The Anonymous Widower

Vivarail’s Plans For Zero-Emission Trains

The title of this post is the same as that of this article on the Modern Railways web site.

This is the introductory subtitle.

Vivarail Chairman Adrian Shooter talks to Modern Railways about the company’s Class 230s and its plans for battery trains.

The article is mainly a video of Mr. Shooter talking in front of various examples of Vivarail trains.

It’s probably easier to watch the video and listen on what is said.

But I have some thoughts on what he said.

Battery Range

Consider.

  • Early on in the video he talks about a battery range of forty miles with four battery packs on the train.
  • He also talks about switching battery supplier to Hoppecke.
  • Later he says that a train with six battery packs in the train, has a hundred mile range.

That is impressive.

The number of battery packs has increased by 50 % and the range has gone up by two-and-a-half times.

If those figures are right and I’ve no reason to disbelieve them, then Hoppecke have done a good job with the batteries.

A very rough calculation indicates their size.

  • The current 4 x 100 kWh takes the train 40 miles, which is 10 kWh per mile.
  • So to travel a hundred miles will need 1000 kWh.
  • Divide by six batteries and you get 167 kWh per battery or a 67 % increase in individual battery capacity.

If these are a new generation of batteries, what would they do for Hitachi’s Regional Battery train, which is proposed to have a range of 56 miles? They could give it a range of around 93 miles.

These ranges of distances would be very useful to manufacturers of battery trains.

Charging Battery Trains Using Vivarail’s Fast Charge System

The video did give a few more details of Vivarail’s Fast Charge system.

I was also able to take this screen capture from the video, which shows the extra rails used to pass charge to the train and the batteries.

Note.

  • The rails are well-shielded. Not that they’re live unless a train is over the top and connected.
  • The driver  just has to stop the train in the correct place and automation does the rest.
  • This image is four minutes and thirty-five seconds into the video.

My only problem with the design is that those thick copper cables used to bring electricity to the train, way be a tempting target for metal thieves.

Vivarail Now Has Permission To Charge Any Train

Mr. Shooter said this about Vivarail’s Fast Charge system.

The system has now been given preliminary approval to be installed as the UK’s standard charging system for any make of train.

I may have got the word’s slightly wrong, but I believe the overall message is correct.

In the November 2020 Edition of Modern Railways, there is a transcript of what Mr. Shooter said.

‘Network Rail has granted interim approval for the fast charge system and wants it to be the UK’s standard battery charging system’ says Mr. Shooter. ‘We believe it could have worldwide implications.’

I hope Mr. Shooter knows some affordable lawyers, as in my experience, those working in IPR are not cheap.

A Prototype Class 230 Train That Can Use 25 KVAC Is Under Construction

Mr. Shooter also announced that a version of the train with a third can in the middle, with a pantograph on the roof and a 35 KVAC transformer is under construction.

This will enable batteries to be charged from existing electrification.

I can already think of a few routes, where this train could be used.

  • Bedford and Bletchley – It would replace a diesel-electric Class 230 train.
  • Poulton-le-Fylde and Fleetwood
  • Oxenholme and Windermere
  • Glasgow Central and East Kilbride
  • Glasgow Queen Street and Anniesland
  • Chester and Crewe – It would replace a battery Class 230 train
  • West Ealing and Greenford
  • Slough and Windsor Central
  • Henley and Twyford
  • Maidenhead and Marlow

This could be the standard train in many places.

The November 2020 Edition of Modern Railways, also has more details on this project.

  • The centre vehicle is under construction at their factory at Seaham in County Durham.
  • Mr. Shooter is quoted as saying. ‘We’ve identified 60 lines on partially electrified tracks’

Vivarail plans to demonstrate the concept on the Northumberland Line to Blyth and Ashington next spring.

West Highland Opportunity

This is a section of the print article, that is not mentioned in the video.

This is the introductory paragraph.

While Mr. Shooter highlights several opportunities south of the border to deploy the 25kV/battery Class 230, he is particularly interested in deployment of Vivarail trains in Scotland.

And this is the last paragraph, describing a possible deployment on the West Highland Line.

Top of the list is the West Highland Line.

Here a 25kV/battery Class 230 would operate under electric power from Glasgow Queen Street to Craigendoran Junction, switching there to battery power. The batteries could be topped up on the way using Vivarail’s fast charge system, with Mr, Shooter suggesting this could take place at Crianlarich, Oban and Fort William. On the West Highland the 60 mph top speed of the Class 230 is not prohibitive as the top speed on the route does not exceed this.

If this sounds familiar, I made a similar proposal in Hitachi Plans To Run ScotRail Class 385 EMUs Beyond The Wires, in a section, which is entitled Electric Trains On The West Highland Line Between Glasgow And Mallaig/Oban. I start with this sentence.

This might be considered as difficult as putting a London bus on the Moon.

But that was done by the Daily Sport newspaper, so perhaps my reasoning is the same as Vivarail’s.

My conclusion of the section was as follows.

What would battery-electric trains to Oban and Mallaig do for tourism in the area?

Hitachi would have one of the most scenic and iconic test tracks in the world!

These statements would surely, apply to a Vivarail train or a battery electric Class 385 train.

Pop-Up Metro

Mr. Shooter shows a battery train, which is going to the United States to trial a concept called a Pop-up Metro.

  • In the US, there are hundreds of lightly used freight lines serving towns and cities
  • Temporal separation would mean that freight and passenger trains used the lines at different times of the day.
  • Battery powered Vivarail trains could provide a Metro service.

He also talked about his US partner and 50 % shareholder in Vivarail, leasing trains for a year, to see if the concept was viable in a given area. He indicated, the cost could be less than a consultant’s report.

Could the Pop-up Metro concept work in the UK?

In these possible Beeching Reversal projects, there could be scope for using the concept.

Note.

  1. Some of these are on heritage railway infrastructure. Does a Class 230 train count a heritage unit?
  2. The Aston Rowant Extension is Chiltern territory, so Mr. Shooter could know it well!
  3. In the Wikipedia entry for the Class 230 train, there is a useful Cost Comparison.

I should say, that I like the concept of a Pop-up Metro.

  • The trains have proved they are up to the job.
  • A package of one or two trains and a containerised charging system could surely be created.
  • Installation of the battery charger in many platforms would not be a major engineering project costing millions.
  • On a heritage railway, the enthusiasts could probably do it from their own resources.

But the best point to me, is that a system could probably be leased for a year on a Try-Before-You-Buy basis for less than the cost of a consultant’s report.

Go for it!

Conversion Of Diesel Multiple Units To Battery Electric Multiple Units

This was the bombshell in the tail of the video.

There a lot of diesel multiple units in the UK and Mr. Shooter and Vivarail have developed a plan to convert some of them to battery electric operation.

The trains he is proposing to convert are diesel multiple units, that use a Voith transmission, which I list in How Many Diesel Multiple Units In The UK Have Voith Hydraulic Transmissions?.

Consider.

  • There are 815 trains on my list.
  • All have a Voith hydraulic transmission, with most having similar type numbers starting with T211.
  • Some are 75 mph trundlers and others are full-on 100 mph expresses.
  • All have one engine and transmission per car.

They fit into distinct groups.

Sprinters

Sprinters are a group of trains that were produced by British Rail.

The earliest were built in 1984 and all were built in the last century.

  • There are 314 trains in total.
  • All have a Cummins engine of 213 kW, with one engine per car.
  • They have a Voith T211r transmission, which drives two axles per car.
  • They have an operating speed of 75 mph.

The trains may be elderly, but like some well-known actresses, they scrub up well with a little TLC.

The pictures show an immaculate refurbished Class 150 train, that I travelled on in Devon.

With a battery electric transmission, they would make a superb rural route and branch line train.

Express Sprinters

Express Sprinters are a group of trains that were produced by British Rail.

  • The earliest were built in 1990 and all were built in the last century.
  • There are 202 trains in total.
  • All have a Cummins engine of between 260 and 300 kW, with one engine per car.
  • They have a Voith T211r transmission, which drives two axles per car.
  • They have an operating speed of 90 mph.

These pictures show a Class 159 train on a visit to the Swanage Railway, where it was shuttling in visitors.

With a battery electric transmission, that gave a range of say 80 miles at 90 mph, they would be low cost competition for Hitachi’s Regional Battery Train on secondary routes.

Scotrail have forty Class 158 trains, which run on the following routes.

  • Glasgow Queen Street and Anniesland – 5.5 miles
  • Fife Circle Line – 61 miles round trip
  • Stonehaven and Inverurie – 66 miles round trip.
  • Borders Railway – 70 miles round trip.
  • Edinburgh and Arbroath – 76 miles
  • Inverness and Kyle of Lochalsh – 82.5 miles
  • Inverness and Aberdeen – 108 miles – Inter7City route.
  • Inverness and Wick – 174 miles
  • Inverness and Edinburgh – 175 miles – Inter7City route.

