The Anonymous Widower

Beeching Reversal – Magor And Undy Walkway Station

This is one of the Beeching Reversal projects that the Government and Network Rail are proposing to reverse some of the Beeching cuts.

I actually covered this proposal before in ‘Walkway’ Rail Station Plan For Magor As M4 Relief Road Scrapped,

I’ll repeat the start of that post.

The title of this post is the same as that of this article on the BBC.

These are the introductory paragraphs.

A village heavily affected by the decision to scrap the planned M4 relief road is bidding for help to build a £7m railway station there.

Residents of Magor in Monmouthshire have the mainline rail service to London running through the village, but no station.

They want to create a “walkway” station – one with no car parking that travellers will walk or cycle to.

The original Magor station was shut in the Beeching cuts in November 1964.

The Villages Of Magor And Undy

This Google Map shows the villages of Magor and Undy and their relationship to the roads and railway in the area.

Note.

  1. The Northern motorway is the M48, which leads to the original Severn Bridge.
  2. The Southern motorway is the M4, which leads to the newer Second Severn Crossing.
  3. Between the two lies the South Wales Main Line, with the two stations; Severn Tunnel Junction and Caldicot.
  4. At the Western end of the map, the railway runs between the two villages of Magor and Undy.

This second Google Map shows the villages.

Note.

  1. The M4 running East-West to the North of Magor.
  2. Magor services is in the North-West corner of the map.
  3. The South Wales Main Line running through the villages.

There certainly seems to be a lot of housing to provide passengers for the new station.

The Location Of Magor And Undy Station

On this web page on Rail Future, which is entitled Magor, this is said.

The station site is where the B4245 road passes closest to the railway line. The Monmouthshire County Council traffic survey shows that some 11 – 12,000 cars a day pass along this road through the middle of the villages. The shift from car to train use is primarily aimed at capturing those who at present are not prepared to drive the two and half miles to the east just to catch the train at Severn Tunnel Junction to travel the two and a half miles back passing their homes for the seven and a half mile journey into Newport, and hence at present use their car for the whole journey instead. The site also has the advantage of direct integration with the buses as the bus services pass the entrance to the site of the proposed Station and Community centre every half an hour.

This Google Map shows the B4245 road and the railway.

Note.

  1. The B4245 curving across the map.
  2. There are already two bus stops, which are marked by blue dots.
  3. There is a footbridge over the railway, which doesn’t appear to be step-free.

As Rail Future is probably correct, the position of the station is fairly obvious.

Various documents on the Internet talk about the station being built on the Three Field Site, which the local council bought for community purposes some years ago. Could the triangle of land between the B4245 and the railway, be this site?

Thoughts On The Station

Reading the web page on Rail Future, the following seems to be stated.

  • The platforms will be on the two outside tracks of the four through the station. These are the Relief Lines.
  • The two Fast Lines will be in the centre.
  • Existing crossovers will allow trains from the Fast Lines to call in the station.

Unlike at other proposed stations to the West of Newport, the tracks will not need major works to slew them to accommodate the new platforms.

I would also do the following.

Incorporate Wide Platforms

This picture was taken of the new platform at Stevenage station.

If the station gets busy, a wide platform will ease loading and unloading.

As Magor and Undy station, will be one that encourages passengers to cycle to the station, would a wide platform make it easier for passengers, who are travelling with bicycles?

Step-Free Between Train And Platform

Greater Anglia are using similar trains to South Wales and the Stadler Flirts in East Anglia offer step-free access between train and platform, as this picture shows.

South Wales should offer a similar standard of step-free access. as it eases access and cuts train delays.

A Step-Free Footbridge

In Winner Announced In The Network Rail Footbridge Design Ideas Competition, I wrote how the competition was won by this bridge.

So could a factory-built bridge like this be installed at Magor and Undy station?

  • The bridge can be sized to fit any gap.
  • If the platforms were wide enough, I think it would be possible.
  • It can have lifts that can take bicycles.
  • A bridge like this would also reduce the cost.

So the station can have a stylish, affordable, fully step-free footbridge.

A Walkway Along The Railway

It strikes me that a walkway on the Southern side of the railway to connect the communities South of the railway to the station could be very useful.

Electrification

The South Wales Main Line is electrified between London and Cardiff and Great Western Railway’s Class 802 trains between London and Swansea, change between electricity and diesel at Cardiff Central station.

All four lines at Severn Tunnel Junction appear to be electrified, so will all four lines at Magor and Undy station be electrified?

They certainly should be, to improve the reliability of electric services between London and South Wales.

Train Services

I suspect that the calling pattern of train will be similar to that at Severn Tunnel Junction, which is the next station to the East. The Wikipedia entry for Severn Tunnel Junction says this about services at that station.

The station is served by two main routes – Transport for Wales’ Cheltenham Spa to Cardiff Central and Maesteg via Chepstow local service and Great Western Railway’s Cardiff to Taunton via Bristol line. Both run hourly on weekdays & Saturdays, albeit with some two-hour gaps on the Chepstow line. In the weekday peaks, certain Cardiff to Portsmouth Harbour also stop here, whilst there is a daily train to Fishguard Harbour. CrossCountry also provides very limited services to/from Manchester Piccadilly via Bristol and to Nottingham via Gloucester and Birmingham New Street.

On Sundays, the Bristol to Cardiff service is once again hourly (and runs to/from Portsmouth) whist the Cheltenham service is two-hourly.

I think that this could result in these train frequencies in trains per hour (tph), from Magor station.

  • Caldicot – 2 tph
  • Cardiff Central – 4 tph
  • Cjeltenham – 1 tph
  • Chepstow – 2 tph
  • Gloucester – 1 tph
  • Newport – 4 tph
  • Severn Tunnel Junction – 4 tph

Note.

