The Anonymous Widower

Beeching Reversal – Increased Services To Nottingham And Leicester, via Syston And Loughborough From Melton Mowbray

This is one of the Beeching Reversal projects that the Government and Network Rail are proposing to reverse some of the Beeching cuts.

It is one of a pair of submissions from the local MP; Alicia Kearns. The other is More Stopping Services At Radcliffe-on-Trent And Bottesford Stations On The Poacher Line Between Grantham And Nottingham.

When I heard of the MP’s submissions, I wrote MP Campaigns To Extend Train Services For Melton Borough and the following uses that post as a starting point.

Wikipedia says this about services at Melton Mowbray station.

  • There is an hourly off-peak service in both directions between Stansted Airport and Birmingham, that calls at Cambridge, Peterborough, Oakham and Leicester.
  • East Midlands Railway and their predescessor have added services to London via Corby and to Derby and East Midlands Parkway.

When you consider, that both Bottesford and Melton Mowbray are the same Council and Parliamentary constituency, it does seem that a more direct train service is needed between Bottesford and Melton Mowbray stations.

It does seem to me that some innovative thinking is needed.

If the current plans to fulfil British Rail’s ambition of an Ivanhoe Line running from Lincoln to Burton-on-Trent via Nottingham, East Midlands Parkway, Loughborough and Leicester, are carried out, that will give important towns to the West of Leicester much better rail connections.

Given that High Speed Two is coming to East Midlands Hub station at Toton and there will be a Bedford and Leeds service run by Midlands Connect using High Speed Two classic-compatible trains, that I wrote about in Classic-Compatible High Speed Two Trains At East Midlands Hub Station, I wonder if in the interim, there should be more trains between Derby and Melton.

  • Intermediate stations would be Syston, Sileby, Barrow-upon-Soar, Loughborough, East Midlands Parkway Long Eaton and Spondon.
  • An hourly frequency would double the service frequency at smaller stations like Sileby and Barrow-upon-Soar.
  • The Southern terminal could be Melton station, but I feel Corby or Peterborough stations would be better, as this would improve services at Oakham station. We should not forget Rutland!
  • As Corby will be an electrified two-platform station with a two trains per hour (tph) service to London, this could work quite well as a Southern terminus.
  • Peterborough would have advantages and give a good connection to Cambridge, London and Scotland, but improvements to the current Birmingham and Stansted Airport service would have similar effects.

This route would be just as valuable after High Speed Two opens through the East Midlands Hub station, as it will give fast ongoing connections to Birmingham, Leeds, Newcastle and York.

Electrification Of The Midland Main Line

I feel strongly, that full electrification of the Midland Main Line could be a step to far.

  • Electrification, through Leicester station will mean a complete closure of the station for a couple of years.
  • Electrification of the route North of Derby, through the Derwent Valley Mills, which is a World Heritage Site, will be opposed by the Heritage Taliban with all their might.

But.

  • Electrification of the route between Clay Cross Junction and Sheffield via Chesterfield will take place in conjunction with High Speed Two
  • Electrification to Market Harborough, which is sixteen miles South of Leicester will happen.
  • East Midlands Railway’s new Class 810 trains could be fitted with a battery option giving a range of between 55 and 65 miles.
  • Pantographs on these trains can go up and down with all the alacrity of a whore’s drawers.

If the easier section of electrification between Leicester and Derby stations, were to be installed, this would enable the following routes to be run using battery-equipped Class 810 trains.

  • London and Derby, where battery power would be used through Leicester.
  • London and Nottingham, where battery power would be used through Leicester and between East Midlands Parkway and Nottingham.
  • London and Sheffield, where battery power would be used through Leicester and between Derby and Clay Cross Junction.
  • Lincoln and Burton-on-Trent, where battery power would be used South of Leicester and North of East Midlands Parkway.
  • Derby and Corby, where battery power would be used between Syston and Corby.

There would also be the service between Derby and Norwich, which might be able to be run by a similar train.

Conclusion

I think the ideal way to achieve the MP’s objective would be to extend a proportion of London St. Pancras and Corby services to  the Midland Main Line.

But the problem with this, is that the Corby trains will be Class 360 trains, which are electric, so the thirty-six mile route between Corby and the Midland Main Line would need to be electrified.

On the other hand, a shuttle train could be used between Corby and Leicester.

They would call at Oakham, Melton Mowbray and Syston stations.

If the Midland Main Line to the North of Leicester were to be electrified, Battery electric trains could be used on the route, with charging at Leicester and Corby.

August 22, 2020 Posted by | Energy Storage, Transport | , , , , , , , , | 1 Comment

Dore And Totley Station – 13th July 2020

These pictures show Dore and Totley station.

These are my thoughts on the station and the tracks through it.

The Midland Main Line And High Speed Two

The two tracks, that are furthest away from the station platform are the Midland Main Line between Sheffield and Chesterfield, Derby and the South.

  • These tracks will be taken over by High Speed Two.
  • They will be electrified with 25 KVAC overhead electrification.
  • The trains on the Midland Main Line will continue to use the electrified tracks.
  • East Midlands Railway have ordered bi-mode Class 810 trains, which will each be 120 metres long or 240 metres long, when running as a pair.
  • CrossCountry’s Class 220 trains are 187 metres long running as a pair.
  • I estimate that the faster trains were doing around 100 mph, as they passed Dore and Totley station. I shall measure it properly next time, I go to Sheffield on a train.

Note.

  1. High Speed Two’s trains will probably be going through at the same speed as East Midlands Railway’s Class 810 trains.
  2. High Speed Two will be running their 200 metre long classic-compatible trains to and from Sheffield, so except that there will be two more trains in every hour, there will be little difference.
  3. Both the High Speed Two and the East Midlands Railway trains will be running on electric power between Sheffield and Chesterfield stations.
  4. It is likely that other services will use electric power on the Midland Main Line.
  5. There will be no platforms on the High Speed tracks at Dore and Totley station.

I would suspect that there will be little disruption to train services through the area, whilst the electrification is installed, judging by the disruption caused during electrification between Bedford and Corby.

Dore Junction

Dore Junction is a triangular junction, that connects the Hope Valley Line and the Midland Main Line to the South of Dore and Totley station.

This Google Map shows Dore Junction.

Note.

  1. Dore and Junction station is at the North of the Map.
  2. Dore West Junction is in the South West corner of the map and leads to the Hope Valley Line.
  3. Dore South Junction is in the South East corner of the map and leads to Chesterfield on the Midland Main Line.

This second Google Map shows Dore South Junction.

Could this junction be improved to increase capacity and efficiency?

  • The Southern track of the triangular junction is only single track.
  • It is a major route for stone trains between Derbyshire and London and the South.

If Network Rail have any ideas for Dore Junction, then surely, when the works in the area are being carried out, is the time for them to be performed.

Platform Length At Dore And Totley Station

I took these two pictures when I arrived at Dore and Totley station.

As the train was formed of two two-car Class 150 trains and the train fits the platform, it would appear that the platform is about eighty metres long.

An Extra Platform At Dore And Totley Station

There may be no plans to put platforms on the Midland Main Line, but plans exist for an extra track through the station, that will connect to the Hope Valley Line.

This Google Map shows Dore and Totley station and the Midland Main Line.

 

The second platform wouldn’t be the widest platform,. but I’m sure a second track and a safe platform could be squeezed in.

I wonder if more space is needed, the Midland Main Line could be realigned to give more space and better performance.

A Turnback At Dore And Totley Station

In Beeching Reversal – Sheaf Valley Stations, I said this about a possible turnback at Dore and Totley station.

This Google Map shows Dore & Totley station and the area to the South.

Note.

    1. There would appear to be a lot of space between the Midland Main Line and the single track, that leads between Dore & Totley station and the Hope Valley Line.
      Flying my helicopter, as low as I dare, it looks like the area is either a rubbish dump or very low grade businesses.
      Crossrail has designed turnbacks at Abbey Wood and Paddington stations, that will handle twelve tph.
      I believe that it would be possible to design a turnback at Dore & Totley station, that would handle eight trains per hour, if not twelve tph.

It might even be possible to squeeze in some overnight stabling.

Whilst I was at Dore and Totley station, I met a couple, who were perhaps a few years older than me, who had grown up in the area.

He could remember local steam services between Sheffield and Dore and Totley stations, where there had been a turntable to the South of the station to reverse the locomotive.

Conclusion

After what I saw on my visit to Dore and Totley station, I would suspect that the station can be updated to the standard required to allow four tph between Manchester Piccadilly and Sheffield stations.

It could also be a station that will attract passengers.

 

July 14, 2020 Posted by | Transport | , , , , , , | 1 Comment

Beeching Reversal – Sheaf Valley Stations

This is one of the Beeching Reversal projects that the Government and Network Rail are proposing to reverse some of the Beeching cuts.

Stations To Be Rebuilt

As you approach Sheffield station, you pass four station sites, three of which are demolished and the fourth is just a shadow of its former self.

Dore & Totley

Dean & Totley station used to have four platforms and this Google Map, shows what is left after British Rail’s vandalism in the mid-1980s.

Note.

  1. The station has only one platform.
  2. The single track in the platform handles all trains to and from the Hope Valley Line.
  3. At present it appears to be two trains per hour (tph) in both directions.
  4. The two tracks at the right are the Midland Main Line.

Transport for the North wants to run four tph between Manchester Piccadilly and Sheffield through here, that will take forty minutes between the two cities.

Updates planned for the station include.

  • A second platform for Manchester-bound trains.
  • A new bridge with lifts.
  • Platforms long enough to take a pair of Class 185 trains or a five-car Class 802 train.
  • A full hourly service.

There certainly seems to be enough space for another platform and track through the middle of the station.

At some point in the near future, the two Midland Main Line tracks will be electrified, as part of the upgrade for High Speed Two.

Between Dore & Totley And Beauchief

This Google Map shows a typical section of the line between Dore & Totley and Beauchief stations.

Note the two Midland Main Line tracks on the right and single-track to the Hope Valley Line on the left.

It would appear that the fourth track can be squeezed in between the single track and the Midland Main Line.

Beauchief

Beauchief station used to have four platforms before it was demolished.

This Google Map shows the station’s former location.

Note.

  1. The building with the red dot is the former Beauchief Hotel. which was by the station.
  2. On a larger screen you can see three tracks going into Sheffield.

I’m fairly certain that four tracks and two platforms for a station can be fitted into this narrow trackbed.

Millhouses & Eccleshall

Millhouses and Eccleshall station used to have four platforms before it was demolished.

This Google Map shows the station’s former location.

Note.

  1. Wikipedia says the station was accessed from the Archer Road bridge, which is in the South East corner of the map.
  2. It looks like there are three tracks with space for four.
  3. The road to the North-West of the railway is called Old Station Road.

As at Beauchief, it will be tight.

Heeley

Heeley station used to have four platforms before it was demolished.

This Google Map shows the station’s former location.

Note.

  1. The red arrow indicates Heeley Bridge, which Wikipedia says is near the station site.
  2. There appears to be only two tracks through here.

It is easy to follow the tracks from here to Sheffield station.

Could A Four Track Railway Be Rebuilt Between Dore & Totley And Sheffield Stations?

I’ve not seen anything that says that building a four-track railway through here is not possible.

In a few years, there could be the following tracks and platforms, on this section.

  • Two fast tracks for High Speed Two, Midland Main Line and CrossCountry trains, that will be electrified with 25 KVAC overhead electrification.
  • The High Speed Two trains will be classic-compatible and up to 200 metres long.
  • The two fast tracks will not have any platforms.
  • Two slow tracks for local services, that will be appropriately electrified.
  • The slow tracks will have step-free platforms, that will be long enough to take a five-car Class 802 train or a pair of Class 185 trains.

I can’t for the life of me understand, why this stretch of four-track main line between Dore & Totley and Sheffield stations was ever simplified, as at other places on the UK network, extra tracks were being added to the main lines, at the same time.

Future Services On The Fast Lines

Currently, the following services take the fast lines between Sheffield and Chesterfield stations via Dore & Totley station.

  • East Midlands Railway – Sheffield and London St. Pancras – 2 tph
  • East Midlands Railway – Sheffield and Norwich via Nottingham – 1 tph
  • CrossCountry – Edinburgh/Newcastle and Derby/Birmingham and the South – 2 tph
  • Northern – Sheffield and Nottingham – 1 tph

That is a very modest six tph.