Note.

  1. The routes are shown in order of length.
  2. Anything over a hundred miles would need intermediate charging.
  3. Some routes would need charging at both ends.
  4. Glasgow Queen Street and Anniesland would probably not need a Class 158, but is very suitable for a battery electric train.
  5. The three longest routes from Inverness are probably too long for battery electric power, but two are run by Inter7City trains.
  6. A battery electric train on the Inverness and Kyle of Lochalsh route, would surely be a tourist asset.

With an eighty mile range, ScotRail could find a battery-equipped Class 158 train very useful.

Networkers

Networkers are a group of trains that were produced by British Rail.

  • The earliest were built in 1990 and all were built in the last century.
  • There are 96 trains in total.
  • All have a Perkins engine of 261 kW, with one engine per car.
  • They have a Voith T211r transmission, which drives two axles per car.
  • They have an operating speed of 75 or 90 mph.

These pictures show ac selection of Class 165 and Class 166 trains.

As with the Express Sprinters, with a battery electric transmission, that gave a range of say 80 miles at 90 mph, they would be low cost competition for Hitachi’s Regional Battery Train on secondary routes.

The Networkers are used by Great Western Railway and Chiltern Railways.

  • Great Western Railway do run a few long routes with their Networkers, but these routes would probably be too long for battery operation.
  • Local routes around Bristol, Exeter and Plymouth and some short branch lines could be possibilities for battery operation.
  • Great Western Railway have also leased tri-mode Class 769 trains for the Reading and Gatwick route.
  • Chiltern Railways don’t run their Networkers on the longer routes to Birmingham.
  • But they do run them on the shorter routes to Aylesbury (39 miles), Aylesbury Vale Parkway (41 miles), Banbury (69 miles), Gerrards Cross (19 miles), High Wycombe (28 miles), Oxford (66 miles) and Stratford-upon-Avon (104 miles).
  • Some of these Chiltern routes must surely be possibilities for battery operation. Especially, as all the stations in the list, don’t appear to be the most difficult to add a Fast Charge facility.

With an eighty mile range, battery-equipped Networkers could be very useful.

Turbostars

Turbostars are a group of trains that were produced at Derby.

  • The earliest were built in the last few years of the the last century.
  • There are 177 trains in total.
  • All have an MTU engine of 315 kW, with one engine per car.
  • They have a Voith T211 transmission, which drives two axles per car.
  • They have an operating speed of 100 mph.

These pictures show a selection of Turbostar trains.

As with the Express Sprinters and the Networkers, with a battery electric transmission, that gave a range of say 80 miles at 100 mph, they would be low cost competition for Hitachi’s Regional Battery Train on secondary routes.

The post; DfT and Arriva CrossCountry Sign Agreement is partly based on this article on Railway News, which has the same name.

This is a paragraph from the original article.

One element of this new contract is a focus on reducing the environmental impact of the operator’s diesel fleet. For instance, Arriva CrossCountry will do a trial of using electrical shore supplies on its Bombardier Turbostar fleet when these trains are in depots for cleaning. Trains are cleaned both in the winter and at night, which means that the interior lighting and heating systems have to be powered. By using electricity to power these systems instead of the trains’ diesel engines, there will be a reduction in both emissions and noise pollution, which is doubly important when the depots are near built-up areas.

If Turbostars were to have their power unit and transmission updated to battery electric, there would be less need to provide shore supplies to where the trains were to be cleaned.

How Would Sprinters, Express Sprinters, Networkers And Turbostars Be Converted To Battery Electric Power?

The layout of the transmission in all these trains is very similar.

That is not surprising, as they are effectively different interpretations of the same theme over four decades.

  • A diesel engine provides the power.
  • On the back of the diesel engine, a hydraulic transmission is mounted.
  • The transmission performs a similar function to an automatic gearbox in a car. Trains like cars perform better in the right gear.
  • The transmission is connected to the final drive in one or more of the bogies using a cardan shaft. The propeller shaft in many rear-wheel-drive vehicles, is a cardan shaft.

In the video at about 5 mins 50 seconds, Mr. Shooter outlines how the train will be converted to battery electric drive.

  • The diesel engine, hydraulic transmission, radiator, fuel tank and all the other diesel-related gubbins will be removed.
  • A 280 kW electric traction motor will be installed, which will be connected to the cardan shaft.
  • Batteries will be installed. Possibly, they will fit, where the diesel engine was originally located.

I wouldn’t be surprised if the weight of the battery was similar to that of all the equipment that has been removed, as this would mean the train’s handling wouldn’t change.

  • Acceleration will be faster, as it is in electrically-powered road vehicles.
  • The traction motor can work in reverse to slow the train and the energy regenerated by braking can be stored in the batteries.
  • Mr. Shooter doesn’t say if his battery electric trains use regenerative braking in the video, but it is possible and a common procedure, as it saves energy.

An intelligent control system will control everything  according to the driver’s needs and wishes.

This extract from the print edition, gives Mr. Shooter’s advantages of this diesel to battery electric conversion.

‘Unlike cars, trains have a planned duty cycle so you can easily plan for when the batteries should be charged’ says. Mr. Shooter. ‘Our analysis shows the fuel cost would be halved and the maintenance cost would be halved compared to a DMU. And to allay concerns about battery life we would offer to lease batteries on a cost per mile. You get the financial payback within five years, with the greenness free of charge!’ Mr. Shooter reports early work by Vivarail suggests a converted battery train on the Far North line might need fast charge stations at four locations.

 

Where In The World Is This?

The print edition of the interview poses an interesting question.

Mr. Shooter says the opportunities are significant, and reports Vivarail is in discussions with an overseas customer about a bid for battery trains for a new 500 mile line which would incorporate 12 fast charge points at stations. He also said customers are suggesting the use of solar parks or even tidal power to feed the static batteries at the fast charge stations, rather than power coming from the local supply.

Imagine two large cities about 500 miles apart, with a string of small towns between them.

  • The small towns might be on a scenic river or coastline.
  • Commuters drive to both cities.
  • People from the two cities visit the area to relax.
  • There might even be a lightly used freight line or a dismantled railway alignment running between the cities.
  • Perhaps, the road network is overloaded and a green alternative is needed.

Given, Vivarail is part-owned, by an American entrepreneur, I would expect, the proposed line is somewhere in North America. But I also think there would be possibilities in Australia, around the coast of the Baltic Sea and India and South East Asia.

Cpnclusion

This is the conclusion of the print article in Modern Railways.

While electrification will be the key component in decarbonising traction emissions, battery technology will have a role to play, and Vivarail is at the forefront of this development.

I wholeheartedly agree.

 

October 18, 2020 Posted by | Energy Storage, Transport | , , , , , , , , | 11 Comments

DfT and Arriva CrossCountry Sign Agreement

The title of this post, is the same as that of this article on Railway News.

This is the introductory paragraph.

The franchisee CrossCountry, which is owned by Arriva, has signed a three-year agreement with the Department for Transport to bring the franchise in line with the Emergency Recovery Measures Agreements (ERMAs).

CrossCountry has the following trains in its fleet.

34 x Class 220 trains

24 x Class 221 trains

This gallery shows Class 220 trains and the closely related Class 222 trains, which are in service with East Midlands Railways.

Note that these three fleets of Bombadier Voyager trains are now twenty years old and will probably need a makeover soon.

If they have a problem it is that they are diesel multiple units and create a lot of noise and pollution in stations and depots.

This is said in the Railway News article.

One element of this new contract is a focus on reducing the environmental impact of the operator’s diesel fleet.

, Two separate projects are mentioned.

  • Using a separate electrical supply to Turbostars during cleaning.
  • Use of on-train batteries on the Voyagers in stations.

In Have Bombardier Got A Cunning Plan For Voyagers?, I gave my thoughts on the second project, when Bombardier proposed it in 2018.

I can see the following scenario happening.

  • When the new Class 805 trains are delivered, Avanti West Coast’s Class 220 trains are transferred to Arriva CrossCountry.
  • When the new Class 810 trains are delivered, East Midland Railway’s Class 222 trains are transferred to Arriva CrossCountry.
  • CrossCountry update their Voyagers with batteries.
  • CrossCountry retire their InterCity 125 trains.

CrossCountry may have enough trains to run a mainly Voyager fleet, backed up by a few Turbostars.

Could Bombardier’s Plan Be Revived In A Different Form?

If CrossCountry had all the Voyages, they would have the following fleet.