  1. I have assumed that the CrossCountry services don’t stop.
  2. As there seem to be proposals to add extra stations between Newport and Cardiff Central, these new stations could also get a service with a frequency of between two and four tph.

Working on rules that apply in Liverpool and London, and may apply to the South Wales Metro, I think that a Turn-Up-And-Go service of a train every fifteen minutes is needed between Magor and Undy station and the important Newport and Cardiff stations.

Battery Electric Trains Along The South Wales Main Line

The railways are being decarbonised and plans will have to be made to run all secondary services on the South Wales Main Line without diesel.

Hitachi have already played their cards, with the announcement of a Regional Battery Train, which will be created by replacing some of the numerous diesel engines on a Class 802 train with battery packs.

This is Hitachi’s infographic for the train.

The range of ninety kilometres or fifty-six miles is interesting.

  • Cardiff Central and Swansea are 46 miles apart, so with a charging facility at Swansea, Great Western Railway could run diesel-free between London Paddington and Swansea.
  • I suspect too, that destinations to the West of Swansea could also be served with intelligent placing of a second charging facility at perhaps Carmarthen.

But it’s not just Hitachi, who have made plans for battery electric trains.

  • Transport for Wales have ordered twenty-four Stadler Class 756 trains, which are tri-mode and can run on electrification, diesel or battery power.
  • Transport for Wales have also ordered eleven Stadler Class 231 trains, which are only bi-mode.
  • Both these fleets seem very similar to Greater Anglia’s Class 755 trains, which Stadler have said can be converted to 100 mph tri-mode operation, with perhaps a forty mile range on battery power.
  • I have ridden several times in Class 755 trains and without doubt, they are one of the best diesel-powered trains, I have used in the UK.

So I don’t think it is unreasonable to believe that Transport for Wales have the capability to run battery electric services with the fleet they have ordered given a few simple upgrades, that may already be planned for Greater Anglia.

But will the Welsh train builder; CAF, be happy with Hitachi and Stadler running their battery electric trains at high speed past their factory and onward to England and West Wales?

I doubt it and CAF have already made a response.

In Northern’s Battery Plans, I said this about CAF’s plans to create a battery electric Class 331 train for Northern.

It appears that CAF will convert some three-car Class 331 trains into four-car battery-electric trains.

  • A three-car Class 331 train has a formation of DMSOL+PTS+DMSO.
  • A fourth car with batteries will be inserted into the train.
  • Batteries will also be added to the PTS car.

I suspect that CAF  would be happy to convert some of Transport for Wales order for diesel Class 197 trains into one for suitable battery electric trains.

I believe some of the services that are planned to be run by these diesel trains into Birmingham, Liverpool and Manchester, appear to be ideal routes for battery electric trains.

These diesel trains will still be serviceable in 2060, which will be long past the cut-off date for diesel trains in the UK.

So why not replace them before they are built?

  • The CAF Civity train is modular, so I doubt it would make much difference to CAF’s manufacturing process.
  • The diesel version of the Civity has a noisy transmission compared to the electric version.

It would surely, be better for CAF’s marketing.

Could the various routes through Magor be operated by battery electric trains?

These are my thoughts on the various routes.

Maesteg And Cheltenham Spa

This service is hourly and run by Transport for Wales.

  • Currently, the service seems to be running to Gloucester.
  • Maesteg and Cardiff Central is not electrified and 28.5 miles long.
  • Trains seem to take over 8-9 minutes to turn back at Maesteg.
  • Cardiff Central and Severn Tunnel Junction is electrified.
  • Severn Tunnel Junction and Gloucester is not electrified and is 35 miles long.
  • Trains seem to take over 25 minutes to turn back at Gloucester.

It certainly looks that with charging facilities at Maesteg and Gloucester, this service could be run by a battery electric train with a range of forty miles on battery power.

Fishguard And Gloucester

This service is occasional and run by Transport for Wales.

The problem with this service will be to the West of Swansea.

But if Great Western Railway and Transport for Wales put their heads and services together, I feel there is a cunning plan to run battery electric trains to Fishguard, with perhaps charging facilities at Fishguard, Carmarthen and Swansea.

Cardiff And Bristol Temple Meads

This service is two tph and run by Great Western Railway.

On the Welsh side of the Severn Tunnel, this could be an electric service.

On the English side, there is only ten miles of line without electrification between the South Wales Main Line and Bristol Temple Meads station.

This service in wales can be considered an electric service, as it is only onwards from Bristol Temple Meads to Taunton and Portsmouth Harbour, that charging facilities will be needed.

Conclusion

I like this scheme and as it looks like the trains will be running on electric power, through Magor and Undy station, it could be a very good one.

 

 

August 26, 2020 Posted by | Transport | , , , , , , , , | 3 Comments

Trains Are The New Age Planes

The title of this post, is the same as that of this article on Seeking Alpha.

It is an article well worth a read about the future development of railways in the United States.

August 19, 2020 Posted by | Business, Finance, Transport | , , , , | Leave a comment

Our Sustainability Journey

The title of this post, is the same as that of this press release on the Rolls-Royce web site.

It is sub-titled.

Paul Stein’s Thoughts On Sustainability And Electrification

Paul Stein is Rolls-Royce’s Chief Technology Officer, so what he says is important.

This press release was the source of the information behind Distributed Propulsion ‘Maybe The Only Means’ For Small Electric Flight Progress, which I wrote about Rolls-Royce’s beer keg-sized 2.5 MW generator.

This is the third paragraph.

We’ve taken great steps at Rolls-Royce with our three-pillar sustainability approach of developing the gas turbine to even greater efficiency, supporting the introduction of Sustainable Aviation Fuel and creating new, disruptive technologies such as electrification.

These are definitely, the three pillars of wisdom, when it comes to sustainable aviation.

E-Fan X

This paragraph is Paul Stein’s view of the E-Fan X.