High Speed Two are currently planning to run two tph between Sheffield and London Euston.

There may or may not be other changes.

  • As Birmingham Curzon Street and Sheffield will be just forty-seven minutes by High Speed Two all the way, will these destinations have a direct high speed classic-compatible service? There’s plenty of space capacity on High Speed Two.
  • I don’t think the Sheffield and St. Pancras services will be dropped, but they might be.
  • CrossCountry will probably be running intelligent multi-mode trains capable of 125 mph running and up to 140 mph in places.
  • Northern’s service between Sheffield and Nottingham might go via a reopened Barrow Hill Line.

But the biggest change will be that these two fast lines will be to High Speed Two standards.

  • Sheffield and Chesterfield will be electrified.
  • There will in-cab digital signalling, which theoretically could probably allow eighteen tph on the route.
  • High Speed Two Trains between Sheffield and Chesterfield will take twelve minutes.
  • Sheffield station will have been modified as required, to be able to handle all trains very efficiently.

But it would still be carrying a modest eight tph.

If required Sheffield would have the capacity to accept more trains from the South.

I wouldn’t be surprised to see, the following trains added.

  • An extra tph to and from London Euston via High Speed Two.
  • Two tph to and from Birmingham Curzon Street via High Speed Two.

I also wouldn’t be surprised to see CrossCountry using classic-compatible High Speed Two trains and switching to High Speed Two between Birmingham New Street and Sheffield. But these trains would still use the same tracks to access Sheffield station.

But I am led to the conclusion, that Sheffield will have more than enough capacity linking the City to Chesterfield and the South.

Future Services On The Slow Lines

Or should I use lines connecting to the Hope Valley Line rather than slow lines?

Currently, the following services take the slow lines between Sheffield and  Dore & Totley stations.

  • East Midlands Railway – Liverpool Lime Street and Sheffield – via Manchester Piccadilly – 1 tph
  • TransPennine Express – Manchester Airport and Cleethorpes via Manchester Piccadilly – 1 tph
  • Northern – Sheffield and Manchester Piccadilly – 1 tph

 

Transport for the North aims to run a four tph service with a forty minute journey time between Manchester Piccadilly and Sheffield.

Consider.

  • 100 mph TransPennine Express trains take fifty-three minutes between Sheffield and Manchester Piccadilly without a stop.
  • Classic-compatible trains with a battery capability could easily handle the route.
  • Northern’s services on the Hope Valley Line are timed for 75 mph trains.
  • Dore & Totley and Hazel Grove stations are twenty-nine miles apart.

If between Dore & Totley and Sheffield stations were to be electrified and track improvements like passing loops were to be made to the Hope Valley Line, I believe that to achieve a forty minute all-stops timing between Sheffield and Manchester Piccadilly, would need a train with the following specification.

  • Electric train with batteries.
  • Four cars
  • 100 mph or faster operating speed.
  • Step-free access between platform and train.
  • Sparkling acceleration and deceleration.
  • Ability to run under in-cab digital signalling to keep out of the way of freight services.

Looking at Crossrail between London Paddington and Maidenhead stations, the London route is probably as difficult as the Hope Valley Line and it has been designed as a forty minute service with ten stops, using a modern electric train.

If TransPennine fitted batteries to their Class 802 trains, these trains would fit the Northern Powerhouse Rail requirements.

East Midlands Railway and Northern would find that the following trains could be used.

  • Bombardier – Aventra with batteries
  • Bombardier – Class 377 train with batteries
  • Bombardier – Class 379 train with batteries
  • CAF – Class 331 train with batteries
  • Hitachi – Class 385 train with batteries
  • Porterbrook – Battery/FLEX train based on Class 350 train
  • Stadler – Flirt with batteries

All would need that between Dore & Totley and Sheffield stations be electrified.

After the upgrades and the new or refurbished trains are running, this would mean that between Dean & Totley and Sheffield would be handling four tph, which would be semi-fast trains between Sheffield and Manchester Piccadilly. Although to current passengers on the line, they would seem to be fast services of a much higher standard.

It would not be very different to how the slow lines into Paddington also handle about four tph of other services, including GWR services and freight.

I believe that to provide an adequate service to the reopened and rebuilt stations of Dore & Totley, Beauchief, Millhouses & Eccleshall and Heeley, that a Turn-Up-And-Go service of at least four tph should be run between Dore & Totley and Sheffield stations.

A Turnback At Dore & Totley

This Google Map shows Dore & Totley station and the area to the South.

Note.

  1. There would appear to be a lot of space between the Midland Main Line and the single track, that leads between Dore & Totley station and the Hope Valley Line.
  2. Flying my helicopter, as low as I dare, it looks like the area is either a rubbish dump or very low grade businesses.
  3. Crossrail has designed turnbacks at Abbey Wood and Paddington stations, that will handle twelve tph.

I believe that it would be possible to design a turnback at Dore & Totley station, that would handle eight trains per hour, if not twelve tph.

It might even be possible to squeeze in some overnight stabling.

Trains Or Tram-Trains Between Dore & Totley And Sheffield Stations

In my view, it doesn’t matter.

Crossrail’s 12 tph turnbacks can handle a 205 metre long Class 345 train, so I’m sure a well-designed turnback at Dore & Totley could handle a mixture of any trams or tram-trains below a defined maximum length of say 140 metres, which would be defined by a pair of Class 185 trains, which might have to be turned back during service disruption.

Where Would The Services Terminate in The East?

It is my view that cross-city services like Birmingham’s Cross-City Line, Liverpool’s Northern Line, London’s Crossrail and Thameslink, Newcastle’s Metro and Paris’s RER are efficient for both passengers and train operators.

So Dore & Totley station could be one end of a Sheffield cross-city line, with a frequency of at least eight tph through Beauchief, Millhouses & Eccleshall, Heeley and Sheffield stations.

So where would services go on the other side of Sheffield? Wikipedia gives these as services to the East of Sheffield.

  • Leeds via Barnsley and Wakefield (fast) – 2 tph
  • Leeds via Meadowhall, Barnsley, Wakefield and Castleford (stopping). – 1 tph
  • Leeds via Meadowhall, Moorthorpe and Wakefield. – 1 tph
  • Scarborough via Meadowhall, Doncaster, Hull and Bridlington. – 1 tph
  • Lincoln Central via Worksop and Retford – 1 tph
  • Gainsborough Central via Worksop, three trains per week continue to Cleethorpes via Brigg. – 1 tph
  • Huddersfield via Meadowhall, Barnsley and Penistone – 1 tph
  • Doncaster via Meadowhall and Rotherham, with one train per hour continuing to Adwick – 2 tph
  • York via Moorthorpe and Sherburn-in-Elmet. – 3 trains per day (tpd)

For much of the day, that is a frequency of 10 tph, with 5 tph calling at Meadowhall, 2 tph calling at Worksop and two fast tph passing Meadowhall without stopping.

But there are other rail projects under development.

I can see classic-compatible High Speed Two trains serving the following places to the East of Sheffield.

  • Leeds
  • Hull via Doncaster
  • Scarborough via York
  • Cleethorpes via Doncaster, Scunthorpe and Grimsby.

A train like a five-car Class 802 train would probably be enough for most routes except Leeds.

I can see the following terminals for tram-trains to the East of Sheffield.

  • Doncaster and Doncaster-Sheffield Airport
  • Waverley station, which could be on a loop from the Sheffield and Lincoln Line.
  • Barnsley Dearne Valley

There may well be others.

If Sheffield were Karlsruhe in Germany, the tram-trains would probably serve the following routes.

  • Huddersfield via Penistone.
  • Lincoln via Worksop and Gainsborough.
  • Manchester via the Hope Valley Line.

But the Germans have a much larger electrified core, than Sheffield will have, even if High Speed Two electrifies between Dore & Totley and Thurnscoe stations via Sheffield.

I can make a table of destinations and distances and how they could be served.

  • Barnsley – 16 miles – Possible return trip from Sheffield for a battery electric train.
  • Barnsley Dearne Valley – 8 miles from Rotherham Parkgate – Possible return trip from Sheffield via Rotherham Parkgate for a battery electric tram-train.
  • Doncaster – 11 miles from Rotherham Parkgate – Possible return trip from Sheffield via Rotherham Parkgate for a battery electric tram-train.
  • Chesterfield via Barrow Hill – 17 miles – Possible return trip from Sheffield for a battery electric tram-train.
  • Doncaster Sheffield Airport – 10 miles from Doncaster – Possible return trip from Sheffield via Rotherham Parkgate and Doncaster for a battery electric tram-train.
  • Gainsborough Lea Road. – 32 miles – See Lincoln Central.
  • Huddersfield – 36 miles – Possible battery electric train with charging at Huddersfield.
  • Hull – 59 miles – Possible battery electric train with charging at Doncaster and Hull.
  • Lincoln Central – 48 miles – Possible battery electric train with charging at Lincoln and/or Gainsborough Lea Road. Otherwise diesel.
  • Penistone – 23 miles – Possible return trip from Sheffield for a battery electric train, using Newton’s friend on the way back.
  • Retford – 23 miles – Possible return trip from Sheffield for a battery electric train.
  • Waverley – About 6 miles – Possible return trip from Sheffield for a battery electric tram-train.
  • Worksop – 16 miles – Possible return trip from Sheffield for a battery electric train.

It looks to me like a mix of battery electric trains and tram-trains could run most of the services from Sheffield, if services that used new High Speed Two infrastructure used classic-compatible trains or trains like the existing Class 802 trains, that have been converted to battery electric operation.

Note.

  1. I am assuming, that a battery electric train has  a range of 56 miles on a single charge.
  2. Rotherham Parkgate station is changed to a through station.
  3. Tram-trains passing through Doncaster can recharge on the station’s 25 KVAC overhead electrification.
  4. Charging can be provided as required at other stations.

There are lots of possibilities.

Consider, this for tram-train extensions to Barnsley Dearne Valley, Doncaster and Doncaster Sheffield Airport.

  • Extend the tram-train service at Rotherham Parkgate to either Doncaster and Doncaster Airport or Barnsley Dearne Valley stations.
  • Run tram-trains between Dore & Totley and Rotherham Parkgate via Sheffield, Meadowhall and Rotherham Central.

This would give a double-ended route across Sheffield and Rotherham between Dore & Totley and the existing Supertram network in the West and Barnsley Dearne Valley, Doncaster and Doncaster Sheffield Airport in the East.

Consider how to connect the branch to Waverley station to the Supertram network.

  • Waverley station will be either on or on a loop from the Sheffield and Lincoln Line.
  • The Sheffield and Lincoln Line has no obvious connection with the Supertram network.
  • The Sheffield and Lincoln Line goes straight in to Sheffield station.
  • Trains to Lincoln always appear to use Platform 4 in Sheffield station.
  • Sheffield station has four through platforms.

This Google Map shows where the Sheffield and Lincoln Line passes behind the Supertram Depot at Nunnery.

Note.

  1. The Nunnery Square Park and Ride is in the South West corner of the map.
  2. The Supertram depot is to the East of the Park-and-Ride, with the Nunnery Square tram stop to the South.
  3. The Woodbourn Road tram stop is in the North East corner of the map.

This second Google Map shows the lines around the Park-and-Ride.

I suspect that a connection between the Supertram system and the Sheffield and Lincoln Line, could be built to the North of the Nunnery Depot.

But would it be easier to continue to Sheffield station or pass through the station and terminate at Dore & Totley station?

I can’t be sure looking at the maps, but it could be logical that trains to and from Lincoln use the Southern pair of tracks past the Nunnery Depot, as they would be on the right side of the tracks for Lincoln.

This would make it easier to do the following.

  • Create a connection between the Nunnery Depot and the Sheffield and Lincoln Line, which would surely be needed for efficient maintenance and operation of tram-trains running to and from Waverley.
  • Allow tram-trains used to serve the proposed Waverley station to return to the Depot every night.
  • Allow tram-trains working between Sheffield and Meadowhall to use the Lincoln and Sheffield Line to enter the Nunnery Depot.
  • Build a tram stop/station by the Park-and-Ride.

There would also be less need to build another depot.

Looking at the maps, could there be space to extend the Nunnery Depot?

Conclusion

This could be a very good project.