  • 34 x four-car Class 220 trains – Currently with CrossCountry.
  • 20 x five-car Class 221 trains – Currently with Avanti West Coast
  • 20 x five-car Class 221 trains – Currently with CrossCountry
  • 4 x four-car Class 221 trains – Currently with CrossCountry
  • 6 x seven-car Class 222 trains – Currently with East Midlands Trains
  • 17 x five-car Class 222 trains – Currently with East Midlands Trains
  • 4 x four-car Class 222 trains – Currently with East Midlands Trains

This totals to eighty-five trains with a total of 285 intermediate cars, of which 128 were built with tilt for Class 221 trains.

Currently CrossCountry has a total of 58 four- and five-car Voyagers and enough Class 43 locomotives for six InterCity 125 trains.

If they rearranged the non-tilting intermediate cars of the Voyagers, 157 intermediate cars is enough for one of the following.

  • 78 – four-car trains
  • 52 – five-car trains
  • 39 – six-car trains
  • 26 – eight-car trains
  • 22 – nine-car trains

Add in forty five-car Class 221 trains and there is more than enough trains for CrossCountry to run their current services without the retired InterCity 125s.

CrossCountry would also be able to form the trains into the lengths they needed for efficient services.

This formation photographed at Basingstoke could be formed of a single train, if they wished, as they have more than enough coaches.

I suspect in true design engineering fashion, engineers at CrossCountry have got the toy trains or Lego bricks out to shuffle the coaches on a big table to see what are the best train lengths for their network.

If they decided to go the eight-car route, which could give up to twenty-six trains, this would be more than enough to be able to retire the InterCity 125s.

Could one of the Intermediate cars be converted into a pantograph and battery car?

  • If the diesel engine and the associated gubbins were to be removed, this would save around two tonnes in weight.
  • A two-tonne battery could probably have a capacity of 200 kWh.
  • Bombardier probably have ideas about how a car could be converted.

Someone could have a lot of fun playing musical carriages and the following trains could be created.

  • A fleet of Voyager bi-mode  trains of optimum length for CrossCountry’s route network.
  • Most services would be run by single trains, which must give advantages to the operator, their staff and passengers.
  • All braking would be regenerative braking to battery to save energy.
  • Where electrification exists, the trains could use it.
  • All station stops would be performed on battery power.

There might even be some left over driving cars and some intermediate cars to be converted into battery electric trains for another route.

Conclusion

There is a route there for CrossCountry to have a much more environmentally-friendly fleet, better suited to their needs

  • The Turbostars would be given a local electricity supply to cut noise and pollution during overnight cleaning.
  • The InterCity 125s would be retired.
  • CrossCountry acquires as many Voyagers as it needs after Avanti West Coast and East Midlands Railway get their new trains.
  • The Voyagers carriages would be shuffled so that they could handle all routes and replace the InterCity 125s.
  • The design exists to convert the Voyagers into diesel-electric-battery tri-mode high speed trains.

Note.

  1. There are enough trains to do a gradual conversion, with CrossCountry having enough trains for a full service at all times.
  2. All trains will probably have been built this century or nearly so!

I also feel, that the fleet would be a marketing asset, rather than a bit of a discouragement to use CrossCountry’s services again.

 

 

 

October 16, 2020 Posted by | Transport | , , , , , , , , | 5 Comments

Thoughts On The Design Of Hitachi’s Battery Electric Trains

If you look at a Class 800 or Class 802 train, they have underfloor diesel engines. Their powertrain is described like this in its own section in Wikipedia.

Despite being underfloor, the generator units (GU) have diesel engines of V12 formation. The Class 801 has one GU for a five to nine-car set. These provide emergency power for limited traction and auxiliaries if the power supply from the overhead line fails. The Class 800 and Class 802 bi-mode has three GU per five-car set and five GU per nine-car set. A five-car set has a GU situated under vehicles 2/3/4 and a nine-car set has a GU situated under vehicles 2/3/5/7/8.

There have been rumours of overheating.

Hitachi’s Regional Battery Train

Hitachi have teamed up with Hyperdrive Innovation to create a Regional Battery Train. There is this Press Release on the Hyperdrive Information web site, which is entitled Hitachi Rail And Hyperdrive Agreement P[ens Way For Battery Trains Across Britain.

This Hitachi infographic gives the specification.

Note, that this is a 100 mph train, with a range of 56 miles.

Typical routes would include a route like Norwich and Stansted Airport via Cambridge.

  • It is 93 miles.
  • There are thirty-nine miles of electrification at the Stansted Airport end.
  • Norwich station is fully-electrified.
  • There is just 53 miles between the Trowse swing-bridge and Ely station, that is not electrified.

Trains would charge the batteries at both ends of the route and use battery power, where no electrification exists.

There are many similar routes like this in the UK.

Hitachi have also produced this video.

My thoughts lead me to a few questions.

Are The Battery Modules Simulated Diesel Engines?

At the age of sixteen, for a vacation job, I worked in the Electronics Laboratory at Enfield Rolling Mills.

It was the early sixties and one of their tasks was at the time replacing electronic valve-based automation systems with new transistor-based systems.

The new equipment had to be compatible to that which it replaced, but as some were installed in dozens of places around the works, they had to be able to be plug-compatible, so that they could be quickly changed. Occasionally, the new ones suffered infant-mortality and the old equipment could just be plugged back in, if there wasn’t a spare of the new equipment.

Stadler have three very similar trains, that are destined for the UK.

All share the same PowerPack-in-the-Middle design, which is shown in this picture.

There are four slots in the PowerPack, with two on either side and they can all hold, either a diesel engine or a battery. Only, the Class 756 trains, are planned to have batteries at present, to make the trains tri-mode and capable of being powered by overhead electric, on-board batteries or a diesel generator.

If I was designing the battery modules to slot into the PowerPack, I and many other engineers would make the battery module deliver similar characteristics and plug compatibility to the diesel module.

The train’s control computer, would be simpler to program and debug and would use modules appropriately to drive the train according to the driver’s instructions.

This interchangeability would also give the operator lots of flexibility, in how they configured and used the trains.

So will Hyperdrive Innovation use an approach for Hitachi, where the battery module has similar characteristics and plug compatibility to the current diesel module?

I wouldn’t be surprised if they did, as it allows modules to be quickly swapped as operational needs change and the train’s computer sorts out the train’s formation and acts accordingly.

On An Hitachi Regional Battery Train Will All Diesel Engines Be Replaced With Battery Modules?

If the computer is well-programmed, it should handle any combination of diesel engines and battery modules.

Perhaps for various routes different combinations might apply.

  • For maximum battery range, all modules would be batteries.
  • For maximum power, all modules would be diesel engines.
  • To handle some out and back routes, there might be three battery modules and a diesel engine to charge the batteries before return.
  • Could perhaps one or two battery modules be fitted to avoid using the diesel engines in stations and in sensitive areas?

On some routes all diesel engines will be replaced with batteries on Battery Regional Trains, but on others there could be a mixture of both battery and diesel engines.

It should be noted that Stadler achieve the same flexibility with their PowerPack-in-the-Middle design.

Operators will like this flexibility.

What Is The Capacity Of A Battery Module?

In How Much Power Is Needed To Run A Train At 125 mph?, I calculated that an all-electric Class 801 train uses 3.42 kWh per vehicle mile.

I can do a simple estimate based on this figure.

When running on batteries the train will need less energy due to less air resistance, because it is going at 100 mph, rather than 125 mph.

  • If the energy use is proportional to the speed, then at 100 mph, the energy use will be 2.73 kWh per vehicle mile.
  • But if the energy use is proportional to the square of the speed, the energy use will be 2.19 kWh per vehicle mile.

I will compromise and use 2.5 kWh per vehicle mile.

Total energy needed to move a five-car train 56 miles would be 5 x 56 x 2.5 or 700 kWh, which could be three batteries of 233 kWh.

These are not outrageous sizes and the batteries could probably be of a comparable weight to the current diesel engines. So replacement wouldn’t affect the handling of the train.

In addition, the batteries would need to be large enough to hold all the regenerated by braking during a stop.

  • The weight of a Class 800 train is 243 tonnes.
  • It can carry 326 passengers, who probably weigh 80 Kg with baggage, bikes and buggies.
  • This gives a total train weight of 269 tonnes.
  • Using Omni’s Kinetic Energy Calculator, the kinetic energy at 100 mph is just 75 kWh.
  • For completeness, at 125 mph, the kinetic energy is 117 kWh and at 140 mph, the kinetic energy is 146 kWh.

All these figures are small compared to the battery size needed for traction.

Will East Coast Train’s Class 803 trains Use The Same Technology?

On East Coast Trains‘s Class 803 trains, batteries will be fitted to maintain onboard services, in case of a power failure.

Have these batteries been designed by Hyperdrive Innovation, with perhaps less capacity?

