The Anonymous Widower

Bidders For New Tyne And Wear Metro Fleet Revealed

The title of this post is the same as that of this article on Global Rail News.

The approved bidders are.

I am sure all will be good bids, but there are various factors that must be taken into account.

Current Rolling Stock

The current rolling stock has a slightly smaller cross section than most of the UK.

Although, some lines are shared with other trains like Grand Central’s InterCity 125s.

As new and old rolling stock will probably have to work together, they’ll probably need to be a similar size.

Modern manufacturing should handle that with ease.

Dual Voltage

I suspect that new route opportunities for the Metro will involve excursions on lines with 25 KVAC overhead electrification.

I doubt this is a problem these days.

Battery Power

Some new routes would be ideal for battery power.

As with dual voltage, this should not be a problem.

UK Experience

All bidders except for the Australian/Chinese joint venture of Downer EDI/CRRC have made significant sales in the UK.

Stadler is the interesting company, as they seem to be able to design bespoke trains for the local area, that seem to win bids.

  • Class 399 tram-trains for the tram-train trial in Sheffield.
  • Class 745 and Class 755 trains for Greater Anglia.
  • Class 777 trains for Merseyrail.
  • Citylink tram-trains and diesel/electric/battery tri-mode Flirts for the South Wales Metro.
  • Trains for the Glasgow Subway.

Stadler seem to have a library of standard solutions, that allows them to create smaller fleets to a slightly non-standard specification.

UK Manufacturing

All companies except Downer EDI/CRRC and Stadler have UK factories.

I can’t see the Australian/Chinese joint venture building a factory in the UK for a £362 million contract for one order in the North East, even though CRRC would probably like to get more involved in the UK rolling stock market.

Stadler has an unusual manufacturing model, in that trains and bodies are built in factories in various parts of Europe and sometimes brought to Switzerland for final assembly and testing.

I wouldn’t be surprised to see Stadler setting up a UK operation to support their increasing UK presence and perhaps do the interior fitting out for future orders.

As to Stadler, I think it should be noted, that with the exception of the Glasgow Subway trains, I suspect all their UK trains are capable of being towed on much of the UK rail network.

Brexit may also give Stadler, an opportunity to set up a factory outside the EU, but connected to it, by the Channel Tunnel.

Conclusion

As I said earlier, all bids will have a high quality and reasons for winning.

However, I do feel that the Downer EDI/CRRC bid may be discounted for reasons of geography and politics.

I also think we should be prepared for Stadler to offer an innovative bid similar to the ones that succeeded on Merseyside and in South Wales.

 

September 19, 2018 Posted by | Travel | , , , , | Leave a comment

A Swiss-Style Wheelchair Ramp

I took this picture of a wheelchair ramp at Interlaken Ost station

At least I noticed several low-floor trains with gap fillers.

I think most of these pictures were taken of trains built by Swiss train manufacturer; Stadler.

I think that this is the way to go.

Stadler are using gap fillers on their Class 777 trains for Merseyrail. This is said in Wikipedia about the design of the trains.

The trains will also have platform gap fillers so wheelchair users will not have to use ramps to board the train.

Will there be step-free access on Greater Anglia’s Class 745 and Class 755 trains?

It’s obviously good for passengers, but what’s in it for train operators?

It’s all about making the dwell time in a station as short as possible.

September 16, 2018 Posted by | Travel | , , , , | 1 Comment

Between Lucerne And Interlaken Ost Stations On Die Zentralbahn

The Zwntralbahn is the scenic railway, that connects Lucerne and Interlaken Ost stations along the Brünig Line. Wikipedia says this about the ownership of the railway.

The Zentralbahn is a Swiss railway company that owns and operates two connecting railway lines in Central Switzerland and the Bernese Oberland. It was created on January 1, 2005, with the acquisition of the independently owned Luzern–Stans–Engelberg line, and the Brünig line of the Swiss Federal Railways.

I don’t know, but as the railway is metre rather than standard gauge, I do wonder, if it was to Swiss Federal Railways, a bit like the Settle-Carlisle Line was to British Rail; Expensive to run, loved by locals and tourists and in need of new investment.

These pictures show the railway.

As some of the pictures show, the line was busy in places. and judging by the number of Asian groups on the train, a lot were tourists.

The trains are modern Stadler SPATZ trains.

  • Fully-electric.
  • Metre gauge.
  • They are able to use sections of the line which have a rack to assist climbing.
  • Large panoramic windows for good views.

It appears that the three-car train has been designed with all the electrical gubbings in the middle car, with the end sections similar to the Stadler GTW.

Stadler seem to be able to shuffle their ideas and especially, the central power-pack to produce trains for all purposes.

Greater Anglia’s Class 755 trains, and the tri-mode Flirts of the South Wales Metro, will be just more variations on the same theme.

Next Time I Go To The Area

There are two groups of mountain railways grouped at Interlaken and Lucerne, which are linked by the

Brünig Line. The route is not simple and there is a reverse about half-way at Meiringen station.

Searching the web, it appears that there is reasonably-priced accommodation in and around Meiringen.

With a Swiss Pass, which gives a worthwhile discount on the expensive mountain trains, I shall be staying around there on my next trip to Switzerland.

Consider.

  • You could fly in to Zurich Airport and buy your Swiss Pass there.
  • Lucerne and Interlaken are about an hour away on the scenic Brünig Line.
  • Bern and Zurich are close enough for a day trip.

I didn’t explore Meiringen, so check the guides first. But it looked OK from the train.

 

September 12, 2018 Posted by | Travel | , , , , , , , | Leave a comment

Zillertalbahn Orders Stadler Hydrogen-Powered Trains

The title of this post is the same as that of this article on the International Railway Journal.

This is the first paragraph.