  • It fits in well with the plans and needs of High Speed Two.
  • It connects the new Waverley station to Sheffield station.
  • It fits well with the Sheffield Region Transport Plan 2019.
  • It connects Sheffield, Rotherham and Doncaster to Doncaster Sheffield Airport.
  • It opens up the Hope Valley Line to improve services between Manchester and Sheffield.

I also don’t think, there’s any great risk!

 

 

 

 

 

 

 

I

 

 

 

July 12, 2020 Posted by | Transport | , , , , , , , , , , , , , , , , , | 3 Comments

Hyperdrive Innovation And Hitachi Rail To Develop Battery Tech For Trains

The title of this post, is the same as that of this article on The Engineer.

This is the introductory sub-title.

Hyperdrive Innovation and Hitachi Rail are to develop battery packs to power trains and create a battery hub in the North East of England.

The article gives this information.

  • Trains can have a range of ninety kilometres, which fits well with Hitachi’s quoted battery range of 55-65 miles.
  • Hitachi has identified its fleets of 275 trains as potential early recipients.

Hitachi have also provided an  informative video.

At one point, the video shows a visualisation of swapping a diesel-engine for a battery pack.

As a world-class computer programmer in a previous life, I believe that it is possible to create a battery pack, that to the train’s extremely comprehensive computer, looks like a diesel-engine.

So by modifying the train’s software accordingly, the various power sources of electrification, diesel power-packs and battery packs can be used in an optimum manner.

This would enable one of East Midlands Railway’s Class 810 trains, to be fitted with a mix of diesel and battery packs in their four positions under the train.

Imagine going between London and Sheffield, after the High Speed Two electrification between Clay Cross North Junction and Sheffield has been erected.

  • Between St. Pancras and Market Harborough power would come from the electrification.
  • The train would leave the electrified section with full batteries
  • At all stations on the route, hotel power would come from the batteries.
  • Diesel power and some battery power would be used between stations. Using them together may give better performance.
  • At Clay Cross North Junction, the electrification would be used to Sheffield.

For efficient operation, there would need to be electrification or some form of charging at the Sheffield end of the route. This is why, I am keen that when High Speed Two is built in the North, that the shsared section with the Midland Main Line between Clay Cross North Junction and Sheffield station, should be built early.

Hitachi have said that these trains will have four diesel engines. I think it will more likely be two diesel engines and two batteries.

The World’s First Battery-Electric Main Line

I suspect with electrification between Sheffield and Clay Cross North Junction, that a train fitted with four batteries, might even be able to run on electric power only on the whole route.

In addition, if electrification were to be erected between Leicester and East Midlands Parkway stations, all three Northern destinations would become electric power only.

The Midland Main Line would be the first battery electric high speed line in the world!

Hitachi On Hydrogen Trains

The press release about the partnership between Hitachi and Hyperdrive Innovation is on this page on the Hitachi web site.

This is a paragraph.

Regional battery trains produce zero tailpipe emission and compatible with existing rail infrastructure so they can complement future electrification. At the moment, battery trains have approximately 50% lower lifecycle costs than hydrogen trains, making battery the cheapest and cleanest alternative zero-emission traction solution for trains.

I have ridden in two battery-electric trains and one hydrogen-powered train.

I would rate them out of ten as follows.

It’s not that the iLint is a bad train, as the power system seems to work well, but the passenger experience is nowhere near the quality of the two battery trains.

In my view, battery vehicles are exceedingly quiet, so is this the reason?

On the other hand, it could just be poor engineering on the iLint.

Conclusion

This is as very big day in the development of zero- and low-carbon trains in the UK.

July 6, 2020 Posted by | Transport | , , , , , , , , | 26 Comments

Discontinuous Electrification Through Leicester Station

Leicester station is an important station on the Midland Main Line

  • Leicester is an urban area of half a million people.
  • All of East Midlands Railway Intercity services call as they pass through the station.
  • Leicester station is only sixteen miles North of the end of the Southern electrification at Market Harborough station.
  • Birmingham New Street is 40 miles away.
  • Clay Cross North Junction is 50 miles away.
  • Derby is 29 miles away.
  • East Midlands Parkway is 19 miles away.
  • Long Eaton is 21 miles away.
  • Nottingham is 27 miles away.
  • Peterborough is 52 miles away.
  • Sheffield is 66 miles away.

A sensible decision would probably be to extend the electrification from Market Harborough to a few miles North of Leicester, so that battery-electric trains could reach all the places in the above list.

Unfortunately, the following about the bridge at the Southern end of Leicester station, must be noted.

  • The bridge doesn’t have sufficient clearance for electrification and would need to be rebuilt.
  • It carries the main A6 road to London over the railway.
  • The station building also spans the railway lines.
  • To complicate matters, there is an important sewer either in or under the bridge.

This Google Map shows the bridge and the Southern end of the station.

It looks to me, that Leicester station and the road, would have to be closed to traffic for some time, if the bridge were to be rebuilt, to allow the erection of electrification through the area.

A solution could be discontinuous electrification.

  • The electrification from the South, would finish on the South side of bridge.
  • The electrification from the North, would finish in Leicester station.
  • Electric trains would cover the gap of a few hundred metres on battery power.

Pantographs could be raised and lowered, where the wires exist.

  • On the North side of the bridge, this could be in Leicester station, whilst passengers are getting off and on the train.
  • On the South side of the bridge, this could be as far South as Market Harborough, which is sixteen miles away.

The other big problem area of electrification on the Midland Main Line is North of Derby, where the railway runs through the World Heritage Site of the Derwent Valley Mills. There might be serious opbjections to electrification in this area.

  • But if electrification were to be installed between Leicester and Derby stations, the following would be possible.
  • The Midland Main Line would be electrified at East Midlands Hub station.
  • Power could be taken from High Speed Two’s supply at East Midland Hub station.
  • Battery-electric trains could do a return trip to Nottingham from an electrified East Midlands Parkway, as it’s only sixteen miles in total.
  • Battery-electric trains could reach the High Speed Two spur into Sheffield at Clay Cross from Derby, as it’s only twenty-one miles.

I am assuming, that Hitachi’s Class 810 trains will have range of over fifty miles on battery power, which fits with Hitachi’s statements.

Conclusion

Discontinuous electrification and batteries on trains can solve the problem of electrification through Leicester station.

Also. electric trains could run between London and Sheffield, if the following were done.

  • The Class 810 trains were to be given a range of twenty-five miles
  • Electrification were to be erected between Leicester and Derby stations.
  • Electrification were to be erected between Sheffield and Clay Cross Junction, as required by High Speed Two.

The electrification could be brought forward, to bring Sheffield early benefits of High Speed Two.

June 25, 2020 Posted by | Transport | , , , , , , | 8 Comments

MP Campaigns To Extend Train Services For Melton Borough

The title of this post, is the same as that of this article on the Melton Times.

This is the introductory sub-title.

A campaign has been launched by the Melton’s MP to improve services passing and operating from the town station and the one at Bottesford.

Alicia Kearns has submitted two bids to the Restoring Your Railway Fund.

I’ll now look at the two proposals in more detail.

More Regular Services To Bottesford

Wikipedia says this about services at Bottesford station.

  • The service is generally every two hours to Nottingham in the West and Skegness in the East.
  • Some trains call at Grantham and give connection to the East Coast Main Line.
  • LNER services at Grantham connect to Doncaster, King’s Cross, Leeds, Lincoln, Peterborough, Stevenage, Wakefield and York.
  • Bottesford is in the Borough of Melton and their is no direct rail service between Bottesford and Melton. A typical journey takes over two-and-a-half hours with two changes, that can include a wait of an hour at Leicester station.
  • Bottesford is in the County of Leicester. There is no direct rail service between Bottesford and Leicester.

I think the MP has a point and an improved and more frequent service at Bottesford could be very beneficial.

  • Many routes like this in the UK have an hourly service and I suspect many communities along the Poacher Line would benefit from this frequency.
  • All services calling at Grantham for East Coast Main Line services would be useful.
  • Do services have a good interchange at Nottingham for Midland Main Line services?

It looks like improvements at Bottesford wouldn’t require any new expensive infrastructure, but they would need more trains.

More Services Through Melton

Wikipedia says this about services at Melton station.

  • There is an hourly off-peak service in both directions between Stansted Airport and Birmingham, that calls at Cambridge, Peterborough, Oakham and Leicester.
  • East Midlands Railway and their predescessor have added services to London via Corby and to Derby and East Midlands Parkway.

When you consider, that both Bottesford and Melton Mowbray are the same Council and Parliamentary constituency, it does seem that a more direct train service is needed between Bottesford and Melton stations.

It does seem to me that some innovative thinking is needed.

If the current plans to fulfil British Rail’s ambition of an Ivanhoe Line running from Lincoln to Burton-on-Trent via Nottingham, East Midlands Parkway, Loughborough and Leicester, are carried out, that will give important towns to the West of Leicester much better rail connections.

Given that High Speed Two is coming to East Midlands Hub station at Toton and there will be a Bedford and Leeds service run by Midlands Connect using High Speed Two classic-compatible trains, that I wrote about in Classic-Compatible High Speed Two Trains At East Midlands Hub Station, I wonder if in the interim, there should be more trains between Derby and Melton.

  • Intermediate stations would be Syston, Sileby, Barrow-upon-Soar, Loughborough, East Midlands Parkway Long Eaton and Spondon.
  • An hourly frequency would double the service frquency at smaller stations like Sileby and Barrow-upon-Soar.
  • The Southern terminal could be Melton station, but I feel Corby or Peterborough stations would be better, as this would improve services at Oakham station. We should not forget Rutland.
  • As Corby will be an electrified two-platform station with a two trains per hour (tph) service to London, this could work quite well as a Southern terminus.
  • Peterborough would have advantages and give a good connection to Cambridge, London and Scotland, but improvements to the current Birmingham and Stansted Airport service would have similar effects.

This route would be just as valuable after High Speed Two opens through the East Midlands Hub station, as it will give fast ongoing connections to Birmingham, Leeds, Newcastle and York.

Electrification Of The Midland Main Line

I feel strongly, that full electrification of the Midland Main Line could be a step to far.

  • Electrification, through Leicester station will mean a complete closure of the station for a couple of years.
  • Electrification of the route North of Derby, through the Derwent Valley Mills, which is a World Heritage Site, will be opposed by the Heritage Taliban with all their might.

But.

  • Electrification of the route between Clay Cross Junction and Sheffield via Chesterfield will take place in conjunction with High Speed Two
  • Electrification to Market Harborough, which is sixteen miles South of Leicester will happen.
  • East Midlands Railway’s new Class 810 trains could be fitted with a battery option giving a range of between 55 and 65 miles.
  • Pantographs on this trains can go up and down with all the alacrity of a whore’s drawers.

If the easier section of electrification between Leicester and Derby stations, were to be erected, this would enable the following routes to be run using battery=equipped Class 810 trains.

  • London and Derby, where battery power would be used through Leicester.
  • London and Nottingham, where battery power would be used through Leicester and between East Midlands Parkway and Nottingham.
  • London and Sheffield, where battery power would be used through Leicester and between Derby and Clay Cross Junction.
  • Lincoln and Burton-on-Trent, where battery power would be used South of Leicester and North of East Midlands Parkway.
  • Derby and Corby, where battery power would be used between Syston and Corby.

There would also be the service between Derby and Norwich, which might be able to be run by a similar train.

Conclusion

The MP’s plan is worth pursuing.

June 24, 2020 Posted by | Transport | , , , , , , , , | 4 Comments

Reinstatement Of The Ivanhoe Line

This is one of the successful bids in the First Round of the Restoring Your Railway Fund.

The Ivanhoe Line, is a half-completed project left over from the days of British Rail.

  • The main objective appears to be to extend the current line between Lincoln and Leicester via Nottingham, East Midlands Parkway and Loughborough stations to Burton-upon-Trent along the freight-only Leicester-Burton-upon-Trent Line.
  • Some new stations will be added.

In January 2020, I wrote Silent Hydrogen Trains On The Cards For New Line Linking Burton And Leicester, after reading an article on Derbyshire Live.

I finished that article by listing the possibilities.

There are a lot of possibilities to extend the Ivanhoe Line to Burton and even beyond using the South Staffordshire Line.

  • Battery or hydrogen trains can be used.
  • Stations can be added as required.
  • The route will connect to East Midlands Airport.
  • A solution for Knighton Junction an surely be devised.

Amazon are reported to be interested in the project, as they have a big depot at Coalville.