One of the great endeavours in the latter category has been our E-Fan X programme in partnership with Airbus. From our side, this has involved creating a hybrid-electric power generation system at a scale never previously seen in our industry, comprised of an embedded AE2100 gas turbine driving a 2.5MW generator and 3000V power electronics and an electric propulsion unit. What has been particularly encouraging has been the amount of industry interest and support for this programme, and I know everyone at Rolls-Royce and Airbus has been truly grateful for that.

He states that the E-Fan  has now concluded, but a several valuable lessons have been learned.

2.5 MW Generator

He describes the generator like this.

Amongst the many great achievements from E-Fan X has been the generator – about the same size as a beer keg – but producing a staggering 2.5 MW. That’s enough power to supply 2,500 homes and fully represents the pioneering spirit on this project.

The press release discloses that the heart of this staggering generator is a Rolls-Royce AE2100 gas turbine, which powers the latest version of the legendary Lockheed Hercules; the C-130J Super Hercules.

Wikipedia gives this data for the AE2100D2 version of the engine.

  • Length – three metres
  • Diameter – 0.73 metres
  • Weight – 783 kilograms
  • Maximum Power Output – 3458 kW
  • Fuel Consumption – 0.25/kW/h

It looks like in the E-Fan X application, the engine is not at full power.

Use With Aviation Biofuel

Aviation Biofuel is described like this in the first sentences of its Wikipedia entry.

Aviation biofuel is a biofuel used for aircraft. It is considered by some to be the primary means by which the aviation industry can reduce its carbon footprint. After a multi-year technical review from aircraft makers, engine manufacturers and oil companies, biofuels were approved for commercial use in July 2011.

But it doesn’t necessarily mean growing large amounts of crops and converting it to the fuel. Altalto, who are backed by British Airways, Shell, Oxford University and the British Government are building a plant at Immingham to convert household and industrial waste into aviation biofuel.

I would expect that Rolls-Royce have made sure that the generator will work with aviation biofuel.

A Memory Of Emergency Power Generation

About twenty-five years, there was a major power failure after a thunder storm, where I lived in Suffolk and C and myself went to bed in the dark. We awoke to full power in the morning, after a good night’s sleep with no disturbance.

Imagine my surprise, when I let the dogs out to find parked in the field in front of the house, a very large articulated truck.

I was greeted by an engineer, who asked if I minded, his generator in my field. I seem to remember my response was to offer him a cup of tea, which he refused, as he said he had everything he needed in the truck.

It turned out that the main sub-station for the area had received a direct lightning strike and had been destroyed. So to supply power to all the nearby villages, as my farm was at the end of the supply, it was the most convenient place to plug in a transportable gas-turbine generator. The generator was in the field for about ten days and the whole operation impressed me with its professionalism.

But with this new 2.5 MW generator from Rolls-Royce, there would only need to be a small 3.5 tonne four-wheeled truck, to include the generator, fuel and living quarters for the engineer

We have made a lot of progress in twenty-five years.

A Modern Railway Locomotive

The power of this new Class 68 diesel locomotive, that was built in Spain, by Swiss company Stadler is a very healthy 2,800 kW.

Consider these facts about a Class 68 locomotive.

  • Thirty-four of these locomotives have been produced for the UK.
  • They are powered by a Caterpillar C175-16 engine, which weighs thirteen tonnes.
  • The transmission of these locomotives is electric, which means that the diesel engine drives a generator and the train is driven by electric traction motors.
  • The locomotive is equally at home hauling intermodal freight trains and passenger trains for Chiltern Railways or TransPennine Express.
  • According to Wikipedia, Class 68 locomotives comply with Stage III A of the European emission standards but not Stage III B. But that is much better than most of our noisy, smelly and polluting diesel locomotives.

Class 68 locomotives are members of the UKLight family of locomotives, which contains, these two other locomotives.

  • Already in service is the Class 88 locomotive, which is a bi-mode locomotive, which is capable of running on electrification or the on-board 0.7 MW diesel engine.
  • Under development is the Class 93 locomotive, which is a tri-mode 110 mph locomotive, which is capable of running on electrification, the on-board 0.7 MW diesel engine or battery power.

Stadler seem to be able to mix-and-match various power sources to provide versatile and highly-desirable locomotives.

I feel it would be feasible to design a railway locomotive with the following power sources.

  • 25 KVAC  overhead or 750 VDC third-rail electrification, providing up to perhaps the four MW of a Class 88 locomotive.
  • A Rolls-Royce gas-turbine generator running on aviation biofuel, providing up to perhaps three MW.
  • Batteries up to a weight of perhaps ten tonnes.

I am sure that it could handle many of the routes still run with diesel locomotives in the UK.

  • It would handle all locomotive-hauled passenger services and would be electric-only in stations.
  • It certainly solves the problem of hauling long intermodal freight trains between Felixstowe and the Midlands and the North.
  • To handle the heaviest stone and aggregate trains, it might need a more powerful generator, but I’m sure Rolls-Royce would oblige.

In Thoughts On A Battery/Electric Replacement For A Class 66 Locomotive, I gave a list of routes, that would need to be handled by a battery electric locomotive.

  • Didcot and Birmingham – Around two-and-a-half hours
  • Didcot and Coventry – Just under two hours
  • Felixstowe and Ipswich – Around an hour
  • Haughley Junction and Peterborough – Around two hours
  • Southampton and Reading – Around one-and-a-half hours
  • Werrington Junction and Doncaster via Lincoln – Around two hours
  • Werrington Junction and Nuneaton – Just under two hours

Will Rolls-Royce’s generator be able to supply 2.5 MW for up to four hours?

This would need two-and-a-half tonnes of aviation biofuel, which would be around 3,200 litres, which could be carried in the 5,000 litre tank of a Class 68 locomotive.

It certainly seems feasible to replace diesel locomotives with gas-turbine locomotives running on aviation biofuel, to reduce net carbon emissions and reduce noise and pollution.