As East Coast Trains’s route between London Kings Cross and Edinburgh is fully electrified, the trains probably won’t need any auxiliary traction power.

But would increasing the battery size make this possible?

Where Do Avanti West Coast Class 807 Trains Fit In?

Avanti West Coast‘s Class 807 trains are also members of the same Hitachi A-Train family.

In the January 2020 Edition of Modern Railways, there is an article, which is entitled Hitachi Trains For Avanti.

This is said about the ten all-electric AT-300 trains for Birmingham, Blackpool and Liverpool services, which have now been numbered as Class 807 trains.

The electric trains will be fully reliant on the overhead wire, with no diesel auxiliary engines or batteries.

It may go against Hitachi’s original design philosophy, but not carrying excess weight around, must improve train performance, because of better acceleration.

It may also have the wiring for a diesel engine or a battery module, should operational experience indicate one is needed.

Will All Cars Be Wired Ready For A Diesel Or Battery Module?

A five-car Class 802 train currently has a diesel engine in cars 2, 3 and 4.

The Hitachi infographic says that a Regional Battery Train has a range of 56 miles on batteries.

Let’s assume that this range applies to a Class 802 train, that has been fitted with three battery modules.

If we take Hull Trains as an example, their Class 802 trains do the following sections using their diesel engines

  • Temple Hirst Junction and Beverley – 44.34 miles or 87 miles round trip
  • Temple Hirst Junction and Hull – 36 miles or 72 miles round trip

These distances mean that with a 56 mile range, there needs to be some form of changing at Hull and/or Beverley.

But supposing all cars are wired to accept batteries or diesel engines. This could mean the following.

  • A train with three batteries and a range of 56 miles, could fit a standard diesel engine as a range extender, which could also be used to charge the batteries at Hull or Beverley.
  • A train with four batteries, could have a range of 75 miles, which with regenerative braking and precise energy-saving driving could be able to go between Temple Hirst Junction and Hull and back on battery power.
  • A train with four batteries and a diesel engine,, could have a range of 75 miles on battery power. The diesel energy could be used as a range extender or to charge the batteries at Hull and/or Beverley.
  • Could a train with five batteries, which could have a range of 90 miles, be able to reach Beverley and return to Temple Hirst Junction?

Note.

  1. I have assumed that battery range is proportional to the number of batteries.
  2. There must also be scope for running slower to cut the amount of energy used.

In addition, all Hull Trains schedules seem to spend fifteen minutes or more in Hull station. This would be enough time to recharge the batteries.

I’m fairly certain, that if all cars were wired  for batteries or diesel engines, it would give the operators a lot of flexibility.

Running With Batteries And A Range Extender Diesel Engine

The LEVC TX taxi is described as a plug-in hybrid range extender electric vehicle, where a small petrol engine, can also be used to generate electricity to power the vehicle.

Suppose a Class 802 train was fitted with two battery modules and a diesel engine. Could the diesel act as a range extender, in the same way as the petrol engine does on the LEVC TX?

The diesel engines fitted to a Class 802 train are 700 kW, so if I’m right about the train having total battery capacity of 700 kWh, one engine would take an hour to charge the batteries.

Returning to my Hull Trains example, drivers could probably ensure that the train didn’t get stranded by judicial use of the a single diesel engine to charge the batteries, whilst running in rural areas along the route.

As there would only be one diesel engine rather than three, the noise would be much lower.

I suspect too, that a simple charger in Hull station could charge a train, as it passes through, to make sure it doesn’t get stranded in the countryside.

I suspect that a mix of batteries and diesel engines could be part of an elegant solution on some routes.

  • Edinburgh and Aberdeen
  • Edinburgh and Inverness
  • London Kings Cross and Hull
  • London Paddington and Swansea
  • London St. Pancras and Sheffield.
  • London St. Pancras and Nottingham

It might also be a useful configuration on some TransPennine routes.

Charging Battery Trains

Having a charger in a terminal station would open up a lot of routes to Hitachi’s battery electric trains.

At stations like Hull and Scarborough, this charger could be as simple as perhaps forty metres of 25 KVAC overhead electrification.

  • The train would stop in the station at the appropriate place.
  • The driver would raise the pantograph.
  • Charging would start.
  • When the battery is fully-charged, the driver would lower the pantograph.

This procedure could be easily automated and the overhead wire could be made electrically dead, if no train is connected.

It should be noted that Hitachi have recently acquired ABB’s power grid business, as announced in this Hitachi press release which is entitled Hitachi Completes Acquisition of ABB’s Power Grids Business; Hitachi ABB Power Grids Begins Operation.

Rail is not mentioned, but mobility is. So will this move by Hitachi, strengthen their offering to customers, by also providing the systems in stations and sidings to charge the trains.

This Google Map shows Hull station, with its large roof.

Could an integrated solution involving solar panels over the station be used to power electrification to charge the trains and dome electric buses next door?

Integrated solutions powered by renewable energy would appeal to a lot of municipalities seeking to improve their carbon profile.

Conclusion

These trains will transform a lot of rail services in the UK and abroad.

 

 

 

 

 

October 9, 2020 Posted by | Transport | , , , , , , , , , | 3 Comments

Daimler Trucks Presents Technology Strategy For Electrification – World Premiere Of Mercedes-Benz Fuel-Cell Concept Truck

This title of this post, is the same as that of this article on the Daimler Global Media Site.

These are the opening bullet points.

  • Mercedes-Benz GenH2 Truck, a fuel-cell truck with a range of up to 1,000 kilometers and more for flexible and demanding long-haul transport – customer trials in 2023, start of series production in second half of this decade.
  • Mercedes-Benz eActros LongHaul, a battery-electric truck with a range of about 500 kilometers for energy-efficient transport on plannable long-haul routes – projected to be ready for series production in 2024.
  • Mercedes-Benz eActros, a battery-electric truck with a range of well over 200 kilometers for heavy urban distribution to go into series production in 2021.
  • ePowertrain global platform architecture offers synergies and economies of scale.

Judging by the spelling, this media copy, is from the bad spellers of Trumpland.

It looks to be a case of Daimler have called up the heavy brigade.

The best way to learn more is to search for “Mercedes-Benz GenH2 Truck”

There’s some good YouTube videos.

From this video, I ascertained the following.

  • The truck has a stainless steel tank for liquid hydrogen on either side between the front and rear wheels.
  • There are two 150 kW fuel cells, which appear to be of an inhouse Mercedes design.
  • There is a 70 kWh battery between the two liquid hydrogen tanks low down in the middle of the truck.
  • The battery can supply 400 kW, if needed.

This screen capture shows a cutaway from the video.

I am impressed by the design.

  • Everything is fitted neatly in the small space.
  • The design doesn’t seem to intrude into the load space, so I would assume, it would work with all existing trailers and bodies.
  • The battery position must help stability and driveability.
  • It looks like a design, that would be friendly to cyclists, as the hydrogen tanks act as a round safety barrier.

I shall look at the operation.

Consider.

  • The current Actros trucks have engines with a power of up to 500 HP or 400 kW.
  • The 70 kWh battery can provide 400 kW for about 10 minutes.
  • Regenerative braking to the battery must be possible.
  • There’s probably a well-programmed computer between the driver and the electric transmission.

I wouldn’t be surprised that the truck is more of a battery-hydrogen hybrid, than a pure hydrogen truck.

Suppose, it was hauling a heavy load from Felixstowe to Manchester.

  • Will the truck charge the battery before it leaves Felixstowe? It could use the fuel cells or be plugged in to a high-performance charger. 70 kWh, is not the biggest of batteries compared to say those on a train.
  • Once on the A45 (Sorry! A14), it would accelerate quickly to the cruising speed, probably using mostly battery power.
  • It would then cruise mainly using hydrogen and the fuel cells to the destination. The truck would be optimised for an economic cruise.
  • During any deceleration, regenerative braking to the battery would be used.
  • Battery power might be called upon on any inclines or after a stop.

Intriguingly, a range of 1000 kilometres or 620 miles would allow many out-and-bank journeys in the UK, France, Germany or Italy to be performed without refuelling.

Leeds, Liverpool, Manchester and Newcastle are all under 300 miles from the Suffolk port.

Conclusion

I used to part-own a company, that financed trucks, moving loads into and out of Felixstowe in the 1980s.

From what I learned then of the heavy truck market, hydrogen-powered heavy trucks are going to be a winner, especially, if most journeys are out-and-back from one end.

October 2, 2020 Posted by | Design, Hydrogen | , , , , | 2 Comments

The Mathematics Of A Hydrogen-Powered Freight Locomotive

If we are going to decarbonise the railways in the UK and in many countries of the world, there is a need to replace diesel locomotives with a zero-carbon alternative.