It now looks like it’s all going to be turned into a plan for reality.

I do have some questions.

What Will Be The Solution To The Knighton Junction Problem?

Sadly, when the route was closed to passengers in 1964, British Rail simplified Knighton Junction at the Leicester end of the line. Wikipedia says this.

At the Leicester end of the line, Knighton North Junction has been dismantled and the former course of the line to the junction has been sold and turned into an industrial estate. The line’s remaining connection with the Midland Main Line is Knighton South Junction, which faces southwards, away from Leicester station. Trains between Leicester and the line therefore have to reverse direction at the junction.

This Google Map shows, what’s left of the junction.

Note.

  1. Leicester is to the North
  2. Burton is to the North-West.
  3. Melton Mowbray and London are to the South.

It looks to me, that someone at British Rail made it absolutely certain, that the rail line could not be reopened to provide a passenger service between Leicester and Burton.

For a train to go between Leicester and Burton, it would either need to reverse as Wikipedia indicated, or the curve would have to be very tight.

It looks like the preferred solution, will be to build a new station to the South of Knighton Junction.

  • The station would only need a single platform.
  • It could be easily fitted in alongside the Midland Main Line.

Trains will reverse to get around the tight corner.

Will There Be A Station At Leicester City Stadium

This Google Map shows the stadium.

Note the rail line passing to the South of the station.

It would appear that building a new station would not be the most difficult of projects.

But after the experience of Coventry City, who were relegated twice after Coventry Arena station opened, would Leicester City want a station?

Could The Ivanhoe Line Be Connected To High Speed Two At Ashby-de-la-Zouch?

I heard an MP on the radio, who was very much against High Speed Two and that led me to write Could High Speed Two Have A Station At Ashby-de-la-Zouch?.

I think this is a serious possibility in the future.

Could East Midlands Railway Use The Route To Run A London And Burton-on-Trent Service?

Consider.

  • East Midlands Railway‘s Class 810 trains could be fitted with a battery, that would give the trains a battery range of between 55 and 65 miles.
  • The trains would have a charge time of perhaps 10 minutes.
  • The distance between Knighton Junction and Burton-on-Trent is around 35 miles.
  • The distance between Knighton Junction and the Northern limit of the electrification at Market Harborough station is fifteen miles.
  • The distance between Market Harborough and Burton-on-Trent stations is 50 miles.

I think it would be possible for a battery-electric Class 810 train to run between London and Burton-on-Trent.

  • The batteries would need to be charged at Burton-on-Trent.
  • Perhaps, the easiest way to provide charging facilities would be to electrify the last ten miles between Ashby-de-la-Zouch and Burton-on-Trent stations
  • The service could call at all or selected stations between Knighton Junction and Burton-on-Trent.

I think this could be a very useful service, even if it only ran a couple of times every day.

Could Battery-Electric Trains Run The Whole Ivanhoe Line Between Lincoln And Burton-on-Trent?

The problem is not the trains, but the lack of electrification between Market Harborough and Clay Cross North Junction.

Leicester station is an important station on the MML.

But it would be a difficult station to electrify because of a bridge with limited clearance.

In Discontinuous Electrification Through Leicester Station, I discussed how the following.

  • Discontinuous electrification through Leicester station.
  • Electrification between Leicester and Derby stations.
  • Electrifying the High Speed Two route between Clay Cross Junction and Sheffield.

Would allow Hitachi Class 810 trains, equipped with batteries to run between London and Sheffield on electric power alone.

Consider.

  • As I have said East Midland Railway’s new Class 810 trains could be fitted with batteries with a range of 55 to 65 miles.
  • The gap between Leicester station and the end of the electrification at Market Harborough is sixteen miles.
  • Knighton Junction is less than two miles South of Leicester station.
  • Burton-on-Trent is around forty miles from Leicester station.
  • All passenger trains passing through Leicester station, stop in the station to set down and pick up passengers.

It would thus appear that the following would be possible.

  • A Northbound battery-electric  train from St. Pancras to Leicester or further North could reach Leicester on battery power from Market Harborough.
  • A Northbound battery-electric train from Burton-on-Trent to Leicester or further North could reach Leicester on battery power from Burton-on-Trent.
  • A Southbound train from Leicester or further North to St. Pancras could reach Market Harborough on battery power from Leicester.
  • A Southbound train from Leicester or further North to Burton-on-Trent could reach Burton-on-Trent on battery power from Leicester.

Trains leaving Leicester would need to be fully charged.

So how would this be arranged?

I think the simplest method would be to electrify the  section of the Midland Main Line between Leicester and Derby stations.

  • The route is probably not the most difficult to electrify.
  • East Midlands Parkway has good electrical connections, as it is next to Ratcliffe-on-Soar power station.
  • Nottingham is just nine miles from East Midlands Parkway.
  • Derby is thirty miles from East Midlands Parkway.
  • Clay Cross North Junction, where the joint electrified section with High Speed Two commences is twenty-one miles from Derby.
  • Lincoln is forty-two miles from East Midlands Parkway.
  • Battery-electric trains could use this electrification for both traction power and to charge their batteries.
  • As the trains would use battery power between Derby and Clay Cross North Junction, the sensitive issue of electrifying through the World Heritage Site of the Derwent Valley Mills, will have been avoided.

All East Midlands Railway’s InterCity services would be totally carbon-free.

It should also be noted, that as Lincoln is only forty-two miles from East Midlands Parkway, provided there was the ability to recharge the trains at Lincoln, the whole Ivinghoe route between Lincoln and Burton-on-Trent could be run by a suitable battery-electric train.

Could Hydrogen Trains Run The Whole Ivanhoe Line Between Lincoln And Burton-on-Trent?

If the route can be run by a battery-electric train, I can see no reason, why a hydrogen-powered train couldn’t do a good job on the route.

I suspect that the Alstom Breeze and any future trains, that are designed for hydrogen power, will also be able to use electrification, where it exists.

So, if any more electrification was erected on the Midland Main Line, the hydrogen trains would take advantage.

The hydrogen trains would need to be refuelled, but because of their long range, this would probably only be a twice a day operation at most.

There is probably space for a refuelling point, at either end of the route.

Conclusion

This is a good scheme, that should have been completed decades ago.

 

 

May 25, 2020 Posted by | Transport | , , , , , , , | 5 Comments

Highview Power And Railway Electrification

In Encore Joins Highview To Co-Develop Liquid Air Energy Storage System In Vermont, I gave brief notes about a proposed Highview Power CRYOBattery in Vermont.

  • The system will supply 50 MW for eight hours.
  • The total capacity will be 400 MWh.

Other articles have suggested, that the system could be built on the site of a demolished coal-fired power station, which still has a good connection to the electricity grid.

In other words, I believe that a CRYOBattery can be considered to be a small 50 MW power station.

  • It could be charged by local excess renewable energy during the day.
  • It could be charged by excess renewal energy from the electricity grid during the night, when there can be large amounts of wind energy, that needs a home.
  • Intelligent control systems, would balance the output of the CRYOBattery to the needs of the electricity grid.

It would be used in very much the same way as gas-turbine power-stations are used in electricity grids all over the world.

The Braybrooke Feeder Station

The National Grid is providing a feeder station at Braybrooke to support the Midland Main Line electrification.

This page on the Harbough Rail Users site is entitled Electrification Substation Plan for Braybrooke.

It gives this description of the sub-station.

Electrification of part of the Midland Main Line has moved a tentative step closer with the plans being prepared by National Grid for a feeder substation at Braybrooke, just outside Market Harborough.  The location is where a high-voltage National Grid power-line crosses over the railway and the plan is for a substation and associated equipment plus an access road from the A6. The substation is due to be completed by October 2020 and is intended to feed the power supply for the Corby line pending electrification of the main line through Market Harborough.

This Google Map shows the rough area, where it will be located.

Note.

  1. The A6 crossing the Midland Main Line.
  2. The solar farm in the South-facing field, which has a 3MW capacity, according to the Eckland Lodge Business Park web site.
  3. Various planning documents say the transformers on the substation will be 400/25 kV units.
  4. This means that the power-line in the area must be a 400 kV.

Unfortunately, I can’t pick out the line of 400 kV pylons marching across the countryside. But they are rather large.

The pictures show a group of 400 kV pylons near Barking.

  • The Midland Main Line at Braybrooke certainly seems to be getting a solid supply of electricity.
  • It was originally planned, that the electrification would go all the way, but it was cut back to Kettering and Corby a couple of years ago.
  • But to power, the electrification to Corby, it is being extended all the way to Braybrooke, so that the electrification can act as a giant extension lead for the Corby Branch Line.

The page on the Harborough Rail Users Site says this.

The Braybrooke substation is still planned, however, and the DfT has advised that the bi-mode trains will be able to switch power mode at speed.  They would therefore be able to continue running electrically north from Kettering as far as Braybrooke before ‘pan down’

It would appear, that the end of the electrification will be at Braybrooke, but the sub-station seems to have enough power to extend the electrification further North if that is ever planned.

I also think, that is rather an efficient and affordable solution, with very little modification required to the existing electricity network.

But not all electricity feeds to railway electrification have a convenient 400 kV line at a handy site for installing all the needed transformers and other electrical gubbins.

How Much Power Will Needed To Be Supplied At Braybrooke?

This can probably be dismissed as the roughest or rough calculations, but the answer shows the order of magnitude of the power involved.

Consider.

  • Braybrooke must be sized for full electrification of the Midland Main Line.
  • Braybrooke will have to power trains North of Bedford.
  • If there is full electrification of the Midland Main Line, it will probably have to power trains as far North as East Midlands Parkway station, where there is a massive power station.
  • Trains between Bedford and Market Harborough take thirty minutes.
  • Trains between Bedford and Corby take around thirty minutes.
  • Four trains per hour (tph) run between Bedford and Market Harborough in both directions.
  • The system must be sized to handle two tph between Bedford and Corby in both directions.
  • The power output of each Class 360 train, that will be used on the Corby route is 1,550 kW, so a twelve-car set will need 4.65 MW.
  • I can’t find the power output of a Class 810 train, but an InterCity 125 with similar performance has 3.4 MW.
  • A Class 88 bi-mode locomotive has a power output of 4 MW when using the electrification.

I estimate that Braybrooke could have to support at least a dozen trains at busy times, each of which could need 4 MW.

Until someone gives me the correct figure, I reckon that Braybrooke has a capacity to supply 50 MW for trains on the Midland Main Line.

A Highview Power system as proposed for Vermont, would have enough power, but would need a lot more storage or perhaps local wind or solar farms, to give it a regular charging.

Riding Sunbeams

Riding Sunbeams are a company, who use solar power to provide the electricity for railway electrification.

I’ll let their video explain what they do.

It’s a company with an idea, that ticks a lot of boxes, but would it be able to provide enough power for a busy electrified main line? And what happens on a series of rainy or just plain dull days?

Highview Power

Could a Highview Power energy storage system be used?

  • To store electricity from local or grid electrical sources.
  • To power the local electrification.

If required, it could be topped up by affordable overnight electricity, that is generated by wind power.

The Highview Power system could also be sized to support the local electricity grid and local solar and wind farms.

Conclusion

I think that Riding Sunbeams and Highview Power should be talking to each other.

 

 

May 2, 2020 Posted by | Energy, Energy Storage, Transport | , , , , , , , | 2 Comments

The Concept Of Electrification Islands

Consider how Imperial Airways and BOAC used to fly long routes to places like Sydney, Hong Kong and Cape Town before the days of long distance jet airliners. They used to fly from airport to airport, picking up fuel and supplies on the way.

If you want to know more about the details, read what is my favourite travel book, Beyond The Blue Horizon by Alexander Frater.

He followed the Imperial Airways route to Sydney, on what was reputed to be the most complicated ticket, that British Airways ever issued.

But can the concept of flying a short range airliner over a long distance refuelling as necessary, be applied to running a battery electric train by charging the batteries on a series of electrification islands?

In Ipswich And Peterborough In A Battery Train, I described how an Ipswich and Peterborough service could be run by a battery-equipped Class 755 train.

The Ipswich and Peterborough route is 82.5 miles long and it can be split as follows.