But this is not just a UK problem and many countries, who rely on diesel-hauled rail freight, would look seriously at such a locomotive.

Underfloor Mounting In Passenger Trains

These pictures show the space underneath a Hitachi Class 800 train.

The red cap visible in some pictures is the filler for the oil or diesel for the MTU 12V 1600 R 80L diesel engine used to power the trains away from electrification.

This diesel engine has this specification.

  • It produces 560 kW of power.
  • It weighs around six tonnes.
  • Its is about 4 x 2.5 x 1 metres in size.

The diesel engine produces about a fifth of the power as the gas-turbine generator, which is also smaller and very much lighter in weight.

It should also be noted, that a nine-car Class 800 train has five of these MTU diesel engines.

At a first glance, it would appear Hitachi could find one of Rolls-Royce’s gas-turbine generators very useful.

  • It might even enable self-powered high speed trains to run on lines without electrification at speeds well in excess of 140 mph.
  • I can certainly see, High Speed Two’s classic-compatible trains having one or possibly two of these generators, so they can extend services on lines without electrification.

We shouldn’t forget that one version of British Rail’s Advanced Passenger Train was to be gas-turbine powered.

A Class 43 Diesel Power-Car

Rolls-Royce would need a test-bed for a trial rail application of their 2.5 MW generator and there is probably no better trial vehicle, than one of the numerous Class 43 power-cars waiting to be scrapped. They could probably obtain a complete InterCity 125, if they wanted one for a realistic weight, test equipment and a second power-car for comparison and rescue.

But seriously, if we are going to remove diesel from UK railways by 2040, a solution needs to be found for the GWR Castles, ScotRail’s Inter7Citys and NetworkRail’s New Measurement Train.

One of the great advantages of these staggering (Rolls-Royce’s Chief Technology Officer’s word, not mine!) generators is that they are controlled by Full Authority Digital Engine Control or FADEC.

FADEC will give the pilots in a Hercules or other aircraft, all the precise control they need and I doubt Rolls-Royce will leave FADEC out of their gas turbine generator, as it would give the operator or driver extremely precise control.

A driver of a GWR Castle equipped with two gas-turbine power-cars, would be able to do the following.

  • Adjust the power to the load and terrain, with much more accuracy, than at present.
  • Shut the engines down and start them quickly, when passing through sensitive areas.
  • Cut carbon-dioxide emissions, by simply using a minimum amount of fuel.

I would put a battery in the back of the Class 43, to provide hotel power for the passenger coaches.

Running current MTU engines in the Class 43s, on biodiesel is surely a possibility, but that not an elegant engineering solution. It also doesn’t cut carbon emissions.

As there are still over a hundred Class 43s in service, it could even be a substantial order.

It should also be noted, that more-efficient and less-polluting MTU engines were fitted in Class 43s from 2005, so as MTU is now part of Rolls-Royce, I suspect that Rolls-Royce have access to all the drawings and engineers notes, if not the engineers themselves

But it would be more about publicity for future sales around the world, with headlines like.

Iconic UK Diesel Passenger Trains To Receive Green Roll-Royce Jet Power!

COVID-19 has given Rolls-Royce’s aviation business a real hammering, so perhaps they can open up a new revenue stream by replacing the engines of diesel locomotives,

A Class 55 Locomotive

Why Not?

A Class 55 locomotive is diesel electric and there are thousands of diesel locomotives in the world, built to similar basic designs, that need a more-efficient and more environmentally-friendly replacement for a dirty, smelly, noisy and polluting diesel power-plant.

Marine Applications

The Wikipedia entry for the Cat C175, says this.

The Cat C175 is often used in locomotives and passenger-class ships.

I suspect there will be marine applications for the gas-turbine generator.

Conclusion

I’m very certain that Rolls-Royce’s pocket power station has a big future.

Who said that dynamite comes in small parcels?

 

 

July 19, 2020 Posted by | Energy, Transport | , , , , , , , , , , , | 8 Comments

Electro-Diesel Tram-Train Order Expanded To Support Service Increase

The title of this post, is the same as that of this article on Railway Gazette.

This is the introductory paragraph.

National passenger operator MÁV-Start has exercised an option for Stadler’s Valencia plant to supply a further four Citylink electro-diesel tram-trains for the route being developed to link Hódmezővásárhely with Szeged.

The reason, I am posting this, is that I feel the use of diesel tram-trains may have applications in this country.

  • The Class 399 tram-trains in Sheffield and the Class 398 tram-trains ordered for the South Wales Metro are both members of the Citylink family, that were built or will be built in Stadler’s Valencia plant.
  • The Class 398 tram-trains will have batteries to extend the route on routes without electrification.

Perhaps, if they ran on bio-diesel, they may have applications, where electrification would be difficult or inappropriate and the distance is too long for a Citylink with batteries.

July 9, 2020 Posted by | Energy Storage, Transport | , , , | Leave a comment

The Big Metro Fleet Upgrade That Could Make It ‘Easy’ To Finally Extend Train Services To New Areas

The title of this post, is the same as that of this article on the Newcastle Chronicle.

This is the first paragraph.

Every train in Metro’s new fleet will be capable of running via an on-board battery, reducing the chance of major shutdowns and making it much cheaper to extend the network.

The fact that it is technically possible, is not a surprise as Stadler’s Class 777 trains for Merseyrail will be using battery power to extend routes. I would be very surprised if the new Tyne and Wear Metro trains and those for Merseyrail, didn’t have a lot of design in common.

But what is surprising, is that the Tyne and Wear Metro’s whole fleet will be fitted with batteries. This must be the first time in the UK, that a whole fleet of trains has been said to have batteries.

The Merseyrail trains will also have a dual voltage capability and will be able to be modified for running on 25 KVAC overhead electrification, as well as 750 VDC third-rail electrification.

