The Anonymous Widower

Electro-Diesel Tram-Train Order Expanded To Support Service Increase

The title of this post, is the same as that of this article on Railway Gazette.

This is the introductory paragraph.

National passenger operator MÁV-Start has exercised an option for Stadler’s Valencia plant to supply a further four Citylink electro-diesel tram-trains for the route being developed to link Hódmezővásárhely with Szeged.

The reason, I am posting this, is that I feel the use of diesel tram-trains may have applications in this country.

  • The Class 399 tram-trains in Sheffield and the Class 398 tram-trains ordered for the South Wales Metro are both members of the Citylink family, that were built or will be built in Stadler’s Valencia plant.
  • The Class 398 tram-trains will have batteries to extend the route on routes without electrification.

Perhaps, if they ran on bio-diesel, they may have applications, where electrification would be difficult or inappropriate and the distance is too long for a Citylink with batteries.

July 9, 2020 Posted by | Energy Storage, Transport | , , , | Leave a comment

The Big Metro Fleet Upgrade That Could Make It ‘Easy’ To Finally Extend Train Services To New Areas

The title of this post, is the same as that of this article on the Newcastle Chronicle.

This is the first paragraph.

Every train in Metro’s new fleet will be capable of running via an on-board battery, reducing the chance of major shutdowns and making it much cheaper to extend the network.

The fact that it is technically possible, is not a surprise as Stadler’s Class 777 trains for Merseyrail will be using battery power to extend routes. I would be very surprised if the new Tyne and Wear Metro trains and those for Merseyrail, didn’t have a lot of design in common.

But what is surprising, is that the Tyne and Wear Metro’s whole fleet will be fitted with batteries. This must be the first time in the UK, that a whole fleet of trains has been said to have batteries.

The Merseyrail trains will also have a dual voltage capability and will be able to be modified for running on 25 KVAC overhead electrification, as well as 750 VDC third-rail electrification.

Will the Tyne and Wear trains be able to use 25 KVAC electrification? It could be useful in some places on the network and I’m sure, if there was a financial case for a service using existing 25 KVAC electrification, then some trains would be modified accordingly.

A Quick Comparison

This is a quick comparison between Merseyrail’s Class 777 trains and the Tyne and Wear Metro’s new trains.

  • Cars – 777 – 4 – T&W – 5
  • Operating Speed – 777 – 75 mph – T&W – 50 mph
  • Capacity – 484 – T&W – 600
  • Capacity Per Car – 121 – T&W – 125
  • In Service – 2022 (?) – T&W – 2024

They are not that different and it looks like the Tyne and Wear trains will be built after the Merseyrail trains.

 

June 25, 2020 Posted by | Transport | , , | Leave a comment

GWR and DfT’s Commitment To The Night Riviera

The May 2020 Edition of Modern Railways has an article, which is entitled West Of England Improvements In GWR Deal.

Under a heading of Sleeper Planning, this is said about plans for the Night Riviera.

Whilst GWR is already developing plans for the short term future of the ‘Night Riviera’ sleeper service, including the provision of additional capacity at times of high demand using Mk. 3 vehicles withdrawn from the Caledonian Sleeper fleet, it is understood the company has been asked to develop a long-term plan for the replacement of the current Mk. 3 fleet of coaches, constructed between 1981 and 1984, as well as the Class 57/6 locomotives, which were rebuilt in 2002-03 from Class 47 locomotives constructed in the early 1960s.

This must show commitment from both GWR and the Department for Transport, that the Night Riviera has a future.

These are a few of my thoughts on the future of the service.

The Coaches

I would suspect that GWR will opt for the same Mark 5 coaches, built by CAF, as are used on the Caledonian Sleeper.

I took these pictures on a trip from Euston to Glasgow.

The coaches don’t seem to have any problems and appear to be performing well.

The facilities are comprehensive and include full en-suite plumbing, a selection of beds including doubles and a lounge car. There are also berths for disabled passengers.

The Locomotives

The Class 57 locomotives have a power output around 2 MW and I would suspect a similar-sized locomotive would be used.

Possible locomotives could include.

  • Class 67 – Used by Chiltern on passenger services – 2.4 kW
  • Class 68 – Used by Chiltern, TransPennine Express and others on passenger services – 2.8 MW
  • Class 88 – A dual-mode locomotive might be powerful enough on diesel – 700 kW

I wouldn’t be surprised to see Stadler come up with a customised version of their Euro Dual dual-mode locomotives.

 

April 23, 2020 Posted by | Transport | , , , , , , , , | Leave a comment

Thoughts On The Actual Battery Size In Class 756 Trains And Class 398 Tram-Trains

A Freedom of Information Request was sent to Transport for Wales, which said.

Please confirm the battery capacity and maximum distance possible under battery power for the Tram/Train, 3 & 4 Car Flirts.

The reply was as follows.

The batteries on the new fleets will have the following capacities: –

  • Class 756 (3-car) Flirt – 480 kWh
  • Class 756 (4-car) Flirt – 600 kWh
  • Class 398 tram-trains – 128 kWh

I will now have thoughts on both vehicles separately.

Class 756 Trains

In More On Tri-Mode Stadler Flirts, I speculated about the capacity of the batteries in the tri-mode Stadler Flirts, which are now called Class 756 trains, I said this.

I wonder how much energy storage you get for the weight of a V8 diesel, as used on a bi-mode Flirt?