In looking at Airbus’s proposal for hydrogen powered aircraft in ZEROe – Towards The World’s First Zero-Emission Commercial Aircraft, it opened my eyes to the possibilities of powering freight locomotives using gas-turbine engines running on liquid hydrogen.

A Hydrogen-Powered Equivalent Of A Class 68 Locomotive

The Class 68 Locomotive is a modern diesel locomotive used on UK railways.

This is a brief specification

  • It can pull both passenger and freight trains.
  • It has an operating speed of 100 mph.
  • The diesel engine is rated at 2.8 MW
  • It has an electric transmission.
  • It has a 5,000 litre diesel tank.
  • It weighs 85 tonnes.
  • It is 20.5 metres long.

There are thirty-four of these locomotives in service, where some haul passenger trains for Chiltern Railways and TransPennine Express.

Rolls-Royce’s Staggering Development

Staggering is not my word, but that of Paul Stein, who is Rolls-Royce’s Chief Technology Officer.

He used the word in a press release, which I discuss in Our Sustainability Journey.

To electrify aviation, Rolls-Royce has developed a 2.5 MW generator, based on a small gas-turbine engine, which Paul Stein describes like this.

Amongst the many great achievements from E-Fan X has been the generator – about the same size as a beer keg – but producing a staggering 2.5 MW. That’s enough power to supply 2,500 homes and fully represents the pioneering spirit on this project.

This generator is designed for flight and the data sheet for the gas-turbine engine is available on the Internet.

  • It has a weight of under a couple of tonnes compared to the thirteen tonnes of the diesel engine and generator in a Class 68 locomotive.
  • It is almost as powerful as the diesel.
  • It looks to be as frugal, if not more so!
  • Rolls-Royce haven’t said if this gas-turbine can run on aviation biofuel, but as many of Rolls-Royce’s large engines can, I would be very surprised if it couldn’t!

Rolls-Royce’s German subsidiary; MTU is a large producer of rail and maritime diesel engines, so the company has the expertise to customise the generator for rail applications.

Could this generator be modified to run on liquid hydrogen and used to power a Class 68-sized locomotive?

  • The size of the generator must be an advantage.
  • Most gas-turbine engines can be modified to run on natural gas and hydrogen.
  • Its power output is electricity.
  • There’s probably space to fit two engines in a Class 68 locomotive.

In addition, a battery could be added to the transmission to enable regenerative braking to battery, which would increase the efficiency of the locomotive.

Storing Enough Hydrogen

I believe that the hydrogen-powered locomotive should carry as much energy as a Class 68 locomotive.

  • A Class 68 locomotive has a capacity of 5,000 litres of diesel fuel.
  • This will have a mass of 4.19 tonnes.
  • Each kilogram of diesel can produce 47 Mega Joules of energy.
  • This means that full fuel tanks contain 196,695 Mega Joules of energy.
  • Each litre of liquid hydrogen can produce 10.273 Mega Joules of energy

This means that to carry the same amount of energy will need 19,147 litres or 19.15 cubic metres of liquid hydrogen.

  • This could be contained in a cylindrical tank with a diameter of 2 metres and a length of 6 metres.
  • It would also weigh 1.38 tonnes.

The E-Fan-X aircraft project must have worked out how to store, similar amounts of liquid hydrogen.

Note that I used this Energy And Fuel Data Sheet from Birmingham University.

Running On Electrification

As the locomotive would have an electric transmission, there is no reason, why it could not run using both 25 KVAC overhead and 750 VDC third-rail electrification.

This would enable the locomotive to haul trains efficiently on partially electrified routes like between Felixstowe and Leeds.

Hydrogen-Powered Reciprocating Engines

When it comes to diesel engines to power railway locomotives and big trucks, there are few companies bigger than Cummins, which in 2018, turned over nearly 24 billion dollars.

  • A large proportion of this revenue could be at risk, if governments around the world, get serious about decarbonisation.
  • Cummins have not let the worst just happen and in 2019, they acquired Hydrogenics, who are a hydrogen power company, that they now own in an 81/19 partnership with Air Liquide.
  • Could all this expertise and Cummins research combine to produce powerful hydrogen-powered reciprocating engines?
  • Other companies, like ABC and ULEMCo are going this route, to modify existing diesel engines to run on hydrogen or a mixture of hydrogen and diesel.

I believe it is very likely, that Cummins or another company comes up with a solution to decarbonise rail locomotives, based on a conversion of an existing diesel engine.

Refuelling Hydrogen-Powered Rail Locomotives

One of problems with hydrogen-powered trucks and cars, is that there is no nationwide refuelling network providing hydrogen. But railway locomotives and trains usually return to depots at the end of the day for servicing and can be fuelled there.

Conclusion

I feel that there are several routes to a hydrogen-powered railway locomotive and all the components could be fitted into the body of a diesel locomotive the size of a Class 68 locomotive.

Consider.

  • Decarbonising railway locomotives and ships could be a large market.
  • It offers the opportunities of substantial carbon reductions.
  • The small size of the Rolls-Royce 2.5 MW generator must offer advantages.
  • Some current diesel-electric locomotives might be convertible to hydrogen power.

I very much feel that companies like Rolls-Royce and Cummins (and Caterpillar!), will move in and attempt to claim this lucrative worldwide market.

September 25, 2020 Posted by | Hydrogen, Transport | , , , , , , , , , , | 10 Comments

GWR Buys Vehicles Outright In HST Fleet Expansion

The title of this post is the same as that of this article on Railway Gazette.

This is the introductory paragraph.

Despite concerns over future passenger numbers, the Department for Transport has given permission for Great Western Railway to procure three more shortened HST diesel trainsets, branded as the Castle Class by the franchisee.

These pictures show some of the Castle Class trains.

They must be profitable and/or popular with passengers.

If I have a problem with these trains, it is with the Class 43 diesel power cars.

  • Each train has two power cars.
  • It would appear that there are about 150 of the Class 43 power cars in regular service.
  • Each is powered by a modern MTU 16V4000 R41R diesel engine, that is rated at 1678 kW.
  • The engines are generally less than a dozen years old.
  • They will be emitting a lot of carbon dioxide.

As the trains are now only half as long as they used to be, I would suspect, that the engines won’t be working as hard, as they can.

Hopefully, this will mean less emissions.

The article says this about use of the fleet.

With its fleet now increasing to 14, GWR expects to use 12 each day on services across the west of England. Currently the fleet is deployed on the Cardiff – Bristol – Penzance corridor, but the company is still evaluating how the additional sets will be used.

It also says, that they are acquiring rolling stock from other sources. Some of which will be cannibalised for spares.

Are First Rail Holdings Cutting Carbon Emissions?

First Rail Holdings, who are GWR’s parent, have announced in recent months three innovative and lower-carbon fleets from Hitachi, for their subsidiary companies.

Hitachi have also announced a collaboration with Hyperdrive Innovation to provide battery packs to replace diesel engines, that could be used on Class 800 and Class 802 trains.

First Rail Holdings have these Class 800/802 fleets.

  • GWR – 36 x five-car Class 800 trains
  • GWR – 21 x nine-car Class 800 trains
  • GWR – 22 x five-car Class 802 trains
  • GWR – 14 x nine-car Class 802 trains
  • TransPennine Express – 19 x five-car Class 802 trains
  • Hull Trains – 5 x five-car Class 802 trains

Note.

  1. That is a total of 117 trains.
  2. As five-car trains have three diesel engines and nine-car trains have five diesel engines, that is a total of 357 engines.
  3. In Could Battery-Electric Hitachi Trains Work Hull Trains’s Services?, I showed that Hull Trains could run their services with a Fast Charging system in Hull station.
  4. In Could Battery-Electric Hitachi Trains Work TransPennine Express’s Services?, I concluded that Class 802 trains equipped with batteries could handle all their routes without diesel and some strategically-placed charging stations.

In the Wikipedia entry for the Class 800 train, there is a section called Powertrain, where this is said.

According to Modern Railways magazine, the limited space available for the GUs has made them prone to overheating. It claims that, on one day in summer 2018, “half the diagrammed units were out of action as engines shut down through overheating.

So would replacing some diesel engines with battery packs, also reduce this problem, in addition to cutting carbon emissions?

It does appear to me, that First Rail Holdings could be cutting carbon emissions in their large fleet of Hitachi Class 800 and Class 802 trains.

The Class 43 power cars could become a marketing nightmare for the company?

Could Class 43 Power Cars Be Decarbonised?

Consider.

  • Class 43 power cars are forty-five years old.
  • They have been rebuilt with new MTU engines in the last dozen years or so.
  • I suspect MTU and GWR know everything there is to know about the traction system of a Class 43 power car.
  • There is bags of space in the rear section of the power car.
  • MTU are part of Rolls-Royce, who because of the downturn in aviation aren’t performing very well!