Will the Tyne and Wear trains be able to use 25 KVAC electrification? It could be useful in some places on the network and I’m sure, if there was a financial case for a service using existing 25 KVAC electrification, then some trains would be modified accordingly.

A Quick Comparison

This is a quick comparison between Merseyrail’s Class 777 trains and the Tyne and Wear Metro’s new trains.

  • Cars – 777 – 4 – T&W – 5
  • Operating Speed – 777 – 75 mph – T&W – 50 mph
  • Capacity – 484 – T&W – 600
  • Capacity Per Car – 121 – T&W – 125
  • In Service – 2022 (?) – T&W – 2024

They are not that different and it looks like the Tyne and Wear trains will be built after the Merseyrail trains.

 

June 25, 2020 Posted by | Transport | , , | Leave a comment

GWR and DfT’s Commitment To The Night Riviera

The May 2020 Edition of Modern Railways has an article, which is entitled West Of England Improvements In GWR Deal.

Under a heading of Sleeper Planning, this is said about plans for the Night Riviera.

Whilst GWR is already developing plans for the short term future of the ‘Night Riviera’ sleeper service, including the provision of additional capacity at times of high demand using Mk. 3 vehicles withdrawn from the Caledonian Sleeper fleet, it is understood the company has been asked to develop a long-term plan for the replacement of the current Mk. 3 fleet of coaches, constructed between 1981 and 1984, as well as the Class 57/6 locomotives, which were rebuilt in 2002-03 from Class 47 locomotives constructed in the early 1960s.

This must show commitment from both GWR and the Department for Transport, that the Night Riviera has a future.

These are a few of my thoughts on the future of the service.

The Coaches

I would suspect that GWR will opt for the same Mark 5 coaches, built by CAF, as are used on the Caledonian Sleeper.

I took these pictures on a trip from Euston to Glasgow.

The coaches don’t seem to have any problems and appear to be performing well.

The facilities are comprehensive and include full en-suite plumbing, a selection of beds including doubles and a lounge car. There are also berths for disabled passengers.

The Locomotives

The Class 57 locomotives have a power output around 2 MW and I would suspect a similar-sized locomotive would be used.

Possible locomotives could include.

  • Class 67 – Used by Chiltern on passenger services – 2.4 kW
  • Class 68 – Used by Chiltern, TransPennine Express and others on passenger services – 2.8 MW
  • Class 88 – A dual-mode locomotive might be powerful enough on diesel – 700 kW

I wouldn’t be surprised to see Stadler come up with a customised version of their Euro Dual dual-mode locomotives.

 

April 23, 2020 Posted by | Transport | , , , , , , , , | Leave a comment

Thoughts On The Actual Battery Size In Class 756 Trains And Class 398 Tram-Trains

A Freedom of Information Request was sent to Transport for Wales, which said.

Please confirm the battery capacity and maximum distance possible under battery power for the Tram/Train, 3 & 4 Car Flirts.

The reply was as follows.

The batteries on the new fleets will have the following capacities: –

  • Class 756 (3-car) Flirt – 480 kWh
  • Class 756 (4-car) Flirt – 600 kWh
  • Class 398 tram-trains – 128 kWh

I will now have thoughts on both vehicles separately.

Class 756 Trains

In More On Tri-Mode Stadler Flirts, I speculated about the capacity of the batteries in the tri-mode Stadler Flirts, which are now called Class 756 trains, I said this.

I wonder how much energy storage you get for the weight of a V8 diesel, as used on a bi-mode Flirt?

The V8 16 litre diesel engines are made by Deutz and from their web site, it looks like they weigh about 1.3 tonnes.

How much energy could a 1.3 tonne battery store?

The best traction batteries can probably store 0.1 kWh per kilogram. Assuming that the usable battery weight is 1.2 tonnes, then each battery module could store 120 kWh or 360 kWh if there are three of them.

I also quoted this from the July 2018 Edition of Modern Railways.

The units will be able to run for 40 miles between charging, thanks to their three large batteries.

Since I wrote More On Tri-Mode Stadler Flirts in June 2018, a lot more information on the bi-mode Stadler Class 755 Flirt has become available and they have entered service with Greater Anglia.

Four-car trains weigh around 114 tonnes, with three-car trains around a hundred. I can also calculate kinetic energies.

How Good Was My Battery Size Estimate?

These are my estimate and the actual values for the three batteries in Class 756 trains

  • My estimate for Class 756 (3- & 4-car) – 120 kWh
  • Class 756 (3-car) Flirt – 160 kWh
  • Class 756 (4-car) Flirt – 200 kWh

So have Stadler’s battery manufacturer learned how to squeeze more kWh into the same weight of battery?

In Sparking A Revolution, I talked about Hitachi’s bullish plans for battery-powered trains, in a section called Costs and Power.

In that section, I used Hitachi’s quoted figures, that predicted a five tonne battery could hold a massive 15 MWh in fifteen years time.

If Stadler can get the same energy density in a battery as Hitachi, then their battery trains will have long enough ranges for many applications.

Class 398 Tram-Trains

In Sheffield Region Transport Plan 2019 – Tram-Trains Between Sheffield And Doncaster-Sheffield Airport, I showed this map of the route the trams would take.

I also said this about the tram-trains.

The distance between Rotherham Parkgate and Doncaster is under twelve miles and has full electrification at both ends.

The Class 399 tram-trains being built with a battery capability for the South Wales Metro to be delivered in 2023, should be able to reach Doncaster.

But there are probably other good reasons to fully electrify between Doncaster and Sheffield, via Meadowhall, Rotherham Central and Rotherham Parkgate.

The major work would probably be to update Rotherham Parkgate to a through station with two platforms and a step-free footbridge.

Currently, trains take twenty-three minutes between Rotherham Central and Doncaster. This is a time, that the tram-trains would probably match.

