 train, under the new franchise agreement.

Consider.

  • The route is not electrified, except for Colchester to Stowmarket.
  • Colchester gets a new hourly direct link to Peterborough, which has many services to the North.
  • A two train per hour service across Suffolk between Ipswich and Bury St. Edmunds is created.
  • Colchester to Peterborough may be reduced by twenty minutes or more.
  • Ipswich to Peterborough may be reduced by a few minutes.

If it was decided to electrify from Stowmarket to Peterborough, timings would benefit substantially.

Ipswich To Cambridge via Bury. St. Edmunds and Newmarket

This is an existing service that will be run by a bi-mode Class 755 train, under the new franchise agreement.

Leeds To Glasgow Via Settle

Why not?

If you look at timings for Leeds to Glasgow, they are typically as follows.

  • 3 hours 58 minutes with an 11 minute change at Haymarket.
  • 4 hours 12 minutes with a 30 minute change at Carlisle
  • 4 hours 4 minutes on a direct train via Edinburgh.

The Settle-Carlisle Line has been stoutly repaired after the 2015-2016 Temporary Closures and is probably in its best state for years, if not ever.

  • Leeds to Skipton is electrified.
  • Carlisle to Glasgow is electrified.
  • Virgin Trains East Coast run to Skipton, using InterCity 225s.

I estimate that a Class 800 train could reduce the journey time to around three-and-a-half hours.

Would that be a successful service considering  driving between Leeds and Glasgow probably takes almost four hours?

July 20, 2017 - Posted by | Travel | , , , , ,

No comments yet.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s