  • Ipswich and Haughley Junction – 13.8 miles – Electrified
  • Haughley Junction and Ely – 38.2 miles – Not Electrified
  • Ely and Peterborough – 30.5 miles – Not Electrified

Legs two and three, should be within the capability of a battery-equipped Class 755 train. No definite figure has been given, but in the July 2018 Edition of Modern Railways, this was said about the similar Class 756 trains, ordered for the South Wales Metro.

The units will be able to run for 40 miles between charging, thanks to their three large batteries.

Perhaps, what is needed is to create an electrification island at Ely, that can be used to charge the batteries.

An Electrification Island At Ely

This map from Wikipedia shows the complicated railways at Ely,

Note.

  1. Ely station is fully electrified.
  2. The line to Cambridge,Kings Cross, Liverpool Street and Stansted Airport is fully electrified. Greater Anglia’s Class 755 trains between Norwich and Stansted Airport, change between diesel and electrification at Ely.
  3. The line to Kings Lynn is fully electrified.
  4. The lines to Bury St. Edmunds, Norwich and Peterborough are not electrified.
  5. Ely is a city of 20,000 inhabitants, so I suspect it must have a robust electricity supply.
  6. Freight trains take about five minutes to pass between Ely West and Ely Dock Junctions.
  7. Ely West and Ely Dock Junctions are 2.5 miles apart.
  8. There appears to be an avoiding line South-East of Ely station, where I’ve seen trains from Felixstowe to Peterborough sometimes wait for a few minutes before proceeding.
  9. There is also a lot of space at March station, where a passing loop with a charging station could be built.

I believe it would be possibly to do the following at Ely.

  • Electrify the West Curve and the South-East avoiding line.
  • Electrify the Bury St. Edmunds, Norwich and Peterborough lines for perhaps five miles.
  • If required, put a high capacity charging station on the avoiding line.

There would be plenty of electrification to charge the trains.

An alternative plan might be to electrify between March station and the new Soham station, which has been planned to open in 2021.

  • This would be around eighteen miles of electrification.
  • This would certainly be enough electrification to fully-charge passing freight and passenger trains.
  • Soham to Ely could be doubled.
  • The extra electrification would mean the two unelectrified sections of the Ipswich and Peterborough route; Haughley Junction-Soham and March-Peterborough would be well within range of a battery-electric train.
  • The proposed service between Cambridge and Wisbech would only have the twelve miles of the Bramley Line between March and Wisbech to run on battery power.

It might also be possible to put in an extra curve to make Ely Dock Junction, a full triangular junction. This would allow the new Soham station to have direct services to both Cambridge and Cambridge North stations, without a reverse at Ely station.

Other Possible Electrification Islands

I’ll break these down by regions and train operators.

East Anglia (Greater Anglia)

Greater Anglia only runs trains on diesel to the North of Cambridge and Ipswich, which are both fully electrified, as is Norwich.

I would consider Cambridge, Ely, Ipswich and Norwich to be electrification islands.

  • All have a good connection to the electrification power supply, as they handle main line electric trains.
  • All or most platforms at the stations are electrified to charge trains.
  • There are electrified sidings at Cambridge and Norwich and possibly at Ipswich.

Lowestoft and Yarmouth might be fitted with charging systems to make sure a fault doesn’t strand a train.

In Battery Power Lined Up For ‘755s’, I talked about a report in Rail Magazine, which said that the Class 755 trains will get a battery fitted at the first overhaul.

I wouldn’t be surprised, that in a couple of years, Greater Anglia announces the end of diesel power on some or all of their services.

East Coast Main Line (LNER and Others)

Hitachi AT-300 Trains On The East Coast Main Line

The East Coast Main Line (ECML), is increasingly becoming a railway where the vast majority of services are run by versions of Hitachi AT-300 trains.

Classes 800, 802 and 803 are bi-modes and can probably have some or all of their diesel engines replaced by batteries.

In Sparking A Revolution, I gave this specification for a Hitachi battery-electric train.

  • Range – 55-65 miles
  • Performance – 90-100 mph
  • Recharge – 10 minutes when static
  • Routes – Suburban near electrified lines
  • Battery Life – 8-10 years

I will use these figures from Hitachi in this post.

Electrification Islands On The East Coast Main Line

There are several large and smaller stations along the ECML, that can act as electrification islands to support either local services or long-distance services from London.

Cleethorpes

Consider

  • Cleethorpes station would need a decent electricity supply. Offshore wind?
  • Doncaster is 52 miles away.
  • Lincoln is 37 miles away.
  • Newark is 63 miles away.
  • Scunthorpe is 29 miles away.

If you can get battery-electric trains to Cleethorpes, you also serve Grimsby Town station, which is three miles closer to the ECML.

With electrification islands at Lincoln and Scunthorpe and Hitachi AT-300 trains with a battery range of at least sixty miles, electric trains could be run to Cleethorpes and Grimsby.

Would that improve the economy of the area?

Darlington

Darlington station is on the electrified ECML, so it must have a top class electricity supply.

  • Bishop Auckland is 12 miles away.
  • Middlesbrough is 15 miles away.
  • Nunthorpe is 20 miles away.
  • Saltburn is 27 miles away.
  • Whitby is 47 miles away.

Darlington could support battery-electric operation of the Tees Valley Line, if the route doesn’t go for hydrogen. Note that hydrogen would probably also handle services from Middlesbrough to Newcastle, Nunthorpe and Whitby with ease.

Note my views on the definitive hydrogen train, which will be a battery-electric-hydrogen hybrid train, able to use power from a variety of sources.

Doncaster

Doncaster station is on the electrified ECML, so it must have a top class electricity supply.

  • Cleethorpes is 52 miles away.
  • Hull is 40 miles away.
  • Scunthorpe is 25 miles away.
  • Sheffield is 19 miles away.

Doncaster could certainly support some battery-electric services.

Grantham

Grantham station is on the electrified ECML, so it must have a top class electricity supply.

  • Nottingham is 22 miles away.
  • Sleaford is 18 miles away.
  • Nottingham and Skegness services seem to take about four minutes to reverse in the station.

The Nottingham and Skegness service could take advantage of the driver changing ends to top up the battery.

Hull

Consider.

  • Hull is a city of nearly 300,000 people, so it must have a decent electricity supply.
  • Hull station is under forty miles from the electrification of the ECML.
  • Doncaster is 40 miles away.
  • Scarborough is 54 miles away.
  • York is 52 miles away, with about 20 miles electrified.

I would certainly suspect that with an electrification island at Hull, the Hitachi AT-300 trains of Hull Trains and LNER could certainly run fully electric services to the city, if they were fitted with batteries.

With an electrification island at Scarborough, could Hull Trains and LNER services be extended to Scarborough?

Leeds

Leeds station is already an electrification island, as it is fully electrified.

  • It also has electrified services to Bradford, Ilkley and Skipton.
  • Leeds and Huddersfield will be electrified in the next few years.

Harrogate is 18 miles away, so a return journey is within range of a Hitachi AT-300 train with a battery, that is charged on the ECML.

Lincoln

Consider.

  • Lincoln station would need a decent electricity supply.
  • Cleethorpes is 37 miles away.
  • Doncaster is 40 miles away.
  • Newark is 16 miles away, so a return journey is within range of a Hitachi AT-300 train with a battery, that is charged on the ECML.
  • Nottingham is 34 miles away and Leicester is 61 miles away.
  • Peterborough is 57 miles away.
  • Sleaford is 21 miles away.

With an electrification island at Lincoln, the following should be possible.

  • Electric services between Cleethorpes and Lincoln using battery-electric trains.
  • Electric services between Doncaster and Lincoln using battery-electric trains.
  • Electric services between Nottingham/Leicester and Lincoln using battery-electric trains. Electrify the Midland Main Line (MML) and this is easy.
  • Electric services between Peterborough and Lincoln using battery-electric trains. It may need an electrification island at Sleaford.
  • Electric services between London Kings Cross and Grimsby/Cleethorpes using Hitachi AT-300 trains with a battery, that is charged on the ECML and at Lincoln.

The London Kings Cross and Lincoln services could top up their batteries if required if they were run using Hitachi AT-300 trains with a battery

Surely, if Class 755 trains are good enough for Norfolk and Suffolk and both franchises are run by Abellio, then battery versions of these trains would be ideal for running services from Lincoln to Cleethorpes/Grimsby, Doncaster, Newark, Nottingham, Peterborough and Skegness.

Middlesbrough

If required an electrification island could be placed at Middlesbrough station.

  • Darlington is 15 miles away.
  • Newcastle is 47 miles away.
  • Saltburn is 13 miles away.
  • Whitby is 35 miles away.

This area might opt for hydrogen, but I believe battery-electric trains could also work the routes through Middlesbrough and Darlington. Note my views on the definitive hydrogen train, which will be a battery-electric-hydrogen hybrid train, able to use power from a variety of sources.

Newark

Consider.

  • Newark North Gate station is on the electrified ECML, so it must have a top class electricity supply.
  • Cleethorpes is 63 miles away.
  • Grimsby is 60 miles away.
  • Lincoln is 16 miles away.
  • Nottingham is 17 miles away.

With an electrification island at Cleethorpes/Grimsby, battery-electric services could be extended to either town. They would need to use the electrification island at Lincoln station to top-up the battery.

Newcastle

Newcastle station is on the electrified ECML, so it must have a top class electricity supply.

  • Carlisle is 61 miles away.
  • Middlesbrough is 47 miles away.
  • Nunthorpe is 52 miles away.

Newcastle could surely support local services using battery-electric trains. They could be dual-voltage, so they can use Tyne and Wear Metro electrification.

Peterborough

Peterborough station is on the electrified ECML, so it must have a top class electricity supply.

  • Ely is 31 miles away.
  • Leicester is 52 miles away, with Birmingham another 40 miles further.
  • Lincoln is 57 miles away.
  • Sleaford is 35 miles away.

It might even be possible for Hitachi AT-300 trains with a battery to be able to run between Stansted Airport and Birmingham for CrossCountry.

  • Stansted and Ely – 38 miles – Electrified
  • Ely and Peterborough – 30.5 miles – Not Electrified
  • Through Peterborough – 6 miles – Electrified (ECML)
  • Peterborough and Leicester – 52 miles – Not Electrified
  • Leicester and Nuneaton – 19 miles – Not Electrified
  • Through Nuneaton – 3 miles – Electrified (WCML)
  • Nuneaton and Birmingham – 21 miles – Not Electrified

Note.

  1. Trains would charge when running under electrification and also during station stops in Cambridge, Ely, Peterborough  Leicester and Nuneaton.
  2. Trains would automatically raise and lower their pantographs as required.
  3. There may be scope to add sections of extra electrification.
  4. For example, electrification of the MML could add as much as eight miles of electrification, through Leicester.

As much as forty percent of the route between Birmingham and Stansted could be electrified.

Sandy/St. Neots

It is planned that the East West Railway (EWR) and the ECML will cross at an interchange station somewhere in this area.

Consider.

Both stations are on the electrified ECML, so must have a top class electricity supply.

  • Bedford is 10 miles away.
  • The electrification South of Cambridge is about 20 miles away.

It would surely be possible to create an electrification island, where the two major routes cross at Sandy/St. Neots.

Scarborough

Consider.

  • Scarborough station would need a decent electricity supply.
  • Hull is 54 miles away.
  • York is 42 miles away.

With charging facilities at Scarborough battery-electric trains could be run to the seaside resort.

  • I also think it would be possible to run a direct service between London Kings Cross and Scarborough using Hitachi AT-300 trains with batteries, either via York or Hull.
  • TransPennine’s Hitachi trains could also read Scarborough from York, if fitted with batteries.

Would battery-electric trains between Hull, Scarborough and York attract more users of the services?

Sleaford

If required an electrified island could be placed at Sleaford station.

  • Sleaford would need a decent electricity supply.
  • The station is where the Nottingham and Skegness and Peterborough and Lincoln routes cross.
  • Grantham on the ECML is 18 miles away.
  • Lincoln is 21 miles away.
  • Nottingham is 40 miles away.
  • Peterborough is 35 miles away.
  • Skegness is 40 miles away.

Services through Sleaford would be run as follows.

As Lincoln and Peterborough are likely to both have the ability to charge trains, the Peterborough and Lincoln route can probably be run using a battery-electric train, that also charges during the stop at Sleaford.

To run the Nottingham and Skegness route, there will need to be a charging facility or an electrification island at Skegness, as forty miles is to far from an out and back from Sleaford on battery power. The section between Sleaford and Nottingham is easier, as there is a reverse at the fully-electrified Grantham station, where the trains could top-up their batteries.