If you adopt the normal energy consumption of between three and five kWh per vehicle mile on the section without electrification between Rotherham Parkgate and Doncaster, you get a battery size of between 108 and 180 kWh.

It looks to me, that on a quick look, a 128 kWh battery could provide a useful range for one of Stadler’s Class 398/399 tram-trains.

Class 398 Tram-Trains Between Cardiff Bay and Cardiff Queen Street Stations

The distance between these two stations is six chains over a mile,

Adding the extra bit to the flourish might make a round trip between Cardiff Queen Street and The Flourish stations perhaps four miles.

Applying the normal energy consumption of between three and five kWh per vehicle mile on the section without electrification between Cardiff Queen Street and The Flourish, would need a battery size of between 36 and 60 kWh.

Conclusion

The battery sizes seem to fit the routes well.

 

 

March 11, 2020 Posted by | Energy Storage, Transport | , , , , , , | 2 Comments

Batteries On Class 777 Trains

In this article on Railway Gazette, which is entitled Merseyrail Class 777 arrives in Liverpool, there is this sentence.

There is space under one vehicle to house a battery weighing up to 5 tonnes within the axleload limit.

This matter-of-fact sentence, draws me to the conclusion, that these trains have been designed from the start to allow future battery operation.

Batteries are not an add-on squeezed into a design with great difficulty.

Battery Capacity

Energy densities of 60 Wh/Kg or 135 Wh/litre are claimed by Swiss battery manufacturer; Leclanche.

This means that a five tonne battery would hold 300 kWh.

Note that Vivarail find space for 424 kWh in the two-car Class 230 train, I wrote about in Battery Class 230 Train Demonstration At Bo’ness And Kinneil Railway, so it would appear that Stadler aren’t being over ambitious.

Kinetic Energy Of A Full Class 777 Train

The weight of a full Class 777 train is calculated as follows.

  • Basic empty weight – 99 tonnes
  • Battery weight – 5 tonnes
  • 484 passengers at 80 Kg – 38.72 tonnes

Which gives a total weight of 143.72 tonnes.

Intriguingly, the weight of a current Class 507 train is 104.5 tonnes, which is 500 Kg more than an empty Class 777 train with a battery!

If these weights are correct, I suspect Stadler have used some very clever lightweight design techniques.

For various speeds, using Omni’s Kinetic Energy Calculator, this weight gives.

  • 30 mph – 3.6 kWh
  • 40 mph – 6.4 kWh
  • 50 mph – 10.0 kWh
  • 60 mph – 14.4 kWh
  • 70 mph – 19.5 kWh
  • 75 mph – 22.4 kWh

Note.

  1. The average speed between Bidston and Wrexham General stations on the Borderlands Line is under 30 mph
  2. The operating speed on the Wirral Line is 70 mph
  3. The operating speed on the Northern Line is 60 mph
  4. The maximum speed of the trains is 75 mph.

Every time I do these calculations, I’m surprised at how low the kinetic energy of a train seems to be.

How Small Is A Small Battery?

One battery doesn’t seem enough, for a train designed with all the ingenuity of a product with quality and precision, that is designed to out-perform all other trains.

This is another paragraph from the Railway Gazette article.

According to Merseytravel, ‘we want to be able to prove the concept that we could run beyond the third rail’. By storing recovered braking energy, the batteries would help to reduce power demand and the resulting greenhouse gas emissions. All of the Class 777s will be fitted with small batteries to allow independent movement around workshop and maintenance facilities.

I am not quite sure what this means.

It would seem strange to have two independent battery systems in one train.

I think it is more likely, that the smaller battery can be considered the primary battery of the train.

  • After all in the depot, it looks after the train’s power requirement.
  • Does it also handle all the regenerative braking energy?
  • Is it used as a secondary power supply, if say the power is low from the electrification?
  • Could it be used to move the train to the next station for passenger evacuation in the event of a power failure?

I wonder if the power system is a bit like the average battery-powered device like a lap-top computer, smart phone or hybrid car.

  • The electrification and the regenerative braking charges the battery.
  • The battery provides the traction and hotel power for the train.

When the five tonne battery is fitted, does the train’s control system move power between the two batteries to drive the train in the most efficient manner?

I’ll return to factors that define the size of the small battery.

The small battery must be big enough for these purposes.

  • Handling regenerative braking at the operating speed.
  • Recovering a full train to the next station.
  • Keeping a train’s systems running, during power supply problems.
  • Moving a train around a depot

As the lines leading to depots are electrified, the train can probably enter a depot with a battery fairly well-charged.

As the new Class 777 trains have a maximum operating speed of 75 mph, I would suspect that the small battery must be able to handle the regenerative braking from 75 mph, which my calculations show is 22.4 kWh with a full train. Let’s call it 30 kWh to have a reserve.

Using Leclanche’s figures, a 30 kWh battery would weigh 500 Kg and have a volume of just under a quarter of a cubic metre (0.222 cubic metre to be exact!)

I suspect the operation of the small battery through a station would be something like this.

  • As the train runs from the previous station, the power from the battery will be used by the train, to make sure that there is enough spare capacity in the battery to accommodate the predicted amount of energy generated by regenerative braking.
  • Under braking, the regenerative braking energy will be stored in the battery.
  • Not all of the kinetic energy of the train will be regenerated, as the process is typically around eighty percent efficient.
  • Whilst in the station, the train’s hotel services like air-conditioning, lights and doors, will be run by either the electrification if available or the battery.
  • When the train accelerates away, the train’s computer will use the optimal energy source.

The process will repeat, with the battery constantly being charged under braking and discharged under acceleration.

Lithium-ion batteries don’t like this cycling, so I wouldn’t be surprised to see dome other battery or even supercapacitors.

A Trip Between Liverpool and Wrexham Central in A Class 777 Train With A Battery

The train will arrive at Bidston station with 300 kWh in the battery, that has been charged on the loop line under the city.