The V8 16 litre diesel engines are made by Deutz and from their web site, it looks like they weigh about 1.3 tonnes.

How much energy could a 1.3 tonne battery store?

The best traction batteries can probably store 0.1 kWh per kilogram. Assuming that the usable battery weight is 1.2 tonnes, then each battery module could store 120 kWh or 360 kWh if there are three of them.

I also quoted this from the July 2018 Edition of Modern Railways.

The units will be able to run for 40 miles between charging, thanks to their three large batteries.

Since I wrote More On Tri-Mode Stadler Flirts in June 2018, a lot more information on the bi-mode Stadler Class 755 Flirt has become available and they have entered service with Greater Anglia.

Four-car trains weigh around 114 tonnes, with three-car trains around a hundred. I can also calculate kinetic energies.

How Good Was My Battery Size Estimate?

These are my estimate and the actual values for the three batteries in Class 756 trains

  • My estimate for Class 756 (3- & 4-car) – 120 kWh
  • Class 756 (3-car) Flirt – 160 kWh
  • Class 756 (4-car) Flirt – 200 kWh

So have Stadler’s battery manufacturer learned how to squeeze more kWh into the same weight of battery?

In Sparking A Revolution, I talked about Hitachi’s bullish plans for battery-powered trains, in a section called Costs and Power.

In that section, I used Hitachi’s quoted figures, that predicted a five tonne battery could hold a massive 15 MWh in fifteen years time.

If Stadler can get the same energy density in a battery as Hitachi, then their battery trains will have long enough ranges for many applications.

Class 398 Tram-Trains

In Sheffield Region Transport Plan 2019 – Tram-Trains Between Sheffield And Doncaster-Sheffield Airport, I showed this map of the route the trams would take.

I also said this about the tram-trains.

The distance between Rotherham Parkgate and Doncaster is under twelve miles and has full electrification at both ends.

The Class 399 tram-trains being built with a battery capability for the South Wales Metro to be delivered in 2023, should be able to reach Doncaster.

But there are probably other good reasons to fully electrify between Doncaster and Sheffield, via Meadowhall, Rotherham Central and Rotherham Parkgate.

The major work would probably be to update Rotherham Parkgate to a through station with two platforms and a step-free footbridge.

Currently, trains take twenty-three minutes between Rotherham Central and Doncaster. This is a time, that the tram-trains would probably match.

If you adopt the normal energy consumption of between three and five kWh per vehicle mile on the section without electrification between Rotherham Parkgate and Doncaster, you get a battery size of between 108 and 180 kWh.

It looks to me, that on a quick look, a 128 kWh battery could provide a useful range for one of Stadler’s Class 398/399 tram-trains.

Class 398 Tram-Trains Between Cardiff Bay and Cardiff Queen Street Stations

The distance between these two stations is six chains over a mile,

Adding the extra bit to the flourish might make a round trip between Cardiff Queen Street and The Flourish stations perhaps four miles.

Applying the normal energy consumption of between three and five kWh per vehicle mile on the section without electrification between Cardiff Queen Street and The Flourish, would need a battery size of between 36 and 60 kWh.

Conclusion

The battery sizes seem to fit the routes well.

 

 

March 11, 2020 Posted by | Energy Storage, Transport | , , , , , | 2 Comments

Batteries On Class 777 Trains

In this article on Railway Gazette, which is entitled Merseyrail Class 777 arrives in Liverpool, there is this sentence.

There is space under one vehicle to house a battery weighing up to 5 tonnes within the axleload limit.

This matter-of-fact sentence, draws me to the conclusion, that these trains have been designed from the start to allow future battery operation.

Batteries are not an add-on squeezed into a design with great difficulty.

Battery Capacity

Energy densities of 60 Wh/Kg or 135 Wh/litre are claimed by Swiss battery manufacturer; Leclanche.

This means that a five tonne battery would hold 300 kWh.

Note that Vivarail find space for 424 kWh in the two-car Class 230 train, I wrote about in Battery Class 230 Train Demonstration At Bo’ness And Kinneil Railway, so it would appear that Stadler aren’t being over ambitious.

Kinetic Energy Of A Full Class 777 Train

The weight of a full Class 777 train is calculated as follows.

  • Basic empty weight – 99 tonnes
  • Battery weight – 5 tonnes
  • 484 passengers at 80 Kg – 38.72 tonnes

Which gives a total weight of 143.72 tonnes.

Intriguingly, the weight of a current Class 507 train is 104.5 tonnes, which is 500 Kg more than an empty Class 777 train with a battery!

For various speeds, using Omni’s Kinetic Energy Calculator, this weight gives.

  • 30 mph – 3.6 kWh
  • 40 mph – 6.4 kWh
  • 50 mph – 10.0 kWh
  • 60 mph – 14.4 kWh
  • 70 mph – 19.5 kWh
  • 75 mph – 22.4 kWh

Note.

  1. The average speed between Bidston and Wrexham General stations on the Borderlands Line is under 30 mph
  2. The operating speed on the Wirral Line is 70 mph
  3. The operating speed on the Northern Line is 60 mph
  4. The maximum speed of the trains is 75 mph.

Every time I do these calculations, I’m surprised at how low the kinetic energy of a train seems to be.

How Small Is A Small Battery?