But perhaps more importantly, the power cars are iconic, so anybody, who decarbonises these fabulous beasts, gets the right sort of high-class publicity.

I would also feel, if you could decarbonise these power cars, the hundreds of diesel locomotives around the world powered by similar diesel engines could be a useful market.

What methods could be used?

Biodiesel

Running the trains on biodiesel would be a simple solution.

  • It could be used short-term or long-term.
  • MTU has probably run the engines on biodiesel to see how they perform.
  • Biodiesel could also be used in GWR’s smaller diesel multiple units, like Class 150, 158, 165 and 166 trains.

Some environmentalists think biodiesel is cheating as it isn’t zero-carbon.

But it’s my view, that for a lot of applications it is a good interim solution, especially, as companies like Altalto, will be making biodiesel and aviation biofuel from household and industrial waste, which would otherwise be incinerated or go to landfill.

The Addition Of Batteries

This page on the Hitachi Rail Ltd web site shows this image of the V-Train 2.

This is the introduction to the research program, which was based on a High Speed Train, fotmed of two Class 43 power cars and four Mark 3 carriages.

The V-Train 2 was a demonstration train designed in order to demonstrate our skills and expertise while bidding for the Intercity Express Programme project.

The page  is claiming, that a 20 % fuel saving could be possible.

This paragraph talks about performance.

The V-Train 2 looked to power the train away from the platform using batteries – which would in turn be topped up by regenerative braking when a train slowed down to stop at a station. Acceleration would be quicker and diesel saved for the cruising part of the journey.

A similar arrangement to that Hitachi produced in 2005 could be ideal.

  • Technology has moved on significantly in the intervening years.
  • The performance would be adequate for a train that just trundles around the West Country at 90 mph.
  • The space in the rear of the power car could hold a lot of batteries.
  • The power car would be quiet and emission-free in stations.
  • There would be nothing to stop the diesel engine running on biodiesel.

This might be the sort of project, that Hitachi’s partner in the Regional Battery Train; Hyperdrive Innovation. would probably be capable of undertaking.

MTU Hybrid PowerPack

I wouldn’t be surprised to find, that MTU have a drop-in solution for the current 6V4000 R41R diesel engine, that includes a significant amount of batteries.

This must be a serious possibility.

Rolls-Royce’s 2.5 MW Generator

In Our Sustainability Journey, I talk about rail applications of Rolls-Royce’s 2.5 MW generator, that has been developed to provide power for electric flight.

In the post, I discuss fitting the generator into a Class 43 power car and running it on aviation biofuel.

I conclude the section with this.

It should also be noted, that more-efficient and less-polluting MTU engines were fitted in Class 43s from 2005, so as MTU is now part of Rolls-Royce, I suspect that Rolls-Royce have access to all the drawings and engineers notes, if not the engineers themselves

But it would be more about publicity for future sales around the world, with headlines like.

Iconic UK Diesel Passenger Trains To Receive Green Roll-Royce Jet Power!

COVID-19 has given Rolls-Royce’s aviation business a real hammering, so perhaps they can open up a new revenue stream by replacing the engines of diesel locomotives,

I find this an intriguing possibility. Especially, if it were to be fitted with a battery pack.

Answering My Original Question

In answering my original question, I feel that there could be several ways to reduce the carbon footprint of a Class 43 power car.

It should also be noted that other operators are users of Class 43 power cars.

  • ScotRail – 56
  • CrossCountry – 12
  • East Midlands Railway – 39
  • Network Rail – 3

Note.

  1. ScotRail’s use of the power cars, is very similar to that of GWR.
  2. CrossCountry’s routes would need a lot of reorganisation to be run by say Hitachi’s Regional Battery Train.
  3. East Midlands Railway are replacing their Inter-City 125s with new Class 810 trains.

The picture shows the power car of Network Rail’s New Measurement Train.

These may well be the most difficult to decarbonise, as I suspect they need to run at 125 mph on some routes, which do not have electrification and there are no 125 mph self-powered locomotives. After the Stonehaven crash, there may be more tests to do and a second train may be needed by Network Rail.

Why Are GWR Increasing Their Castle Class Fleet?

These are possible reasons.

GWR Want To Increase Services

This is the obvious explanation, as more services will need more trains.

GWR Want To Update The Fleet

There may be something that they need to do to all the fleet, so having a few extra trains would enable them to update the trains without cutting services.

GWR Want To Partially Or Fully Decarbonise The Power Cars

As with updating the fleet,  extra power cars would help, as they could be modified first and then given a thorough testing before entering passenger service.

GWR Have Been Made An Offer They Can’t Refuse

Suppose Rolls-Royce, MTU or another locomotive power plant manufacturer has a novel idea, they want to test.

Over the years, train operating companies have often tested modified trains and locomotives for manufacturers.

So has a manufacturer, asked GWR to test something in main line service?

Are Other Train Operators Thinking Of Using Introducing More Short-Formed InterCity 125 Trains?

This question has to be asked, as I feel there could be routes, that would be suitable for a net-zero carbon version of a train, like a GWR Castle or a ScotRail Inter7City.

Northern Trains

Northern Trains is now run by the Department for Transport and has surely the most suitable route in the UK for a shorted-formed InterCity 125 train – Leeds and Carlisle via the Settle and Carlisle Line.

Northern Trains may have other routes.

Transport for Wales Rail Services

Transport for Wales Rail Services already run services between Cardiff Central and Holyhead using diesel locomotive hauled services and long distance services between South Wales and Manchester using diesel multiple units.

Would an iconic lower-carbon train be a better way of providing some services and attract more visitors to the Principality?

Conclusion

GWR must have a plan, but there are few clues to what it is.

The fact that the trains have been purchased rather than leased could be significant and suggests to me that because there is no leasing company involved to consult, GWR are going to do major experimental modifications to the trains.

They may be being paid, by someone like an established or new locomotive engine manufacturer.

It could also be part of a large government innovation and decarbonisation project.

My hunch says that as First Rail Holdings appear to be going for a lower-carbon fleet, that it is about decarbonising the Class 43 power cars.

The plan would be something like this.

  • Update the three new trains to the new specification.
  • Give them a good testing, before certifying them for service.
  • Check them out in passenger service.
  • Update all the trains.

The three extra trains would give flexibility and mean that there would always be enough trains for a full service.

Which Methods Could Be Used To Reduce The Carbon Footprint Of The Class 43 Power Cars?

These must be the front runners.

  • A Hitachi/Hyperdrive Innovation specialist battery pack.
  • An MTU Hybrid PowerPack.
  • A Rolls-Royce MTU solution based on the Rolls-Royce 2.5 MW generator with batteries.

All would appear to be viable solutions.

 

 

 

 

September 10, 2020 Posted by | Transport | , , , , , , , , , , , , , , , , | 1 Comment

Rolls-Royce Commences Series Production Of Hybrid-Ready MTU PowerPacks For Irish Rail

The title of this post, is the same as that of this article on CleanTechnica.

This is the introductory paragraph.

Rolls-Royce is to supply its very first series production MTU PowerPacks which are prepared for future use as hybrid traction units: Iarnród Éireann Irish Rail, the national railway operator of the Republic of Ireland, has ordered 41 of these MTU Hybrid-ready PowerPacks. Fitted with MTU 6H 1800 R86 engines, the PowerPacks comply with the EU Stage V emissions directives and each delivers 375 kW from the diesel engine as well as 150 kW from the electrical machine.

Later the aim would be to add batteries to the PowerPacks to make the trains fully hybrid.

I do think Rolls-Royce MTU might have a game-changer here.

  • You take a modern fleet of diesel multiple units like a British Class 170 trains or an Irish Class 22000 trains,
  • For starters you replace the old diesel engine, with a modern one that meets all the latest environmental regulations.
  • It surely helps both sales and engineering, when the old diesel engine was supplied by MTU.
  • Later you fit appropriately sized batteries to the PowerPack to create full hybrids with regenerative braking.

In Iarnród Éireann Orders Stage V MTU PowerPacks, I said this about fuel consumption and emissions.

The aim is to achieve a reduction of over thirty percent in both fuel consumption and carbon dioxide emissions.

I would suspect that with savings like that, the case for conversion might be an easy sell.

August 13, 2020 Posted by | Transport | , , , | Leave a comment

Converting Class 456 Trains Into Two-Car Battery Electric Trains

Mark Hopwood is the interim Managing Director of South Western Railway and in Special Train Offers A Strong Case For Reopening Fawley Line, I quote him as saying the following about the trains for the Fawley Branch Line.