I will assume that the train is cruising at 50 mph between the twelve stops along the twenty-seven and a half miles to Wrexham Central station.

At each of the twelve stops, the train will use regenerative braking, but it will lose perhaps twenty percent of the kinetic energy. This will be two kWh per stop or 24 kWh in total.

I usually assume that energy usage for hotel functions on the train are calculated using a figure of around three kWh per vehicle mile.

This gives an energy usage of 330 kWh.

But the Class 777 trains have been designed to be very electrically efficient and the train is equivalent in length to a three-car Class 507 train.

So perhaps a the calculation should assume three vehicles not four.

Various usage figures give.

  • 3 kWh per vehicle-mile – 247.5 kWh
  • 2.5 kWh per vehicle-mile – 206 kWh
  • 2 kWh per vehicle-mile – 165 kWh
  • 1.5 kWh per vehicle-mile – 123.8 kWh
  • 1 kWh per vehicle-mile – 82.5 kWh

Given that station losses between Bidston and Wrexham Central could be around 24 kWh, it looks like the following could be possible.

  1. With a consumption of 3 kWh per vehicle-mile, a Class 777 train could handle the route, but would need a charging station at Wrexham Central.
  2. If energy consumption on the train could be cut to 1.5 kWh per vehicle-mile, then a round trip would be possible.

It should also be noted that trains seem to do a very quick stop at Wrexham Central station of just a couple of minutes.

So if charging were to be introduced, there would need to be a longer stop of perhaps eight to ten minutes.

But the mathematics are telling me the following.

  • The Class 777 train has been designed to weigh the same empty as a current Class 507 train, despite carrying a five tonne battery.
  • If power consumption can be kept low, a Class 777 train with a battery can perform a round trip from Liverpool to Wrexham Central, without charging except on the electrified section of line between Liverpool and Bidston.
  • Extra stops would probably be possible, as each would consume about 2 kWh

I feel that these trains have been designed around Liverpool to Wrexham Central.

Conclusion

Wrexham Central here we come!

Other routes are possible.

  • Hunts Cross and Manchester Oxford Road – 27 miles
  • Ormskirk and Preston – 15 miles
  • Headbolt Lane and Skelmersdale – 6 miles
  • Ellesmere Port and Helsby – 5 miles
  • Kirkby and Wigan Wallgate – 12 miles

Chargers will not be needed at the far terminals.

February 4, 2020 Posted by | Transport | , , , , , , , | 12 Comments

MSU Research Leads To North America’s First Commercial Hydrogen-Powered Train

The title of this post, is the same as that of this article in Railway Age.

This is the introductory paragraph.

Research from Michigan State University’s Center for Railway Research and Education (CRRE) contributed to the San Bernardino County Transportation Authority’s (SBCTA) decision to order the first commercial hydrogen-powered train for use in North America.

These statements were also made.

  • The research was conducted in partnership with the Birmingham CRRE and Mott MacDonald.
  • Funding was from the California State Transportation Agency (CalSTA).
  • The trains will be built by Stadler, probably in their US factory.

There is also a picture of the hydrogen-powered Flirt in the article, and it is very similar in formation to a Class 755 train, with a PowerPack in the middle.

The picture shows a Class 755 train at Norwich station.

The article indicates that hydrogen-power was chosen, as the rail line may be extended by sixty miles to Los Angeles.

Conclusion

After reading the full article, it certainly looks like San Bernardino County Transportation Authority have planned their new railway in a very professional way.

 

 

December 12, 2019 Posted by | Transport | , , , , | 2 Comments

Battery Power Lined Up For ‘755s’

In Issue 888 of Rail Magazine, there is a short article, which is entitled Battery Power Lined Up For ‘755s.

This is said.

Class 755s could be fitted with battery power when they undergo their first overhaul.

Stadler built the trains with diesel and electric power.

The Swiss manufacturer believes batteries to be the alternative power source for rail of the future, and is to build tri-mode trains for Transport for Wales, with these entering traffic in 2023.

Rock Rail owns the Greater Anglia fleet. Chief Operating Office Mike Kean told RAIL on September 4 it was possible that when a four-car ‘755/4’ requires an overhaul, one of its four diesel engines will be removed and replaced by a battery.

These are some thoughts.

What Is The Capacity Of A Single Battery?

This picture shows the PowerPack of a Class 755 train.

Note the two ventilated doors on the side. Currently, a diesel engine is behind each!

The PowerPack has four slots,; two on either side of the central corridor.

Each of the slots could take.

  • A V8 16-litre Deutz diesel that can produce 478 kW and weighs 1.3 tonnes.
  • A battery of a similar physical size.
  • Possibly a hydrogen fuel-cell!

I would assume that the battery module is plug-compatible, the same physical size and similar weight to the diesel engine module, as this would make the design and dynamics of the train easier.

A 1.2 tonnes battery would hold around 120 kWh.

Kinetic Energy Of The Train

I will use my standard calculation.

  • The basic train weight is 114.3 tonnes.
  • If each of the 229 passengers weighs 90 kg with Baggage, bikes and buggies, this gives a passenger weight of 20.34 tonnes.
  • This gives a total weight of 134.64 tonnes.

Using Omni’s Kinetic Energy Calculator gives these figures for the Kinetic energy.

  • 50 mph – 9.34 kWh
  • 60 mph – 13.5 kWh
  • 75 mph – 21 kWh
  • 90 mph – 30.3 kWh
  • 100 mph – 37.4 kWh
  • 125 mph – 58.4 kWh

Note.

  1. Class 755 trains will not be able to run at 125 mph, but I have been told by someone who should know, that the trains have probably been designed, to enable this in other versions of the trains in the future.
  2. The kinetic energy of the train at typical Greater Anglia service speeds is not very high.

These amounts of kinetic energy can be easily handled in a 120 kWh battery under regenerative braking, to improve the efficiency of the trains.