One battery doesn’t seem enough, for a train designed with all the ingenuity of a product with quality and precision, that is designed to out-perfrorm all other trains.

This is another paragraph from the article.

According to Merseytravel, ‘we want to be able to prove the concept that we could run beyond the third rail’. By storing recovered braking energy, the batteries would help to reduce power demand and the resulting greenhouse gas emissions. All of the Class 777s will be fitted with small batteries to allow independent movement around workshop and maintenance facilities.

I am not quite sure what this means.

It would seem strange to have two independent battery systems in one train.

I think it is more likely, that the smaller battery can be considered the primary battery of the train.

  • After all in the depot, it looks after the train’s power requirement.
  • Does it also handle all the regenerative braking energy?
  • Is it used as a secondary power supply, if say the power is low from the electrification?
  • Could it be used to move the train to the next station for passenger evacuation in the event of a power failure?

When the five tonne battery is fitted, does the train’s control system move power between the two batteries to drive the train in the most efficient manner?

I return to factors that define the size of the small battery.

The small battery must be big enough for these purposes.

  • Handling regenerative braking at the operating speed.
  • Recovering a full train to the next station.
  • Keeping a train’s systems running, during power supply problems.
  • Moving a train around a depot

As the lines leading to depots are electrified, the train can probably enter a depot with a battery fairly well-charged.

As the new Class 777 trains have a maximum operating speed of 75 mph, I would suspect that the small battery must be able to handle the regenerative braking from 75 mph, which my calculations show is 22.4 kWh with a full train. Let’s call it 30 kWh to have a reserve.

Using Leclanche’s figures, a 30 kWh battery would weigh 500 Kg and have a volume of just under a quarter of a cubic metre (0.222 cubic metre to be exact!)

I suspect the operation of the small battery through a station would be something like this.

  • As the train runs from the previous station, the power from the battery will be used by the train, to make sure that there is enough spare capacity in the battery to accommodate the predicted amount of energy generated by regenerative braking.
  • Under braking, the regenerative braking energy will be stored in the battery.
  • Not all of the kinetic energy of the train will be regenerated, as the process is typically around eighty percent efficient.
  • Whilst in the station, the train’s hotel services like air-conditioning, lights and doors, will be run by either the electrification if available or the battery.
  • When the train accelerates away, the train’s computer will use the optimal energy source.

The process will repeat, with the battery constantly being charged under braking and discharged under acceleration.

Lithium-ion batteries don’t like this cycling, so I wouldn’t be surprised to see dome other battery or even supercapacitors.

A Trip Between Liverpool and Wrexham Central in A Class 777 Train With A Battery

The train will arrive at Bidston station with 300 kWh in the battery, that has been charged on the loop line under the city.

I will assume that the train is cruising at 50 mph between the twelve stops along the twenty-seven and a half miles to Wrexham Central station.

At each of the twelve stops, the train will use regenerative braking, but it will lose perhaps twenty percent of the kinetic energy. This will be two kWh per stop or 24 kWh in total.

I usually assume that energy usage for hotel functions on the train are calculated using a figure of around three kWh per vehicle mile.

This gives an energy usage of 330 kWh.

But the Class 777 trains have been designed to be very electrically efficient and the train is equivalent in length to a three-car Class 507 train.

So perhaps a the calculation should assume three vehicles not four.

Various usage figures give.

  • 3 kWh per vehicle-mile – 247.5 kWh
  • 2.5 kWh per vehicle-mile – 206 kWh
  • 2 kWh per vehicle-mile – 165 kWh
  • 1.5 kWh per vehicle-mile – 123.8 kWh
  • 1 kWh per vehicle-mile – 82.5 kWh

Given that station losses between Bidston and Wrexham Central could be around 24 kWh, it looks like the following could be possible.

  1. With a consumption of 3 kWh per vehicle-mile, a Class 777 train could handle the route, but would need a charging station at Wrexham Central.
  2. If energy consumption on the train could be cut to 1.5 kWh per vehicle-mile, then a round trip would be possible.

It should also be noted that trains seem to do a very quick stop at Wrexham Central station of just a couple of minutes.

So if charging were to be introduced, there would need to be a longer stop of perhaps eight to ten minutes.

But the mathematics are telling me the following.

  • The Class 777 train has been designed to weigh the same empty as a current Class 507 train, despite carrying a five tonne battery.
  • If power consumption can be kept low, a Class 777 train with a battery can perform a round trip from Liverpool to Wrexham Central, without charging except on the electrified section of line between Liverpool and Bidston.
  • Extra stops would probably be possible, as each would consume about 2 kWh

I feel that these trains have been designed around Liverpool to Wrexham Central.

Conclusion

Wrexham Central here we come!

Other routes are possible.

  • Hunts Cross and Manchester Oxford Road – 27 miles
  • Ormskirk and Preston – 15 miles
  • Headbolt Lane and Skelmersdale – 6 miles
  • Ellesmere Port and Helsby – 5 miles
  • Kirkby and Wigan Wallgate – 12 miles

Chargers will not be needed at the far terminals.

February 4, 2020 Posted by | Transport | , , , , , | 11 Comments

MSU Research Leads To North America’s First Commercial Hydrogen-Powered Train

The title of this post, is the same as that of this article in Railway Age.

This is the introductory paragraph.

Research from Michigan State University’s Center for Railway Research and Education (CRRE) contributed to the San Bernardino County Transportation Authority’s (SBCTA) decision to order the first commercial hydrogen-powered train for use in North America.