However, SWR’s Mark Hopwood favours a much bolder plan. “We’d have to take a decision, once we knew the line was going ahead. But my personal belief is that we should be looking for a modern environmentally-friendly train that can use third-rail electricity between Southampton and Totton and maybe operate on batteries down the branch line.”

Pressed on whether that would mean Vivarail-converted former-London Underground stock, Hopwood ads. “It could be. Or it could be a conversion of our own Class 456, which will be replaced by new rolling stock very shortly. But I don’t think this is the time to use old diesels.

Mark Hopwood is so right about using old diesels.

  • Where possible new and refurbished trains should be zero-carbon.
  • Fiesel is to be banned by 2035 in Scotland and 2040 in England and Wales.
  • Diesel trains and hydrogen trains for that matter need to refuelled.
  • Get the diagrams right and battery electric trains can be charged on existing electrification or automatic Fast Charging systems, when they turn back at terminal stations.
  • Electric trains attract passengers.
  • Battery electric trains are mouse-quiet!

Who would use anything else other than electric trains with a battery option for sections without electrification?

The Class 456 Train

These pictures show some of the twenty-four Class 456 trains, that are in South Western Railway’s fleet.

This is the specification of a Class 456 train.

  • Two cars
  • Operating speed – 75 mph.
  • Capacity – 152 seats – Although the plate on the train says 113!
  • Built 1990-1991
  • Ability to work in pairs.

Most trains seem to be used to lengthen trains from eight to ten cars, as some of the pictures shows. As these 4+4+2 formations will be replaced with new 10-car Class 701 trains or pairs of five-car Class 701 trains, the trains will be looking for a new role.

Does this explain Mark Hopwood’s statement?

It should be noted that the Class 456 trains are members of the Mark 3 family, and bare a strong resemblance to the Class 321 train, which are shown in these pictures.

Note that I have included the side view, as it shows the amount of space under these trains.

Some Class 321 trains are being converted to Class 600 hydrogen trains, by Alstom at Widnes. Others have been given a life-extending Renatus upgrade.

Are The Driver Cars Of Class 456 and Class 321 Trains Identical?

The trains may look similar, but does the similarity go deeper?

Could Alstom Use Class 600 Hydrogen Train Technology To Create A Class 456 Train With a Battery Capability?

Consider.

  • Alstom are positioning themselves as Train Upgrade Specialists in the UK. They have already signed a near billion pound deal to upgrade and maintain Avanti West Coast’s fleet of Class 390 trains.
  • Alstom are creating the Class 600 hydrogen train from withdrawn Class 321 trains.
  • A hydrogen-powered  train is basically a battery electric train with a hydrogen tank and fuel cell to charge the batteries.
  • The Class 600 train doesn’t appear to be making fast progress and is still without an order.
  • One possible hydrogen route must surely be London Waterloo and Exeter, so I suspect Alstom are talking to South Western Railway.
  • The Class 456 trains are owned by Porterbrook, who would probably like to extend the useful life of the trains.

Could it be that the battery core and AC traction package of Alstom’s hydrogen system for the Class 600 train can turn old British Rail-era electric multiple units into battery electric multiple units with a useful range?

It is certainly a possibility and one that is also within the capability of other companies in the UK.

Could The Class 456 Trains Receive a Class 321 Renatus Interior And Traction Package?

As Class 321 and Class 456 trains were built around the same time, the two trains must share components.

These pictures show the current interior of a Class 456 train.

This is excellent for a two-car electric multiple unit, built thirty years ago! Although, the refurbishment is more recent from 2014-15.

  • Note the wheel-chair space and the copious rubbish bins.
  • I also spotted a stowed wheel-chair ramp on the train. It can be seen if you look hard in the picture than shows the wheel-chair space.
  • Some might feel that toilets should be provided.

These pictures show the interior of a Class 321 train, that has been given the Renatus upgrade.

What is not shown is the more efficient AC traction package.

I have been told or read, that the Renatus interior will be used in the conversion of a Class 321 train to an Alstom Class 600 or Breeze hydrogen train.

On the other hand, the current Class 456 interior would probably be ideal for a branch line, where one of initial aims would be to attract passengers.

Could A Class 456 Train Have a Lightweight Traction Package?

Consider.

  • The Class 456 train will access electrification that is only 750 VDC third-rail.
  • Batteries work in DC.
  • The new traction motors will work in AC, if they follow the practice in the Class 321 Renatus and the Class 600 train.
  • Regenerative braking will charge the batteries in both trains.
  • Air-conditioning and other hotel services can work in DC.

Some components needed to run from 25 KVAC like a transformer could be left out to save weight and improve acceleration.

I would suspect that a Class 456 train with batteries could use a slimmed-down traction system from the Class 600 train.

On both Class 456 and 600 trains a core system, that would power the train, might contain.

  • The traction battery or batteries.
  • The traction motors that both drive and brake the train,
  • Third-rail electrification shoes, so that the batteries could be charged in a station, as required.
  • A clever computer system, that controls the acceleration, braking and charging as required.

On the Class 600 train, there would also be the following.

  • Hydrogen tanks and fuel cells to provide an independent power source to charge the batteries.
  • A pantograph to access 25 KVAC overhead electrification.
  • Extra electrical gear to access the electrification.

I think it would be possible to design the Class 456 train with batteries as the basic train and just add the extra  hydrogen and electrical gubbins to make it a Class 600 train.

Could A Class 456 Train Be Modified To Use 25 KVAC Overhead Electrification?

As I said, there are a lot of similarities between Class 456 trains and Class 321 trains.

As the Class 321 trains are equipped to use 25 KVAC Overhead Electrification, I suspect train modification specialists could create a Class 456 train, that could use overhead electrification.

What Battery Range And Size Would Be Needed In A Class 456 Train?

These are typical branch line lengths for South Western Railway.

  • Fawley Branch – 8 miles
  • Wareham and Swanage – 11 miles
  • Lymington Branch – 5.6 miles
  • Reading and Basingstoke – 15.5 miles

I would suspect that a range of thirty miles on battery power would be sufficient for a Class 456 train with batteries.

In an article in the October 2017 Edition of Modern Railways, which is entitled Celling England By The Pound, Ian Walmsley says this in relation to trains running on the Uckfield Branch, which is not very challenging.

A modern EMU needs between 3 and 5 kWh per vehicle mile for this sort of service.

So applying that formula gives battery capacity of between 180 kWh and 300 kWh.

In Issue 864 of Rail Magazine, there is an article entitled Scotland High Among Vivarail’s Targets for Class 230 D-Trains, where this is said.

Vivarail’s two-car battery units contains four 100 kWh lithium-ion battery rafts, each weighing 1.2 tonnes.

If 200 kWh can be placed under the floor of each car of a rebuilt London Underground D78 Stock, then I think it is reasonable that up to 200 kWh can be placed under the floor of each car of the proposed train.

This picture of the Driver Car of a Class 321 train, shows that there is quite a bit of space under those trains.

Are the Class 456 trains similar? This is the best picture I have got so far.

It does appear that space is similar to that under a Class 321 train.

If we assume that the Class 456 train can have the following specification.

  • Battery capacity of 200 kWh in both cars.
  • Regenerative braking to battery.
  • Power consumption of 4 kWh per vehicle mile.

I think we could be approaching a range of fifty miles on a route without too many energy-consuming stops.

Charging The Batteries

I like the Vivarail’s Fast Charge concept of using third-rail equipment to charge battery trains.

This press release from the company describes how they charge their battery electric Class 230 trains.

  • The system is patented.
  • The system uses a trickle-charged battery pack, by the side of the track to supply the power.
  • The first system worked with the London Underground 3rd and 4th rail electrification standard.

As the length of rails needed to be added at charging points is about a metre, installing a charging facility in a station, will not be the largest of projects.

Under How Does It Work?, the press release says this.

The concept is simple – at the terminus 4 short sections of 3rd and 4th rail are installed and connected to the electronic control unit and the battery bank. Whilst the train is in service the battery bank trickle charges itself from the national grid – the benefit of this is that there is a continuous low-level draw such as an EMU would use rather than a one-off huge demand for power.

The train pulls into the station as normal and the shoe-gear connects with the sections of charging rail. The driver need do nothing other than stop in the correct place as per normal and the rail is not live until the train is in place.

That’s it!

As an electrical engineer, I’m certain the concept could be adapted to charge the batteries of a conventional third-rail train.

Vivarail’s press release says this about modification to the trains.

The train’s shoe-gear is made of ceramic carbon so it is able to withstand the heat generated during the fast charge process.

That wouldn’t be a major problem to solve.

Class 456 Train With Batteries And Class 600 Train Compared

The following sub-sections will compare the trains in various areas.

Lightweight Design

As I suspect that the basic structure of the Class 456 and Class 600 trains are similar, systems like toilets, air-conditioning, traction motors and seats will be chosen with saving weight in mind.