Range On Battery Power

Assuming that the train uses 3 kWh per vehicle mile (SeeHow Much Power Is Needed To Run A Train At 125 mph?) , this would give.

  • A four-car train a range of ten miles.
  • A three-car train a range of 13.3 miles.

This probably isn’t long enough given that these are Greater Anglia’s electrification gaps.

  • Ely and Peterborough – 30 miles
  • Ipswich and Cambridge – 41 miles
  • Ipswich and Ely – 37 miles
  • Ipswich and Felixstowe – 14 miles
  • Ipswich and Lowestoft – 45 miles
  • Marks Tey and Sudbury – 12 miles
  • Norwich and Ely – 50 miles
  • Norwich and Great Yarmouth – 18 miles
  • Norwich and Lowestoft – 20 miles
  • Norwich and Sheringham – 30 miles

It would appear that more battery capacity is needed, as the required range is around sixty miles on some routes.

In the July 2018 Edition of Modern Railways, there is an article entitled KeolisAmey Wins Welsh Franchise.

This is said about the Stadler Tri-Mode Flirts on the South Wales Metro.

The units will be able to run for 40 miles between charging, thanks to their three large batteries.

So does this mean that these Flirts have just one Deutz diesel engine of 478 kW and three batteries in the four slots of the power-pack?

Assuming that the Flirts use 3 kWh per vehicle mile, this gives these ranges.

  • A four-car train a range of thirty miles.
  • A three-car train a range of forty miles.

These ranges might give enough range for many the of East Anglian routes. Improvements in train efficiency and battery storage would only increase these ranges.

Class 755 Trains In Electric Mode

Being able to do this, is important, as if the Class 755 trains are to use battery power, then they will need to use 25 KVAC overhead electrification in the various electric islands around East Anglia to charge the batteries.

The article in Issue 888 of Rail Magazine, says this about running in electric mode.

GA Joint Project Manage Steve Mitchell told RAIL that the ‘755s’ can already operate on electric power between Norwich and London, but they must carry out Electro Magnetic Current testing on the Ely-Cambridge route.

When that is complete, they will operate Notwich-Ely in diesel mode, and Ely-Cambridge in electric.

At least it appears that the Northern bay platforms at Cambridge are electrified.

This would probably mean that no new infrastructure is needed.

As both Ipswich and Norwich stations are fully electrified, charging the batteries on hourly shuttles between the three stations, wouldn’t be a problem, if and when the trains are fitted with enough battery capacity to bridge the fifty mile gaps in the electrification on the routes.

Three-Car Trains And Batteries

The two short Southern routes; Coclester Town and Sudbury and Ipswich and Felixstowe will probably be run by three-car Class 755 trains, which have two diesel engines and two spare slots in the PowerPack.

Battery modules in both spare slots would give a twenty-seven mile range, which could enable the following.

  • Running a return trip between Marks Tey and Sudbury, after charging the batteries on the main line between Colchester Town and Marks Tey.
  • Running a return trip between Ipswich and Felixstowe, provided enough charge can be taken on at Ipswich.

The article in Issue 888 of Rail Magazine, also says this about the new Class 755 trains entering service.

The last line to receive them will be Sudbury-Marks Tey, will exclusively be operated by three-car Class 755/3s due to infrastructure restraints on the branch. No date has been given.

It should also be noted that the three-car trains are going to be the last to be delivered.

I feel that Stadler and Greater Anglia are following a cautious and very professional route.

Consider.

  • They introduced the new trains on the Wherry Lines, which are close to the Crown Point Depot.
  • Services between Norwich and Sheringham and Norwich and Cambridge were introduced next.
  • All the initial services have used four-car trains
  • Greater Anglia held on to the standby train of two Class 37 locomotives and Mark 2 coaches until last week.
  • They have stated that training of Ipswich drivers is starting, ahead of services from the town to Cambridge, Felixstowe, Lowestoft and Peterborough.
  • All the Ipswich cervices can be run using four-car trains.
  • As I said earlier, the only service that needs a three-car train is Sudbury and Marks Tey.
  • A three-car train could probably be thoroughly tested on one of the Norwich routes before deplayment to Sudbury.
  • It should also be noted that a three-car train is only a four-car train with two less diesel engines and one less trailer car.

So far everything seems to have gone very well, with no adverse reports in the media.

Stadler have orders for further bi-mode trains for South Wales and other places in Europe. At least one of these orders, that for the South Wales Metro, includes a number of diesel/electric/battery versions.

Given the problems, that Bombardier and others have had with getting the complex software of these trains to work correctly, if I was Stadler’s Project Manager on multi-mode Flirts, I would be testing the trains and their software morning, noon and night!

So could the planned later arrival of the three-car Class 755 trains, be partly to enable Stadler to fully investigate the characteristics of a multi-mode Flirt?

After all, Greater Anglia only need a couple of three-car trains to start the service between Sudbury and Marks Tey, of the fourteen on order. And they have twenty-four four-car trains on order for the other routes.

They are also replacing twenty-four assorted diesel multiple units with thirty-eight longer new bi-mode multiple units.

I do wonder, if there is a cunning plan being hatched between Greater Anglia and Stadler.

  • Stadler finalises the design and the software for a PowerPack, that contains both diesel and battery modules.
  • Stadler thoroughly tests the design using a Greater Anglia three-car train in Switzerland.
  • Stadler shows the concept to other prospective customers.
  • Greater Anglia certifies the three-car Class 755 bi-mode train in the UK.
  • Greater Anglia runs three-car 755 trains between Colchester Town and Sudbury, using the electrification between Marks Tey and Colchester Town, as they have planned for some time.
  • When ready, Class 755 trains with batteries are introduced between Sudbury and Colchester Town.

Greater Anglia would be running the first battery-electric service using bi-mode battery-electric trains in the UK.

 

 

September 24, 2019 Posted by | Transport | , , , , | 6 Comments