These statements were also made.

  • The research was conducted in partnership with the Birmingham CRRE and Mott MacDonald.
  • Funding was from the California State Transportation Agency (CalSTA).
  • The trains will be built by Stadler, probably in their US factory.

There is also a picture of the hydrogen-powered Flirt in the article, and it is very similar in formation to a Class 755 train, with a PowerPack in the middle.

The picture shows a Class 755 train at Norwich station.

The article indicates that hydrogen-power was chosen, as the rail line may be extended by sixty miles to Los Angeles.

Conclusion

After reading the full article, it certainly looks like San Bernardino County Transportation Authority have planned their new railway in a very professional way.

 

 

December 12, 2019 Posted by | Transport | , , , , | 2 Comments

Battery Power Lined Up For ‘755s’

In Issue 888 of Rail Magazine, there is a short article, which is entitled Battery Power Lined Up For ‘755s.

This is said.

Class 755s could be fitted with battery power when they undergo their first overhaul.

Stadler built the trains with diesel and electric power.

The Swiss manufacturer believes batteries to be the alternative power source for rail of the future, and is to build tri-mode trains for Transport for Wales, with these entering traffic in 2023.

Rock Rail owns the Greater Anglia fleet. Chief Operating Office Mike Kean told RAIL on September 4 it was possible that when a four-car ‘755/4’ requires an overhaul, one of its four diesel engines will be removed and replaced by a battery.

These are some thoughts.

What Is The Capacity Of A Single Battery?

This picture shows the PowerPack of a Class 755 train.

Note the two ventilated doors on the side. Currently, a diesel engine is behind each!

The PowerPack has four slots,; two on either side of the central corridor.

Each of the slots could take.

  • A V8 16-litre Deutz diesel that can produce 478 kW and weighs 1.3 tonnes.
  • A battery of a similar physical size.
  • Possibly a hydrogen fuel-cell!

I would assume that the battery module is plug-compatible, the same physical size and similar weight to the diesel engine module, as this would make the design and dynamics of the train easier.

A 1.2 tonnes battery would hold around 120 kWh.

Kinetic Energy Of The Train

I will use my standard calculation.

  • The basic train weight is 114.3 tonnes.
  • If each of the 229 passengers weighs 90 kg with Baggage, bikes and buggies, this gives a passenger weight of 20.34 tonnes.
  • This gives a total weight of 134.64 tonnes.

Using Omni’s Kinetic Energy Calculator gives these figures for the Kinetic energy.

  • 50 mph – 9.34 kWh
  • 60 mph – 13.5 kWh
  • 75 mph – 21 kWh
  • 90 mph – 30.3 kWh
  • 100 mph – 37.4 kWh
  • 125 mph – 58.4 kWh

Note.

  1. Class 755 trains will not be able to run at 125 mph, but I have been told by someone who should know, that the trains have probably been designed, to enable this in other versions of the trains in the future.
  2. The kinetic energy of the train at typical Greater Anglia service speeds is not very high.

These amounts of kinetic energy can be easily handled in a 120 kWh battery under regenerative braking, to improve the efficiency of the trains.

Range On Battery Power

Assuming that the train uses 3 kWh per vehicle mile (SeeHow Much Power Is Needed To Run A Train At 125 mph?) , this would give.

  • A four-car train a range of ten miles.
  • A three-car train a range of 13.3 miles.

This probably isn’t long enough given that these are Greater Anglia’s electrification gaps.

  • Ely and Peterborough – 30 miles
  • Ipswich and Cambridge – 41 miles
  • Ipswich and Ely – 37 miles
  • Ipswich and Felixstowe – 14 miles
  • Ipswich and Lowestoft – 45 miles
  • Marks Tey and Sudbury – 12 miles
  • Norwich and Ely – 50 miles
  • Norwich and Great Yarmouth – 18 miles
  • Norwich and Lowestoft – 20 miles
  • Norwich and Sheringham – 30 miles

It would appear that more battery capacity is needed, as the required range is around sixty miles on some routes.

In the July 2018 Edition of Modern Railways, there is an article entitled KeolisAmey Wins Welsh Franchise.

This is said about the Stadler Tri-Mode Flirts on the South Wales Metro.

The units will be able to run for 40 miles between charging, thanks to their three large batteries.

So does this mean that these Flirts have just one Deutz diesel engine of 478 kW and three batteries in the four slots of the power-pack?

Assuming that the Flirts use 3 kWh per vehicle mile, this gives these ranges.

  • A four-car train a range of thirty miles.
  • A three-car train a range of forty miles.

These ranges might give enough range for many the of East Anglian routes. Improvements in train efficiency and battery storage would only increase these ranges.

Class 755 Trains In Electric Mode

Being able to do this, is important, as if the Class 755 trains are to use battery power, then they will need to use 25 KVAC overhead electrification in the various electric islands around East Anglia to charge the batteries.

The article in Issue 888 of Rail Magazine, says this about running in electric mode.

GA Joint Project Manage Steve Mitchell told RAIL that the ‘755s’ can already operate on electric power between Norwich and London, but they must carry out Electro Magnetic Current testing on the Ely-Cambridge route.

When that is complete, they will operate Notwich-Ely in diesel mode, and Ely-Cambridge in electric.