York

York station is already an electrification island, as it is fully electrified.

  • Harrogate is 20 miles away, with Leeds another 18 miles further.
  • Hull is 52 miles away, with about 20 miles electrified.
  • Scarborough is 42 miles away.

It would appear that battery-electric trains could work the routes between Doncaster, Harrogate, Hull, Leeds, Scarborough and York.

Midland Main Line (East Midlands Railway)

Hitachi AT-300 Trains On The Midland Main Line

The Midland Main Line (MML) is a mixture of electrified and non-electrified sections. East Midlands Railway have chosen Hitachi Class 810 trains to cope with the mixed infrastructure.

  • There will be thirty-three five car trains.
  • They will have four diesel engines instead of three in the Class 800 trains.
  • They will have a redesigned nose.

Are East Midlands Railway ordering a dual-purpose design?

In the January 2020 Edition of Modern Railways, this is said about the bi-mode Hitachi Class AT-300 trains for Avanti West Coast.

Hitachi told Modern Railways it was unable to confirm the rating of the diesel engines on the bi-modes, but said these would be replaceable by batteries in future if specified.

Consider.

  • Both fleets of trains are for delivery in 2022.
  • Ease of manufacture would surely mean, that Hitachi would want the two fleets to be substantially the same.
  • A train with four engines could be needed to cruise at 125 mph on diesel.
  • Four engine slots would mean that, if you were replacing some engines with batteries, you’d have more flexibility.

Hitachi seem to be playing an inscrutable game.

This section entitled Powertrain in the Wikipedia entry for the Class 800 train, says this about the powertrain for Class 800/801/802 trains.

Despite being underfloor, the generator units (GU) have diesel engines of V12 formation. The Class 801 has one GU for a five to nine-car set. These provide emergency power for limited traction and auxiliaries if the power supply from the overhead line fails. The Class 800 and Class 802 bi-mode has three GU per five-car set and five GU per nine-car set. A five-car set has a GU situated under vehicles 2/3/4 and a nine-car set has a GU situated under vehicles 2/3/5/7/8.

Hitachi must have found a way to arrange four GUs under a Class 810 train.

  • They could be using slightly smaller engines. Smaller engines could be fitted to curb overheating.
  • The engines might be in pairs under vehicles 2 and 4, possibly sharing utilities like fuel tanks and cooling systems.

But as the vehicles are two metres shorter, it wouldn’t be a shoe-in.

When the trains are to be upgraded to battery electric trains, an appropriate number of GUs would be replaced by batteries.

I wouldn’t be surprised to find out that both Avanti West Coast and East Midlands Railway will have trains that can be converted from five-car bi-mode trains into battery-electric trains, with a range of between 55 and 65 miles.

  • As a control engineer, I believe that a battery could be made to be plug compatible with a GU.
  • An extra battery could be placed under vehicle 3, in the spare engine position.

I reckon that Hitachi’s quote of a sixty-five mile range would at 3 kWh per vehicle-mile need about one MWh of batteries.

That is 200 kWh per vehicle, so I feel it should be possible.

Electrification Of The Midland Main Line

Current plans for electrified sections of the MML are as follows.

  • London St. Pancras and Corby – 79.5 miles – Opening December 2020
  • London St. Pancras and Market Harborough – 83 miles – Opening December 2020
  • Clay Cross North Junction and Sheffield – 15.5 miles – To be built in conjunction with High Speed Two

The gap between Market Harborough and Clay Cross North Junction is about 66 miles.

Electrification Islands On The Midland Main Line

As with the ECML, there are several large and smaller stations along the MML, that can act as electrification islands to support either local services or long-distance services from London.

I will deal with the electrification islands, starting in London.

Bedford

In Looking At The East West Railway Between Bedford And Cambridge, I came to the conclusion, that the East West Railway (EWR) and the MML, would share electrified tracks through Bedford station.

  • There are also rumours of electrification of the East West Railway, which I wrote about in EWR Targets Short-Term Fleet Ahead Of Possible Electrification, after an article in Rail Magazine with the same title.
  • But even so Bedford and Cambridge are only thirty miles apart, which is well within the capability of a battery-electric train.
  • Continuing to the West on the EWR, it is under twenty miles to the electrification at Bletchley on the West Coast Main Line (WCML).

It looks to be that battery-electric trains running on the EWR would be able to charge their batteries as they pass through Bedford.

  • It does appear to me, that the EWR chose a route through Bedford that would make this feasible.
  • It would also be relatively easy to electrify the EWR to the East and/or West of Bedford to increase the time using electrification, to fully charge the trains.
  • As Cambridge and Bletchley are around fifty miles apart, this journey between two fully-electrified stations, would be possible for a battery-electric train, especially, if it were able to take a sip of electricity in the possible stops at Bedford and Sandy or St. Neots.

If in the end, it is decided to electrify the EWR, Bedford would surely be a location, with enough power to feed the electrification.

Leicester

Leicester station is an important station on the MML.

But it would be a difficult station to electrify because of a bridge with limited clearance.

In Discontinuous Electrification Through Leicester Station, I discussed how the following.

  • Discontinuous electrification through Leicester station.
  • Electrification between Leicester and Derby stations.
  • Electrifying the High Speed Two route between Clay Cross Junction and Sheffield.

Would allow Hitachi Class 810 trains, equipped with batteries to run between London and Sheffield on electric power alone.

 

East Midlands Parkway

East Midlands Parkway station is nineteen miles North of Leicester station.

This Google Map shows its unique position.

Ratcliffe-on-Soar power station is the eighteenth highest emitter of CO2 in Europe and will surely be closed soon.

But then, a power station, will have a good connection to the National Grid, ensuring there could be plenty of power for electrification, even after the current power station is long gone, as it will surely be replaced by another power station or energy storage.

East Midlands Parkway station is also well-connected.

  • Clay Cross North Junction is 31 miles away.
  • Derby is 10 miles away.
  • Leicester is 18 miles away.
  • Nottingham is 8 miles away.
  • Sheffield is 47 miles away.

It should be possible to reach all these places on battery-power from East Midlands Parkway.

Electrification Between Leicester And East Midlands Parkway

The more I look at this stretch of the MML, the more I feel that this eighteen mile stretch should be electrified to create what could become a linear electrification island.

Consider.

  • It is a 125 mph multi-track railway across fairly flat countryside.
  • Connecting electrification to the grid is often a problem, but Ratcliffe-on-Soar power station is adjacent to East Midlands Parkway station.
  • The section is only eighteen miles long, but this is surely long enough to fully-charge a battery train speeding to and from the capital.
  • There are only four intermediate stations; Syston, Sileby, Barrow-on-Soar and Loughborough.
  • The engineering for gauge clearance and electrification, looks to be no more difficult, than it will be between Kettering and Market Harborough.
  • Between Leicester and Market Harborough stations is only sixteen miles.
  • Between East Midlands Parkway and Nottingham is only eight miles, so it would be possible for Nottingham services to run without a charge at Nottingham station.
  • Between East Midlands Parkway and Derby is only ten miles, so it would be possible for Derby services to run without a charge at Derby station.
  • Between East Midlands Parkway and the shared electrified section with High Speed Two at Clay Cross North Junction is thirty-one miles, so it would be possible for Sheffield services to be run without using diesel, once the shared electrification is complete between Clay Cross North Junction and Sheffield.
  • Battery-electric trains between East Midlands Parkway and Clay Cross North Junction could also use the Erewash Valley Line through Ikeston, Langley Mill and Alfreton.
  • There would be no need to electrify through the World Heritage Site of the Derwent Valley Mills that lies between Derby and Clay Cross North Junction, as trains will be speeding through on battery power. Electrifying through this section, might be too much for some people.
  • If the trains can’t switch between battery and overhead electrification power, the changeover can be in Leicester and East Midlands Parkway stations. However, I believe that Hitachi’s AT-300 trains can do the changeover at line speed.

The electrification could also be used by other services.

  • Between Corby and Syston North Junction is only thirty-six miles, so it would be possible to run electric services between London St. Pancras and Derby, Nottingham and Sheffield via Corby, if the main route were to be blocked by engineering work.
  • Between Peterborough and Syston East Junction is forty-seven miles, so it should be possible to run CrossCountry’s Stansted Airport and Birmingham service using battery-electric trains. If the train could leave Leicester with a full battery, both Birmingham New Street and Peterborough should be within range.
  • East Midlands Railway’s Lincoln and Leicester service run for a distance of sixty-one miles via East Midlands Parkway, Nottingham and Newark stations. Electrification between Leicester and East Midlands Parkway, would mean there was just forty-two miles to do on battery power. An electrification island at Lincoln would charge the train for return.

Battery-electric trains with a range of between 55 and 65 miles would really open up the East Midlands to electric services if between Leicester and East Midlands Parkway were to be electrified.

London And Sheffield In A Battery-Electric Class 810 Train

This is speculation on my part, but I think this could be how trains run London to Sheffield before 2030.

  • London to Market Harborough – 83 miles – Using electrification
  • Switch to battery power at line speed.
  • Market Harborough to Leicester – 16 miles – Using battery power
  • Switch to electrification in Leicester station
  • Leicester to East Midlands Parkway – 19 miles – Using electrification
  • Switch to battery power at line speed.
  • East Midlands Parkway to Clay Cross North Junction – 31 miles – Using battery power
  • Switch to electrification at line speed.
  • Clay Cross North Junction to Sheffield – 15.5 miles – Using electrification

Note.

  1. 118 miles would be run using electrification and 47 miles using battery power.
  2. Battery power has been used to avoid the tricky electrification at Leicester station and along the Derwent Valley.

I don’t believe any of the engineering will be any more difficult, than what has been achieved on the MML in the last year or so.

Nottingham

Consider

  • Nottingham station would probably have access to a reliable electricity supply, as Nottingham is a large city of over 300,000 people.
  • Nottingham station has a comprehensive network of local services.
  • Nottingham station has an excellent connection to Nottingham Express Transit.
  • Birmingham New Street is 57 miles away, via Derby and Burton.
  • Burton-on-Trent is 27 miles away.
  • Derby is 16 miles away.
  • Grantham is 23 miles away.
  • Lincoln is 34 miles away.
  • Matlock is 33 miles away.
  • Newark is 17 miles away.
  • Sheffield is 40 miles away.
  • Worksop is 32 miles away.
  • Most of these local services are run by East Midlands Railway, with some services run by Northern and CrossCountry.
  • Some services run back-to-back through Nottingham.

I feel very strongly that if charging is provided in Nottingham, when trains turnback or pass through the station, that many of the local services can be run by battery-electric trains.

Previously, I have shown, that if between Leicester and East Midlands Parkway is electrified, then services between London and Nottingham, can be run by battery-electric trains.

There is also a fall-back position at Nottingham, as the local services could be run by hydrogen-powered trains.

Sheffield

Sheffield station would at first glance appear to be very similar to Nottingham.

  • Sheffield station would probably have access to a reliable electricity supply, as Sheffield is a large urban area of 700,000 people.
  • Sheffield station has a comprehensive network of local services.
  • Sheffield station has an excellent connection to the Sheffield Supertram.

But it looks like Sheffield station will see the benefits of electrification the Northern section of the MML from Clay Cross North Junction.

  • The 15.5 miles of electrification will be shared with the Sheffield spur of High Speed Two.
  • Currently, trains take sixteen minutes between Sheffield and Clay Cross North Junction.
  • Electrification and an improved high-speed track will allow faster running, better acceleration and a small saving of time.
  • A Sheffield train will be charged going to and from Sheffield, so will leave Clay Cross North Junction for Derby and the South with full batteries.
  • There must also be opportunities for local trains running between Sheffield and Class Cross Junction North to use the electrification and be run by battery-electric trains.

Current destinations include.

  • Derby is 36 miles away.
  • Doncaster is 19 miles away.
  • Huddersfield is 36 miles away.
  • Leeds is 45 miles away.
  • Lincoln is 49 miles away.
  • Manchester Piccadilly is 42 miles away.
  • Nottingham is 40.5 miles away.

Note.

  1. Doncaster, Leeds and Manchester Piccadilly stations are fully electrified.
  2. Work on electrifying Huddersfield and Leeds will start in a year or so, so Huddersfield will be electrified.
  3. I am firly sure that Lincoln and Nottingham will have enough electrification to recharge and turn trains.
  4. Some routes are partially electrified.