Every kilogram saved will mean faster acceleration.

Operating Speed

The current Class 321 train is a 100 mph train, whilst the current Class 456 train is only a 75 mph train.

I wonder if applying the modern traction package of the Class 321 Renatus to the Class 456 train could speed the shorter train up a bit?

Range Away From Electrification

Alstom have quoted ranges of hundreds of miles for the Class 600 train on one filling of hydrogen, but I can’t see the Class 456 train with batteries doing much more than fifty miles on a full charge.

But using a Fast Charge system, I can see the Class 456 train with batteries fully-charging in under ten minutes.

Fast Charge systems at Romsey and Salisbury stations would surely enable the Class 456 trains with batteries to run the hourly service over the thirty-eight mile route between the two stations.

Passenger Capacity

The current Class 456 trains have a capacity of 152 seats.

In Orders For Alstom Breeze Trains Still Expected, I said this.

The three-car Alstom Breeze is expected to have a similar capacity to a two-car diesel multiple unit.

But until I see one in the flesh, I won’t have a better figure.

If South Western Railway were wanting to replace a two-car diesel Class 158 train, they’d probably accept something like 180 seats.

Increasing Passenger Capacity

There are compatible trailer cars around from shortening Class 321 trains from four to three cars and their may be more from the creation of the Class 600 trains.

I suspect that these could be added to both Class 456 and Class 600 trains to increase capacity by fifty percent.

As a two-car train, the Class 456 train might be a bit small, but putting in a third car, which had perhaps slightly more dense seating and possibly a toilet and even more batteries could make the train anything the operator needed.

Suitability For London Waterloo and Exeter via Salisbury

This is South Western Railway’s big need for a zero emission train.

  1. It is around 170 miles
  2. Only 48 miles are electrified.
  3. It is currently worked by three-car Class 159 trains working in pairs.
  4. Class 159 trains are 90 mph trains.

I have believed for some time, that with fast charging, a battery electric train could handle this route.

But, I would feel that.

  • Class 456 trains would be too slow and too small for this route.
  • Class 600 trains would be too small for this route.

On the other hand, I believe that Hitachi’s Class 800 train with a battery electric capability or Regional Battery Train, which is described in this infographic from the company, could be ideal for the route.

The proposed 90 km or 56 mile range could even be sufficient take a train between Salisbury and Exeter with a single intermediate charge at Yeovil Junction station, where the trains wait up to ten minutes anyway.

There are other reasons for using Hitachi’s Regional Battery Train rather than Class 600 trains.

  • First Group have a lot of experience of running Hitachi Class 80x trains, through their various subsidiaries.
  • They could share depot facilities at Exeter.
  • No specialist facilities would be needed.
  • A five-car Class 801 with batteries would have a convenient 300 seats.
  • I suspect they could be delivered before Alstom’s Class 600 train.

As the only new infrastructure required would be Fast Charge facilities at Salisbury and Yeovil Junction stations, I feel that Hitachi’s Regional Battery Train, should be a shoe-in for this route.

First Delivery

The Wikipedia entry for the Class 600 train, says introduction into traffic could be in 2024. Given, the speed with which Greater Anglia’s Class 321 trains were updated to the Renatus specification, we could see Class 456 trains with a battery capability and new interiors running well before 2024.

A Few Questions

These questions have occurred to me.

Could The Technology Be Used To Create A Class 321 Battery Electric Train?

I don’t see why not!

I believe a Class 321 battery electric train could be created with this specification.

  • Three or four cars. Remember the Class 320 train is a three-car Class 321 train.
  • 100 mph operating speed.
  • Regenerative braking to the batteries.
  • Renatus or operator-specified interior.
  • Toilet as required.
  • Electrification as required.
  • Battery range of around sixty miles.
  • Ability to use a Fast Charge system, that can easily be installed in a terminal platform.

Trains could be tailored to suit a particular route and/or operator.

Any Other Questions?

If you have any other questions, send them in and I’ll add them to this section.

Conclusion

It does appear that if the Class 456 trains, were to be fitted with a battery capability, that they would make a very useful two-car battery electric train, with the following specification.

  • Two cars
  • Operating speed – 75 mph. This might be a bit higher.
  • Capacity – 152 seats
  • Ability to work in pairs.
  • Modern interior
  • Range of 45-50 miles on batteries.
  • Ability to charge batteries in ten minutes in a station.
  • Ability to charge batteries on any track with 750 VDC third-rail electrification.

This is the sort of train, that could attract other operators, who don’t have any electrification, but want to electrify short branch lines.

 

 

 

August 12, 2020 Posted by | Energy Storage, Hydrogen, Transport | , , , , , , , , , , | 10 Comments

BNSF And Wabtec Prepare To Test Battery-Electric Locomotive

The title of this post, is the same as that of this article on Railway Gazette.

Some points from the article.

  • It is a 4,400 hp or 3.3 MW locomotive.
  • The battery is formed from 20,000 cells.
  • The locomotive uses regenerative braking.
  • Testing will be on a 560 km route in California.

But what I find interesting, is that the locomotive is designed to work commonly with a diesel locomotive and this is discussed in detail.

I have this feeling, that running two different locomotives as a pair might be more efficient and I wrote Could A Battery- Or Hydrogen-Powered Freight Locomotive Borrow A Feature Of A Steam Locomotive?, where I examined the concept.

In the article, they say that when a train hauled by a diesel and a battery locomotive, slows, the batteries are recharged. This would seem to make the combination more efficient.

I’ll be interested to see the results of the tests performed by BNSF and Wabtec.

July 8, 2020 Posted by | Transport | , , | 1 Comment

The Big Metro Fleet Upgrade That Could Make It ‘Easy’ To Finally Extend Train Services To New Areas

The title of this post, is the same as that of this article on the Newcastle Chronicle.

This is the first paragraph.

Every train in Metro’s new fleet will be capable of running via an on-board battery, reducing the chance of major shutdowns and making it much cheaper to extend the network.

The fact that it is technically possible, is not a surprise as Stadler’s Class 777 trains for Merseyrail will be using battery power to extend routes. I would be very surprised if the new Tyne and Wear Metro trains and those for Merseyrail, didn’t have a lot of design in common.

But what is surprising, is that the Tyne and Wear Metro’s whole fleet will be fitted with batteries. This must be the first time in the UK, that a whole fleet of trains has been said to have batteries.

The Merseyrail trains will also have a dual voltage capability and will be able to be modified for running on 25 KVAC overhead electrification, as well as 750 VDC third-rail electrification.

Will the Tyne and Wear trains be able to use 25 KVAC electrification? It could be useful in some places on the network and I’m sure, if there was a financial case for a service using existing 25 KVAC electrification, then some trains would be modified accordingly.

A Quick Comparison

This is a quick comparison between Merseyrail’s Class 777 trains and the Tyne and Wear Metro’s new trains.

  • Cars – 777 – 4 – T&W – 5
  • Operating Speed – 777 – 75 mph – T&W – 50 mph
  • Capacity – 484 – T&W – 600
  • Capacity Per Car – 121 – T&W – 125
  • In Service – 2022 (?) – T&W – 2024

They are not that different and it looks like the Tyne and Wear trains will be built after the Merseyrail trains.

Battery Running

The article says this about running on battery power.

He said the 16km off-wire running would allow for a new loop extending out from South Hylton, through Washington, connecting back to Pelaw.

He added that it would be “easy” to create new connections between existing Metro lines – potentially allowing for a new route through Silverlink and the Cobalt business park in North Tyneside, or a link-up from South Shields towards Sunderland.

Battery power would also solve the problem of running Metro trains on Network Rail lines, which is currently impossible because they operate at different voltages.

Mr Blagburn said: “You could remove the electrification from the complex parts of the route, say over historic structures or through tunnels.

Note.

  1. The range of sixteen kilometres or ten miles could be very useful.
  2. The trains appear to be designed to run on Network Rail tracks, as the current trains already do.
  3. The current trains use the Karlsruhe model to effectively work as tram-trains on shared tracks.

I actually believe that the new Tyne and Wear trains could be modified to run on both 25 KVAC and 750 VDC overhead electrification, as Stadler’s Class 399 tram-trains do in Sheffield.

Conclusion

These trains are using all Stadler’s experience of trains and tram-trains from all over the world.

  • They will normally operate using 750 VDC overhead electrification.
  • But Stadler have the technology to enable the trains for 25 KVAC overhead electrification, if required.
  • They have a range of ten miles on batteries.
  • Are the batteries charged by using the energy created by the regenerative braking?

These are not bog-standard trains!

But then neither are the trains built for Greater Anglia by Stadler!

 

 

June 25, 2020 Posted by | Design, Transport | , , , , , | Leave a comment