At least it appears that the Northern bay platforms at Cambridge are electrified.

This would probably mean that no new infrastructure is needed.

As both Ipswich and Norwich stations are fully electrified, charging the batteries on hourly shuttles between the three stations, wouldn’t be a problem, if and when the trains are fitted with enough battery capacity to bridge the fifty mile gaps in the electrification on the routes.

Three-Car Trains And Batteries

The two short Southern routes; Coclester Town and Sudbury and Ipswich and Felixstowe will probably be run by three-car Class 755 trains, which have two diesel engines and two spare slots in the PowerPack.

Battery modules in both spare slots would give a twenty-seven mile range, which could enable the following.

  • Running a return trip between Marks Tey and Sudbury, after charging the batteries on the main line between Colchester Town and Marks Tey.
  • Running a return trip between Ipswich and Felixstowe, provided enough charge can be taken on at Ipswich.

The article in Issue 888 of Rail Magazine, also says this about the new Class 755 trains entering service.

The last line to receive them will be Sudbury-Marks Tey, will exclusively be operated by three-car Class 755/3s due to infrastructure restraints on the branch. No date has been given.

It should also be noted that the three-car trains are going to be the last to be delivered.

I feel that Stadler and Greater Anglia are following a cautious and very professional route.

Consider.

  • They introduced the new trains on the Wherry Lines, which are close to the Crown Point Depot.
  • Services between Norwich and Sheringham and Norwich and Cambridge were introduced next.
  • All the initial services have used four-car trains
  • Greater Anglia held on to the standby train of two Class 37 locomotives and Mark 2 coaches until last week.
  • They have stated that training of Ipswich drivers is starting, ahead of services from the town to Cambridge, Felixstowe, Lowestoft and Peterborough.
  • All the Ipswich cervices can be run using four-car trains.
  • As I said earlier, the only service that needs a three-car train is Sudbury and Marks Tey.
  • A three-car train could probably be thoroughly tested on one of the Norwich routes before deplayment to Sudbury.
  • It should also be noted that a three-car train is only a four-car train with two less diesel engines and one less trailer car.

So far everything seems to have gone very well, with no adverse reports in the media.

Stadler have orders for further bi-mode trains for South Wales and other places in Europe. At least one of these orders, that for the South Wales Metro, includes a number of diesel/electric/battery versions.

Given the problems, that Bombardier and others have had with getting the complex software of these trains to work correctly, if I was Stadler’s Project Manager on multi-mode Flirts, I would be testing the trains and their software morning, noon and night!

So could the planned later arrival of the three-car Class 755 trains, be partly to enable Stadler to fully investigate the characteristics of a multi-mode Flirt?

After all, Greater Anglia only need a couple of three-car trains to start the service between Sudbury and Marks Tey, of the fourteen on order. And they have twenty-four four-car trains on order for the other routes.

They are also replacing twenty-four assorted diesel multiple units with thirty-eight longer new bi-mode multiple units.

I do wonder, if there is a cunning plan being hatched between Greater Anglia and Stadler.

  • Stadler finalises the design and the software for a PowerPack, that contains both diesel and battery modules.
  • Stadler thoroughly tests the design using a Greater Anglia three-car train in Switzerland.
  • Stadler shows the concept to other prospective customers.
  • Greater Anglia certifies the three-car Class 755 bi-mode train in the UK.
  • Greater Anglia runs three-car 755 trains between Colchester Town and Sudbury, using the electrification between Marks Tey and Colchester Town, as they have planned for some time.
  • When ready, Class 755 trains with batteries are introduced between Sudbury and Colchester Town.

Greater Anglia would be running the first battery-electric service using bi-mode battery-electric trains in the UK.

 

 

September 24, 2019 Posted by | Transport | , , , | 6 Comments

Protests After Claim That Hitachi Has Lost T&W Contract

The title of this post is the same as that of this article on Railnews.

This is the introductory paragraphs.

There have been protests in north east England after a report claimed that Hitachi has been ruled out of the three-way contest to build a £500 million fleet for Tyne & Wear Metro.

The other contenders are CAF and Stadler, and the source of the claims says ‘insiders’ at Nexus have been told that Hitachi will be ‘overlooked’.

It should be noted that the two other bidders have orders for similar trains in the pipeline.

CAF

In TfL Awards Contract For New DLR Fleet To Replace 30-year-old Trains , I wrote about how CAF had been awarded the contract for new trains for the Docklands Light Railway.

I also said this about the possibility of CAF being awarded the contract for the new trains for the Tyne and Wear Metro.

In Bombardier Transportation Consortium Preferred Bidder In $4.5B Cairo Monorail, I indicated that as the trains on the Tyne and Wear Metro and the trains on the Docklands Light Railway, are of a similar height and width, it might be possible to use the same same car bodies on both trains.

So now that CAF have got the first order for the Docklands Light Railway, they must be in prime position to obtain the Tyne and Wear Metro order!

A second order would fit well with the first and could probably be built substantially in their South Wales factory.

Stadler

Stadler seem to be targeting the North, with new Class 777 trains for Merseyrail and Class 399 tram-trains for Sheffield and bids in for tram-trains and and new trains for the Tyne and Wear Metro.

Their trains are both quirky, accessible and quality and built to fit niche markets like a glove.

Only Stadler would produce a replacement for a diesel multiple unit fleet with a bi-mode Class 755 train, with the engine in the middle, that is rumoured to be capable of running at 125 mph.