As with Nottingham, I am fairly sure, that local services at Sheffield could be run by battery-electric trains. And the same fall-back of hydrogen-powered trains, would also apply.

Sheffield And Manchester Piccadilly In A Battery-Electric Train

Consider.

  • Once Sheffield and Clay Cross North Junction is electrified in conjunction with High Speed Two, at least five miles of the Hope Valley Line at the Sheffield end will be electrified.
  • It may be prudent to electrify through Totley Tunnel to increase the electrification at Sheffield to ten miles.
  • The route via Stockport is 43 miles long of which nine miles at the Manchester End is electrified.
  • The route via Marple is 42 miles long of which two miles at the Manchester End is electrified.

There would appear to be no problems with running the TransPennine Express service between Manchester Airport and Cleethorpes using battery-electric trains, as from Hazel Grove to Manchester Airport is fully electrified and in the East, they can charge the batteries at Sheffield, Doncaster and a future electrification island at Cleethorpes.

The Northern service between Manchester Piccadilly and Sheffield could be run using battery-electric trains with some more electrification at the Manchester End or an extended turnback in Manchester Piccadilly.

Transport for Manchester has plans to run improve services at their end of the Hope Valley Line, with tram-trains possible to Glossop and Hadfield.

It would probably be worthwhile to look at the Hope Valley Line to make sure, it has enough future capacity. I would suspect the following could be likely.

  • More electrification.
  • More stations.
  • Battery-electric trains or tram-trains from Manchester to Glossop, Hadfield, New Mills Central, Rose Hill Marple and Sheffield.

I would suspect one solution would be to use more of Merseyrail’s new dual-voltage Class 777 trains, which have a battery capability.

Sheffield And Nottingham In A Battery-Electric Train

Consider.

  • Once Sheffield and Clay Cross North Junction is electrified in conjunction with High Speed Two, 15.5 miles of the route will be electrified.
  • The total length of the route is 40.5 miles.
  • There are intermediate stops at Dronfield, Chesterfield, Alfreton, Langley Mill and Ilkeston.
  • Currently, journeys seem to take around 53 minutes.

I think it would be likely that the battery would need to be topped up at Nottingham, but I think a passenger-friendly timetable can be developed.

West Coast Main Line (Avanti West Coast)

Hitachi AT-300 Trains On The West Coast Main Line

The West Coast Main Line (WCML) is a mainly electrified and with some non-electrified extended routes. Avanti West Coast have chosen Hitachi AT-300 trains to cope with infrastructure.

  • There will be ten seven-car electric trains.
  • There will be thirteen five-car bi-mode trains.

As these trains will be delivered after East Midlands Railway’s Class 810 trains and East Coast Trains’ Class 803 trains, the following questions must be asked.

  • Will the trains have the redesigned nose of the Class 810 trains?
  • Will the bi-mode trains have four diesel engines (Class 810 trains) or three ( Class 800 trains)?
  • Will the electric trains ordered by First Group companies; Avanti West Coast and East Coast Trains be similar, except for the length?

I would expect Hitachi will want the trains to be as similar as possible for ease of manufacture.

Electrification Islands On The West Coast Main Line

As with the ECML and the MML, there are a couple of large and smaller stations along the WCML, that can act as electrification islands to support either local services or long-distance services from London.

I will deal with the electrification islands, starting in London.

Watford Junction

Watford Junction station is already an electrification island, as it is fully electrified.

Services around Watford Junction have possibilities to be expanded and improved using battery-electric trains.

Milton Keynes

Milton Keynes Central station is already an electrification island, as it is fully electrified.

  • East West Railway services will call at Bletchley and not Milton Keynes.
  • There may be a connection between East West Rail and High Speed Two at Calvert station, which is 15 miles away.
  • Milton Keynes will get a service from Aylesbury, which is 22 miles away.

There may be possibilities to link Watford Junction and Milton Keynes via Aylesbury using battery-electric trains to give both places a connection to High Speed Two at a new Calvert station.

 

 

 

 

 

 

April 8, 2020 Posted by | Transport | , , , , , , , , , , , | 2 Comments

Are Hitachi Designing the Ultimate Battery Train?

In Sparking A Revolution, a post based on an article of the same name in Issue 898 of Rail Magazine, I repeated this about the specification of Hitachi UK Battery Train Specification.

  • Range – 55-65 miles
  • Performance – 90-100 mph
  • Recharge – 10 minutes when static
  • Routes – Suburban near electrified lines
  • Battery Life – 8-10 years

Does this mean that the train can do 55-65 miles cruising at 90-100 mph?

How Much Energy Is Needed To Accelerate A Five-Car Class 800 Train To Operating Speed?

I will do my standard calculation.

  • Empty train weight – 243 tonnes (Wikipedia for Class 800 train!)
  • Passenger weight – 302 x 90 Kg (Includes baggage, bikes and buggies!)
  • Train weight – 270.18 tonnes

Using Omni’s Kinetic Energy Calculator, the kinetic energy at various speeds are.

  • 60 mph – 27 kWh
  • 80 mph – 48 kWh
  • 90 mph – 61 kWh
  • 100 mph – 75 kWh
  • 125 mph – 117 kWh – Normal cruise on electrified lines.
  • 140 mph – 147 kWh – Maximum cruise on electrified lines.

Because the kinetic energy of a train is only proportional to the weight of the train, but proportional to the square of the speed, note how the energy of the train increases markedly after 100 mph.

Are these kinetic energy figures a reason, why Hitachi have stated their battery train will have an operating speed of between 90 and 100 mph?

A 100 mph cruise would also be very convenient for a lot of main lines, that don’t have electrification in the UK.

What Battery Size Would Be Needed?

In How Much Power Is Needed To Run A Train At 125 mph?, I calculated that a five-car Class 801 electric train, needed 3.42 kWh per vehicle-mile to maintain 125 mph.

For comparison, an InterCity 125 train, had a figure of 2.83 kWh per vehicle-mile.

Hitachi are redesigning the nose of the train for the new Class 804 train and I suspect that these trains can achieve somewhere between 1.5 and 3 kWh per vehicle-mile, if they are cruising at 100 mph.

Doing the calculation for various consumption levels gives the following battery capacity for a five-car train to cruise 65 miles at 100 mph

  • 1.5 kWh per vehicle-mile – 487 kWh
  • 2 kWh per vehicle-mile – 650 kWh
  • 2.5 kWh per vehicle-mile – 812.5 kWh
  • 3 kWh per vehicle-mile – 975 kWh

These figures don’t include any energy for acceleration to line speed from the previous stop or station, but they would cope with a deceleration and subsequent acceleration, after say a delay caused by a slow train or other operational delay, by using regenerative braking to the battery.

The energy needed to accelerate to operating speed, will be as I calculated earlier.

  • 90 mph – 61 kWh
  • 100 mph – 75 kWh

As the battery must have space to store the regenerative braking energy and it would probably be prudent to have a ten percent range reserve, I can see a battery size for a train with an energy consumption of 2 kWh per vehicle-mile, that needed to cruise at 100 mph being calculated as follows.

  • Energy for the cruise – 650 kWh
  • 10% reserve for cruise – 65 kWh
  • Braking energy from 100 mph – 75 kWh

This gives a total battery size of 790 kWh, which could mean that 800 kWh would be convenient.

Note that each of the three MTU 12V 1600 diesel engines, fitted to a Class 800 train, each weigh around two tonnes.

In Innolith Claims It’s On Path To 1,000 Wh/kg Battery Energy Density, I came to these conclusions.

  • Tesla already has an energy density of 250 Wh/Kg.
  • Tesla will increase this figure.
  • By 2025, the energy density of lithium-ion batteries will be much closer to 1 KWh/Kg.
  • Innolith might achieve this figure. But they are only one of several companies aiming to meet this magic figure.

Suppose two of the MTU 12V 1600 diesel engines were each to be replaced by a two tonne battery, using Tesla’s current energy density, this would mean the following.

  • Each battery would have a capacity of 500 kWh.
  • The train would have one MWh of installed battery power.
  • This is more than my rough estimate of power required for a 65 mile trip.
  • The train would have little or no weight increase.
  • I also wouldn’t be surprised to find that the exchange of a diesel engine for a battery was Plug-and-Play.

Hitachi would have an electric/battery/diesel tri-mode train capable of the following.

  • Range – 55-65 miles
  • Out and Back Range – about 20-30 miles
  • Performance – 90-100 mph
  • Recharge – 10 minutes when static
  • Emergency diesel engine.

I feel it would be a very useful train.

Trains That Could Be Fitted With Batteries

The original article in Rail Magazine says this.

For the battery project, positive discussions are taking place with a number of interested parties for a trial, with both Class 385s and Class 800s being candidates for conversion.

So this means that the following operators will be able to use Hitachi’s battery technology o their trains.

  • Avanti West Coast – Class 80x trains
  • First East Coast Trains – Class 80x trains
  • East Midlands Railway – Class 80x trains
  • GWR – Class 80x trains
  • Hull Trains – Class 80x trains
  • LNER – Class 80x trains
  • ScotRail – Class 385 trains
  • TransPennine Express – Class 80x trains

Although, I based my calculations on Class 80x trains, I suspect that the methods can be applied to the smaller Class 385 trains.

Possible Out-And-Back Journeys

These are possible Out-And-Back journeys, that I believe Hitachi’s proposed battery-electric trains could handle.

  • Edinburgh and Tweedbank – 30 miles from Newcraighall
  • London Paddington and Bedwyn – 30 miles from Reading
  • London Euston and Blackburn – 12 miles from Preston
  • London Kings Cross and Bradford – < 27 miles from Leeds
  • London Euston and Chester – 21 miles from Crewe
  • London Kings Cross and Harrogate – <18 miles from Leeds
  • London Kings Cross and Huddersfield – 17 miles from Leeds
  • London St. Pancras and Leicester – 16 miles from Market Harborough
  • London Kings Cross and Lincoln – 17 miles from Newark
  • London St. Pancras and Melton Mowbray – 26 miles from Corby
  • London Kings Cross and Middlesbrough – 20 miles from Northallerton
  • London Kings Cross and Nottingham – 20 miles from Newark
  • London Paddington and Oxford – 10 miles from Didcot
  • London Kings Cross and Redcar – 29 miles from Northallerton
  • London Kings Cross and Rotherham- 14 miles from Doncaster
  • London Kings Cross and Sheffield – 20 miles from Doncaster
  • London and Weston-super-Mare – 19 miles from Bristol

Note.

  1. Provided that the Out-And-Back journey is less than about sixty miles, I would hope that these stations are comfortably in range.
  2. Leicester is the interesting destination, which would be reachable in an Out-And-Back journey. But trains from the North stopping at Leicester would probably need to charge at Leicester.
  3. I have included Blackburn as it could be a destination for Avanti West Coast.
  4. I have included Melton Mowbray as it could be a destination for East Midlands Railway.
  5. I have included Nottingham, Rotherham and Sheffield as they could be destinations for LNER. These services could prove useful if the Midland Main Line needed to be closed for construction works.
  6. I’m also fairly certain, that no new electrification would be needed, although every extra mile would help.
  7. No charging stations would be needed.

I suspect, I’ve missed a few possible routes.

Possible Journeys Between Two Electrified Lines

These are possible journeys between two electrified lines, that  I believe Hitachi’s proposed battery-electric trains could handle.

  • London St. Pancras and Eastbourne via Hastings – 25 miles between Ashford and Ore.
  • Leeds and York via Garforth – 20 miles between Neville Hall and Colton Junction
  • London Kings Cross and Norwich via Cambridge – 54 miles between Ely and Norwich.
  • Manchester Victoria and Leeds via Huddersfield – 43 miles between Manchester Victoria and Leeds.
  • Preston and Leeds via Hebden Bridge – 62 miles between Preston and Leeds.
  • Newcastle and Edinburgh – Would battery-electric trains get round the well-publicised power supply problems on this route?

Note.

  1. I am assuming that a range of 65 miles is possible.
  2. If the trains have a diesel-generator set, then this could be used to partially-charge the battery in places on the journey.
  3. Leeds and York via Garforth has been scheduled for electrification for years.
  4. Preston and Leeds via Hebden Bridge would probably need some diesel assistance.
  5. London Kings Cross and Norwich via Cambridge is a cheeky one, that Greater Anglia wouldn’t like, unless they ran it.
  6. As before no new electrification or a charging station would be needed.