Note the full step-free access between train and platform, which is also a feature of the Merseyrail trains.

Does the Tyre and Wear Metro want to have access like this? It’s already got it with the existing trains, as this picture at South Shields station shows.

Stadler’s engineering in this area, would fit their philosophy

I first thought that Stadler would propose a version of their Class 399 tram-trains. for the Tyne and Wear Metro and wrote Comparing Stadler Citylink Metro Vehicles With Tyne And Wear Metro’s Class 994 Trains.

This was my conclusion.

I am led to the conclusion, that a version of the Stadler Citylink Metro Vehicle similar to those of the South Waes Metro, could be developed for the Tyne and Wear Metro.

My specification would include.

  • Length of two current Class 994 trains, which would be around 111 metres.
  • Walk through design with longitudinal seating.
  • Level access between platform and train at all stations.
  • A well-designed cab with large windows at each end.
  • Ability to use overhead electrification at any voltage between 750 and 1500 VDC.
  • Ability to use overhead electrification at 25 KVAC.
  • Pantographs would handle all voltages.
  • A second pantograph might be provided for reasons of reliable operation.
  • Ability to use onboard battery power.
  • Regenerative braking would use the batteries on the vehicle.

Note.

  1. Many of these features are already in service in Germany, Spain or Sheffield.
  2. The train would be designed, so that no unnecessary platform lengthening is required.
  3. As in Cardiff, the specification would allow street-running in the future.
  4. Could battery range be sufficient to allow new routes to be developed without electrification?

I also feel that the specification should allow the new trains to work on the current network, whilst the current trains are still running.

But since I wrote that comparison in June 2018, Merseyrail’s new trains have started to be delivered and Liverpudlians have started to do what they do best; imagine!

The Tyne and Wear Metro has similar ambitions to expand the network and would a version of the Class 777 train fit those ambitions better?

Conclusion

I wouldn’t be surprised if Hitachi misses out, as the experience of the Docklands Light Railway or Merseyrail fed into the expansion of the Tyne and Wear Metro could be the clincher of the deal.

They would also be the first UK customer for the Hitachi trains.

 

September 22, 2019 Posted by | Transport | , , , , , , , | 3 Comments

Could Merseyrail’s Class 777 Trains Run As Tram-Trains On The Manchester Metrolink?

Look at the main dimensions of the Stadler Class 777 train destined for Merseyrail  and the current M5000 tram of the Manchester Metrolink. I have also added the dimensions of the Stadler Class 399 tram-train, that is running on the Sheffield Supertram network.

Class 777 train

  • Width – 2.82 metres
  • Height – 3.82 metres
  • Floor Height – 0.96 metres
  • Overall Length – 64.98 metres
  • Capacity – 190 seats and 302 standing – 492 total
  • Operating Speed – 75 mph

M5000

  • Width – 2.65 metres
  • Height – 3.67 metres
  • Floor Height – 0.90 metres
  • Overall Length – 28.4 metres
  • Double Length – 56.8 ,metres
  • Capacity – 60 or 66 seats and 146 standing – 206 or 212 total
  • Operating Speed – 50 mph

Class 399 tram-train

  • Width – 2.65 metres
  • Height – 3.72 metres
  • Floor Height – 0.425 metres
  • Overall Length – 37.2 metres
  • Capacity – 96 seats and 140 standing – 236  total
  • Operating Speed – 62 mph

Note.

  1. Vehicle width and height could probably be incorporated on the same track
  2. The floor heights of the Class 777 train and the M5000 are surprisingly close,
  3. The floor height of the low-floor Class 399 tram-train is lower and wouldn’t allow step-free access from platform to tram on the Metrolink network.
  4. A double M5000 and a Class 777 train have similar lengths.
  5. A double M5000 has 86% of the capacity of a Class 777 train.

A Class 777 train looks to be able to go anywhere that a double M5000 tram can go and be able to give the same quality of passenger access.

Can double M5000 trams use the whole of the Metrolink network?

Power Supply

Around Manchester and Liverpool there are the following types of electrification.

  • 25 KVAC overhead – Connecting major cities and on the West Coast Main Line.
  • 750 VDC overhead – Manchester Metrolink
  • 750 VDC third-rail – Merseyrail

In the future it is intended that Class 777 trains will be able to handle.

  • 25 KVAC overhead
  • 750 VDC third-rail

It should also be noted that Class 399 tram-trains, which are also built by Stadler can handle.

  • 25 KVAC overhead
  • 750 VDC overhead

I wouldn’t be surprised to find, that Stadler can produce a Class 777 train, that could handle these voltages.

  • 25 KVAC overhead
  • 750 VDC overhead
  • 750 VDC third-rail

It’s all about the electrical systems on the train, but Stadler probably have the solutions in their boxes of tricks.

I very much feel it would possible for a version of a Class 777 train with an additional battery to do the following.

  • Run as a train on the Merseyrail network. using 750 VDC third-rail.
  • Run as a train between Otmskirk and Preston using a mixture of battery power and 25 KVAC overhead.
  • Run as a train between Kirkby and Wigan using the battery.
  • Run as a double tram on the Manchester Metrolink using 750 VDC overhead.
  • Run as a tram-train to extend the Manchester Metrolink using a mixture of battery power and 25 KVAC overhead.

Class 777 trains might even be able to run on the Sheffield Supertram network. But they might be too long and would not be able to provide step-free access from platform to tram, without modification of trains and/or platforms.

Poasible Routes

Just about anywhere a Manchester Metrolink M5000 tram or a four-car electric or diesel multiple unit can run.

Thjis article on Railway Gazette is entitled Battery Trial Planned For New EMU Fleet.

This is the first sentence.

The sixth of the 52 four-car 750 V DC third rail electric multiple-units which Stadler is to supply for Merseyrail services around Liverpool is to be fitted with a 5 tonne battery to test the business case for energy storage.

A five tonne battery will soon be able to have a capacity of 500 kWh, which should be able to give the train a range of fifty miles on battery power.

This would more than cover the thirty miles without electrification between Altrincham and Chester, where the battery could be recharged.

Conclusion

I am in no doubt that Merseyrail’s Class 777 trains, could run as tram-trains on the Manchester Metrolink.

But then, Stadler don’t do ordinary and obvious!.

Why should they?

There must also be an advantage to Manchester Metrolink and Merseyrail, if they were using the same or similar vehicles for their public transport networks.

 

 

September 18, 2019 Posted by | Transport, Uncategorized | , , , , , | 14 Comments

My First Rides In A Class 755 Train

Today, I had my first rides in a Class 755 train. I use rides, as it was three separate timetabled journeys.

  • 12:36 – Norwich to Great Yarmouth
  • 13:17 – Great Yarmouth to Norwich
  • 14:05 – Norwich to Lowestoft

But it was only one train!

Although, I did see at least one other train in service.

These are my observations.

The Overall Style

These are a few pictures of the outside of the train.

The train certainly looks impressive from the front, but then it has a similar profile to a Bombardier Aventra or a member of Hitachi’s Class 800 family of trains.

The open nose is reminiscent of front-engined Formula One racing cars of the 1950s, with an added sloping front to apply downforce.

I would suspect that the similarity of the trains  is driven by good aerodynamic design.

If all the current Formula One cars were painted the same colour, could you tell the apart?

Trains seem to be going the same way. Only Siemens Class 700/707/717 design doesn’t seem to be rounded and smooth.

The PowerPack

The unique feature of these bi-mode trains is the diesel PowerPack in the middle of the train.

Stadler first used a PowerPack in the GTW, which I described in The Train Station At The Northern End Of The Netherlands.

  • GTWs date from 1998.
  • Over five hundred GTWs have been built.
  • You see GTWs in several countries in Europe.
  • GTWs have a maximum speed of between 115 and 140 kph.

The concept of the train with a PowerPack is certainly well-proven.

I have deliberately ridden for perhaps twenty seconds in the corridor through the PowerPack on both trains! Although I didn’t measure it with a sound meter, I’m fairly certain, that the more modern Class 755 train is better insulated against the noise of the engines.

But you would expect that with progress!

There could be another significant difference between the bi-mode Flirt and the GTW. This picture shows the connection between the PowerPack and the next car.

It looks like it could be a damper to improve the performance of the train on curves. It is not visible on this picture of a GTW PowerPack.

As an engineer, this says to me, that Stadler have taken tremendous care  to make the unusual concept of the PowerPack work perfectly.

Train Power On Diesel

Consider.

  • This four-car Class 755 train has installed diesel power of 1920 kW.
  • At 100 mph, the train will travel a mile in thirty-six seconds.
  • In that time, 19.2 kWh would be generated by the engines at full-power.

This means that a maximum power of 4.6 kWh per vehicle mile is available, when running on diesel power.

In How Much Power Is Needed To Run A Train At 125 mph?, I answered the question in the title of the post.

This was my conclusion in that post.

I know this was a rather rough and ready calculation, but I can draw two conclusions.

  • Trains running at 125 mph seem to need between three and five kWh per vehicle mile.
  • The forty year old InterCity 125 has an efficient energy use, even if the engines are working flat out to maintain full speed.

The only explanation for the latter is that Terry Miller and his team, got the aerodynamics, dynamics and structures of the InterCity 125 almost perfect. And this was all before computer-aided-design became commonplace.

In future for the energy use of a train running at 125 mph, I shall use a figure of three kWh per vehicle mile.

These figures leave me convinced that the design of the Class 755 train can deliver enough power to sustain the train at 125 mph, when running on diesel power

Obviously, as the maximum speed in East Anglia, is only the 100 mph of the Great Eastern Main Line, they won’t be doing these speeds in the service of Greater Anglia.

I also  had a quick word with a driver and one of my questions, was could the train design be good for 125 mph? He didn’t say no!

This 125 mph capability  could be useful for Greater Anglia’s sister company; Abellio East Midlands Trains, where 125 mph running is possible, on some  routes with and without electrification.

With respect to the Greater Anglia application, I wonder how many engines will be used on various routes? Many of the routes without electrification are almost without gradients, so I can see for large sections of the routes, some engines will just be heavy passengers.

I’ve read somewhere, that the train’s computer evens out use between engines, so I suspect, it gives the driver the power he requires, in the most efficient way possible.

Remember that these Greater Anglia Class 755 trains, are the first bi-mode Stadler Flirts to go into service, so the most efficient operating philosophy has probably not been fully developed.

Train Weight

These pictures show the plates on the train giving the details of each car.