I suspect, I’ve missed a few possible routes.

Possible Out-And-Back Journeys With A Charge At The Destination

These are possible Out-And-Back journeys, that I believe Hitachi’s proposed battery-electric trains could handle, if the batteries were fully charged at the destination.

  • Doncaster and Cleethorpes – 52 miles from Doncaster.
  • London Paddington and Cheltenham – 42 miles from Swindon
  • London Kings Cross and Cleethorpes via Lincoln – 64 miles from Newark
  • London Euston and Gobowen – 46 miles from Crewe
  • London Euston and Wrexham – 33 miles from Crewe
  • London Kings Cross and Hull – 45 miles from Selby
  • London Kings Cross and Shrewsbury – 30 miles from Wolverhampton
  • London Kings Cross and Sunderland 41 miles from Northallerton
  • London Paddington and Swansea – 46 miles from Cardiff
  • London Paddington and Worcester – 67 miles from Didcot Parkway
  • London St. Pancras and Derby – 46 miles from Market Harborough
  • London St. Pancras and Nottingham – 43 miles from Market Harborough

Note.

  1. I am assuming that a range of 65 miles is possible.
  2. If the trains have a diesel-generator set, then this could be used to partially-charge the battery in places on the journey.
  3. I am assuming some form of charging is provided at the destination station.
  4. As before no new electrification would be needed.

I suspect, I’ve missed a few possible routes.

Midland Main Line

The Midland Main Line could possibly be run between London St. Pancras and Derby, Nottingham and Sheffield without the use of diesel.

Consider.

  • The route will be electrified between London St. Pancras and Market Harborough.
  • In connection with High Speed Two, the Midland Main Line and High Seed Two will share an electrified route between Sheffield and Clay Cross North Junction.
  • London St. Pancras and Derby can be run with a charging station at Derby, as Market Harborough and Derby is only 46 miles.
  • London St. Pancras and Nottingham can be run with a charging station at Nottingham, as Market Harborough and Nottingham is only 43 miles.
  • The distance between Clay Cross North Junction and Market Harborough is 67 miles.
  • The distance between Sheffield and Leeds is 38 miles.

It looks to me that the range of East Midlands Railway’s new Class 804 trains, will be a few miles short to bridge the gap on batteries, between Clay Cross North Junction and Market Harborough station, but Leeds and Sheffield appears possible, once Sheffield has been electrified.

There are several possible solutions to the Clay Cross North and Market Harborough electrification gap.

  1. Fit higher capacity batteries to the trains.
  2. Extend the electrification for a few miles North of Market Harborough station.
  3. Extend the electrification for a few miles South of Clay Cross North Junction.
  4. Stop at Derby for a few minutes to charge the batteries.

The route between Market Harborough and Leicester appears to have been gauge-cleared for electrification, but will be difficult to electrify close to Leicester station. However, it looks like a few miles can be taken off the electrification gap.

Between Chesterfield and Alfriston, the route appears difficult to electrify with tunnels and passig through a World Heritage Site.

So perhaps options 1 and 2 together will give the trains sufficient range to bridge the electrification gap.

Conclusion On The Midland Main Line

I think that Hitachi, who know their trains well, must have a solution for diesel-free operation of all Midland Main Line services.

It also looks like little extra electrification is needed, other than that currently planned for the Midland Main Line and High Speed Two.

North Wales Coast Line

If you look at distance along the North Wales Coast Line, from the electrification at Crewe, you get these values.

  • Chester – 21 miles
  • Rhyl – 51 miles
  • Colwyn Bay – 61 miles
  • Llandudno Junction – 65 miles
  • Bangor – 80 miles
  • Holyhead – 106 miles

It would appear that Avanti West Coast’s new AT-300 trains, if fitted with batteries could reach Llandudno Junction station, without using diesel.

Electrification Between Crewe And Chester

It seems to me that the sensible thing to do for a start is to electrify the twenty-one miles between Crewe and Chester, which has been given a high priority for this work.

With this electrification, distances from Chester are as follows.

  • Rhyl – 30 miles
  • Colwyn Bay – 40 miles
  • Llandudno Junction – 44 miles
  • Bangor – 59 miles
  • Holyhead – 85 miles

Electrification between Crewe and Chester may also open up possibilities for more electric and battery-electric train services.

But some way will be needed to charge the trains to the West of Chester.

Chagring The Batteries At Llandudno Junction Station

This Google Map shows Llandudno Junction station.

Note.

  1. It is a large station site.
  2. The Conwy Valley Line, which will be run by battery Class 230 trains in the future connects at this station.
  3. The Class 230 train will probably use some of Vivarail’s Fast Charging systems, which use third-rail technology, either at the ends of the branch or in Llandudno Junction station.

The simplest way to charge the London Euston and Holyhead train, would be to build a charging station at Llandudno Junction, which could be based on Vivarail’s Fast Charging technology or a short length of 25 KVAC overhead wire.

But this would add ten minutes to the timetable.

Could 25 KVAC overhead electrification be erected for a certain distance through the station, so that the train has ten minutes in contact with the wires?

Looking at the timetable of a train between London Euston and Holyhead, it arrives at Colwyn Bay station at 1152 and leaves Llandudno Junction station at 1200.

So would it be possible to electrify between the two stations and perhaps a bit further?

This Google Map shows Colwyn Bay Station,

Note how the double-track railway is squeezed between the dual-carriageway of the A55 North Wales Expressway and the sea.

The two routes follow each other close to the sea, as far as Abegele & Pensarn station, where the Expressway moves further from the sea.

Further on, after passing through more caravans than I’ve ever seen, there is Rhyl station.

  • The time between arriving at Rhyl station and leaving Llandudno Junction station is nineteen minutes.
  • The distance between the two stations is fourteen miles.
  • Rhyl and Crewe is fifty-one miles.
  • Llandudno Junction and Holyhead is forty-one miles.

It would appear that if the North Wales Coast Line between Rhyl and Llandudno Junction is electrified, that Hitachi’s proposed battery trains can reach Holyhead.

The trains could even changeover between electrification and battery power in Rhyl and Llandudno Junction stations.

I am sure that electrifying this section would not be the most difficult in the world, although the severe weather sometimes encountered, may need some very resilient or innovative engineering.

It may be heretical to say so, but would it be better if this section were to be electrified using proven third-rail technology.

West of Llandudno Junction station, the electrification would be very difficult, as this Google Map of the crossing of the River Conwy shows.

I don’t think anybody would want to see electrification around the famous castle.

Electrification Across Anglesey

Llanfairpwll station marks the divide between the single-track section of the North Wales Coast Line over the Britannia Bridge and the double-track section across Anglesey.

From my virtual helicopter, the route looks as if, it could be fairly easy to electrify, but would it be necessary?

  • Llandudno Junction and Holyhead is forty-one miles, which is well within battery range.
  • There is surely space at Holyhead station to install some form of fast-charging system.

One problem is that trains seem to turn round in only a few minutes, which may not be enough to charge the trains.

So perhaps some of the twenty-one miles between Llanfairpwll and Holyhead should be electrified.

London Euston And Holyhead Journey Times

Currently, trains take three hours and forty-three minutes to go between London Euston and Holyhead, with these sectional timings.

  • London Euston and Crewe – One hour and thirty-nine minutes.
  • Crewe and Holyhead – Two hours and four minutes.

The big change would come, if the London Euston and Crewe leg, were to be run on High Speed Two, which will take just fifty-five m,inutes.

This should reduce the London Euston and Holyhead time to just under three hours.

Freight On The North Wales Coast Line

Will more freight be seen on the North Wales Coast Line in the future?

The new tri-mode freight locomotives like the Class 93 locomotive, will be able to take advantage of any electrification to charge their batteries, but they would probably be on diesel for much of the route.

Conclusion On The North Wales Coast Line

Short lengths of electrification, will enable Avanti West Coast’s AT-300 trains, after retrofitting with batteries, to run between Crewe and Holyhead, without using any diesel.

I would electrify.

  • Crewe and Chester – 21 miles
  • Rhyl and Llandudno Junction – 14 miles
  • Llanfairpwll and Holyhead – 21 miles

But to run battery-electric trains between London Euston and Holyhead, only Rhyl and Llandudno Junction needs to be electrified.

All gaps in the electrification will be handled on battery power.

A Selection Of Possible Battery-Electric Services

In this section, I’ll look at routes, where battery-electric services would be very appropriate and could easily be run by Hitachi’s proposed battery-electric trains.

London Paddington And Swansea

Many were disappointed when Chris Grayling cancelled the electrification between Cardiff and Swansea.

I went along with what was done, as by the time of the cancellation, I’d already ridden in a battery train and believed in their potential.

The distance between Cardiff and Swansea is 46 miles without electrification.

Swansea has these services to the West.

  • Carmarthen – 32 miles
  • Fishguard – 73 miles
  • Milford Haven  71 miles
  • Pembroke Dock – 73 miles

It looks like, three services could be too long for perhaps a three car battery-electric version of a Hitachi Class 385 train, assuming it has a maximum range of 65 miles.

But these three services all reverse in Carmarthen station.

So perhaps, whilst the driver walks between the cabs, the train can connect automatically to a fast charging system and give the batteries perhaps a four minute top-up.

Vivarail’s Fast Charging system based on third-rail technology would be ideal, as it connects automatically and it can charge a train in only a few minutes.

I would also electrify the branch between Swansea and the South Wales Main Line.

This would form part of a fast-charging system for battery-trains at Swansea, where turnround times can be quite short.

I can see a network of battery-electric services developing around Swansea, that would boost tourism to the area.

Edinburgh And Tweedbank

The Borders Railway is electrified as far as Newcraighall station and the section between there and Tweedbank is thirty miles long.

I think that a four-car battery-electric Class 385 train could work this route.

It may or may not need a top up at Tweedbank.

The Fife Circle

The Fife Circle service from Edinburgh will always be difficult to electrify, as it goes over the Forth Rail Bridge.

  • The Fife Circle is about sixty miles long.
  • Plans exist for a short branch to Leven.
  • The line between Edinburgh and the Forth Rail Bridge is partly electrified.

I believe that battery-electric Class 385 train could work this route.

London Kings Cross and Grimsby/Cleethorpes via Lincoln

The Cleethorpes/Grimsby area is becoming something of a  renewable energy powerhouse and I feel that battery trains to the area, might be a significant and ultimately profitable statement.

LNER recently opened a six trains per day service to Lincoln.

Distances from Newark are as follows.

  • Lincoln – 17 miles
  • Grimsby – 61 miles
  • Cleethorpes – 64 miles

A round trip to Lincoln can probably be achieved on battery alone with a degree of ease, but Cleethorpes and Grimsby would need a recharge at the coast.

Note that to get to the Cleethorpes/Grimsby area, travellers usually need to change at Doncaster.

But LNER are ambitious and I wouldn’t be surprised to see them dip a toe in the Cleethorpes/Grimsby market.

The LNER service would also be complimented by a TransPennine Express service from Manchester Airport via Sheffield and Doncaster, which could in the future be another service run by a Hitachi battery train.

There is also a local service to Barton-on-Humber, which could be up for improvement.

London Waterloo And Exeter

This service needs to go electric, if South Western Railway is going to fully decarbonise.

But third-rail electrification is only installed between Waterloo and Basingstoke.

Could battery-electric trains be used on this nearly two hundred mile route to avoid the need for electrification.

A possible strategy could be.

  • Use existing electrification, as far as Basingstoke – 48 miles
  • Use battery power to Salisbury – 83 miles
  • Trains can take several minutes at Salisbury as they often split and join and change train crew, so the train could be fast-charged.
  • Use battery power to the Tisbury/Gillingham/Yeovil/Crewkerne area, where trains would be charged – 130 miles
  • Use battery power to Exeter- 172 miles

Note.

  1. The miles are the distance from London.
  2. The charging at Salisbury could be based on Vivarail’s Fast-Charging technology.
  3. The charging around Yrovil could be based on perhaps twenty miles of third-rail electrification, that would only be switched on, when a train is present.

I estimate that there could be time savings of up to fifteen minutes on the route.

 

To Be Continued…

 

 

 

 

 

 

 

 

 

 

 

February 18, 2020 Posted by | Transport | , , , , , , , , , , , , , , , , , , , , , | 5 Comments