 

I only photographed one side of the train and I will assume that the other two cars are similar. They won’t be exactly the same, as this  intermediate car has a fully-accessible toilet.

The weight of each car is as follows.

  • PowerPack – PP – 27.9 tonnes
  • Intermediate Car – PTSW – 16.0 tonnes
  • Driving Car – DMS2 – 27.2 tonnes

Adding these up gives a train weight of 114.3 tonnes.

Note that the formation of the train is DMS+PTS+PP+PYSW+DMS2, which means that heavier and lighter cars alternate along the train.

Train Length

The previous pictures give the  length of each  car is as follows.

  • PowerPack – PP – 6.69 metres
  • Intermediate Car – PTSW – 15.22 metres
  • Driving Car – DMS2 – 20.81 metres

Adding these up gives a train length of 78.75 metres.

This is very convenient as it fits within British Rail’s traditional limit for a four-car multiple unit like a Class 319 train.

Train Width

The previous pictures give the width of each  car is as follows.

  • PowerPack – PP – 2.82 metres
  • Intermediate Car – PTSW – 2.72 metres
  • Driving Car – DMS2 – 2.72 metres

The PowerPack is wider than the other cars and it is actually wider than the 2.69 metres of the Class 170 train, that the Class 755 train will replace. However, Greater Anglia’s electric Class 321 trains also have a width of 2.82 metres.

It looks to me, that Stadler have designed the PowerPack to the largest size that the UK rail network can accept.

The other cars are narrower by ten centimetres, which is probably a compromise between fitting platforms, aerodynamics and the needs of articulation.

Seats

The previous pictures give the number of seats in each  car as follows.

  • PowerPack – PP – 0
  • Intermediate Car – PTSW – 32
  • Driving Car – DMS2 – 52

This gives a total of 168 seats. Wikipedia gives 229.

Perhaps the car without the toilet has more or Wikipedia’s figure includes standees.

Kinetic Energy Of The Train

I will use my standard calculation.

The basic train weight is 114.3 tonnes.

If each of the 229 passengers weighs 90 kg with Baggage, bikes and buggies, this gives a passenger weight of 20.34 tonnes.

This gives a total weight of 134.64 tonnes.

Using Omni’s Kinetic Energy Calculator gives these figures for the Kinetic energy.

  • 60 mph – 13.5 kWh
  • 100 mph – 37.4 kWh
  • 125 mph – 58.4 kWh

If we are talking about the Greater Anglia C;lass 755 train, which will be limited to 100 mph, this leads me to believe, that by replacing one diesel engine with a plug compatible battery of sufficient size, the following is possible.

  • On all routes, regenerative braking will be available under both diesel and electric power.
  • Some shorter routes could be run on battery power, with charging using existing electrification.
  • Depot and other short movements could be performed under battery power.

The South Wales Metro has already ordered tri-mode Flirts, that look like Class 755 trains.

InterCity Quality For Rural Routes

The title of this section is a quote from the Managing Director of Greater Anglia; Jamie Burles about the Class 755 trains in this article on Rail Magazine.

This is the complete paragraph.

Burles said of the Class 755s: “These will be the most reliable regional train in the UK by a country mile – they had better be. They will be InterCity quality for rural routes, and will exceed expectations.”

I shall bear that quote in mind in the next few sections.

Seats And Tables

The seats are better than some I could name.

The seats are actually on two levels, as some are over the bogies. However |Stadler seem to managed to keep the floor flat and you step-up into the seats, as you do in some seats on a London New Routemaster bus.

Seat-Back Tables

I particular liked the seat-back tables, which weren’t the usual flimsy plastic, but something a lot more solid.

They are possibly made out of aluminium or a high class engineering plastic. You’d certainly be able to put a coffee on them, without getting it dumped in your lap.

It is the sort of quality you might get on an airliner, flown by an airline with a reputation for good customer service.

Step-Free Access

Stadler are the experts, when it comes to getting between the train and the platform, without a step. As I travel around Europe, you see little gap fillers emerge from trains built by Stadler, which have now arrived in East Anglia.

There was a slight problem at Great Yarmouth with a wheelchair, but it was probably something that can be easily sorted.

Some platforms may need to be adjusted.

Big Windows

The train has been designed with large windows, that are generally aligned with the seats.

There is no excuse for windows not aligning with most of the seats, as you find on some fleets of trains.

Low Flat Floor

The train has been designed around a low, flat floor.

The floor also improves the step-free access and gives more usable height inside the train.

Litter Bins

The train has well-engineered litter bins in  between the seats and in the lobbies.

This bin is in the lobby, next to a comfortable tip-up seat.

Too many trains seem to be built without bins these days and the litter just gets thrown on the floor.

Conclusion

It is certainly a better class of rural train and I think it fulfils Jamie Burles’ ambition of InterCity Quality For Rural Routes.

But then services between Cambridge, Ipswich and Norwich are as important to East Anglia, as services between Hull, Leeds and Sheffield are to Yorkshire.

They are all services that can take a substantial part of an hour, so treating passengers well, might lure them out of their cars and off crowded roads.

In My First Ride In A Class 331 Train, I wrote about Northern’s new Class 331 trains.

If I was going to give the Greater Anglia train a score of eight out of ten, I’d give the Class 331 train, no more than two out of ten.

 

 

 

 

 

August 6, 2019 Posted by | Transport | , , , , , , | 5 Comments