Austria’s narrow-gauge Zillertalbahn announced on May 15 that Stadler is the successful bidder for a €80m contract to supply five hydrogen fuel cell multiple-units.

The Zillertal Railway is in the Tyrol district of Austria and has a gauge of 760 mm.

It looks like Stadler are supplying another market, that is rather special.

August 6, 2018 Posted by | Travel | , , | Leave a comment

Five Mark 4 Coaches, A Driving Van Trailer And A Stadler UKLight Locomotive

In writing Would Electrically-Driven Trains Benefit From Batteries To Handle Regenerative Braking?, I started to analyse the mathetics and possibilities of a train with the following formation.

The sub-section got too large and important so I decided to write it as a separate post.

I like the Class 68 locomotive, as it looks professional and seems to do all asked of it.

So what would be the kinetic energy of a formation of five Mark 4 coaches, between a DVT and a Class 68 Locomotive?

  • The five Mark 4 coaches would weigh 209 tonnes.
  • The Class 68 locomotive weighs 85 tonnes.
  • The DVT weighs 42.7 tonnes
  • I will assume that a five cars will seat around 300 passengers.
  • The passengers weigh 27 tonnes, if you assume each weighs 90 Kg, with baggage, bikes and buggies.
  • The train weight is 363.7 tonnes.

At 100 mph, which is the maximum speed of the Class 68 locomotive, the Omni Kinetic Energy Calculator gives the kinetic energy of the train as 100 kWh.

I doubt there’s the space to squeeze a 100 kWh of battery into a Class 68 locomotive to handle the regenerative braking of the locomotive, but I do believe that a locomotive can be built with the following specification.

  • Enough diesel power to pull perhaps five or six Mark 4 coaches and a DVT at 125 mph.
  • Ability to use both 25 KVAC and 750 VDC electrification.
  • Battery to handle regenerative braking.
  • As the Class 88 electro-diesel locomotive, which is around the same weight as a Class 68 locomotive, I suspect the proposed locomotive would be a bit heavier at perhaps 95 tonnes.

This train would have a kinetic energy of 160 kWh at 125 mph.

Consider.

  • If the locomotive could have a 200 kWh battery, it could harvest all the regenerative braking energy.
  • Accelerating the train to cruising speed uses most energy.
  • Running at a constant high speed, would conserve the kinetic energy in the train.
  • Stadler, who manufacture the Class 68 and 88 locomotives are going to supply a diesel/electric/battery version of the Class 755 train, for the South Wales Metro. In What Is The Battery Size On A Tri-Mode Stadler Flirt?, I estimated the battery size is about 120 kWh.
  • The Class 68 and 88 locomotives are members of Stadler’s Eurolight family, which are designed for a 125 mph capability with passenger trains.
  • I don’t believe the UK is the only country looking for an efficient locomotive to haul short rakes of coaches at 125 mph, on partially-electrified lines.

It should also be noted, that to pull heavy freight trains, the Class 88 locomotive has a 700 kW Caterpillar C27 diesel that weighs over six tonnes, whereas 200 kWh of battery, would weigh about two tonnes. I believe that a smaller diesel engine might allow space for a large enough battery and still be able to sustain the 125 mph cruise.

Stadler have the technology and I wonder, if they can produce a locomotive to fill the market niche!

In HS2 To Kick Off Sheffield Wiring, I reported on the news that the Northern section of the Midland Main Line between Clay Cross and Sheffield will be electrified.

This would greatly improve the performance of diesel/electric/battery hybrid trains between London and Sheffield.

  • Between London and Kettering, the trains would be electrically-powered.
  • Between Kettering and Clay Cross, they would use a mixture of diesel and battery operation.
  • Between Clay Cross and Sheffield, the trains would be electrically-powered.

Note.

  1. Going North, trains would pass Kettering with a full battery.
  2. Going South, trains would pass Clay Cross with a full battery.
  3. Regenerative braking at stops between Kettering and Clay Cross would help recharge the batteries.
  4. The diesel engine would be sized to keep the train cruising at 125 mph on the gentle Midland Main Line and back up the acceleration needed after stops.

It would be a faster and very electrically-efficient journey, with a large reduction in the use of diesel power.

The locomotive would also have other uses in the UK.

  • TransPennine services, where they could surely replace the Class 68 locomotives, that will haul Mark 5A coaches between Liverpool and Scarborough and Manchester Airport and Middlesborough.
  • Between London and Holyhead
  • Waterloo to Exeter via Basingstoke and Salisbury.
  • Marylebone to Birmingham via the Chiltern Main Line, if the two ends were to be electrified.
  • Services on the East West Rail Link.
  • Between Norwich and Liverpool
  • CrossCountry services.

Note.

  1. Services could use a rake of Mark 4 coaches and a DVT or a rake of new Mark 5A coaches.
  2. If more electrification is installed, the trains would not need to be changed, but would just become more efficient.
  3. The competition would be Bombardier’s proposed 125 mph bi-mode Aventra with batteries, that I wrote about in Bombardier Bi-Mode Aventra To Feature Battery Power.

And that is just the UK!

Conclusion

Using the Mark 4 coaches or new Mark 5A coaches with a new 125 mph diesel/electric/battery hybrid Stadler UKLight locomotive could create an efficient tri-mode train for the UK rail network.

The concept would have lots of worldwide applications in countries that like the UK, are only partially electrified.

 

 

August 5, 2018 Posted by | Travel | , , , , , | 1 Comment

Tri-Mode Stadler Flirts

I would expect that these trains are very similar to the bi-mode Stadler Flirt DEMUs, but that the power-pack would also contain a battery.

As an Electrical and Control Engineer, I wouldn’t be surprised that the power-pack, which accepts up to four Deutz diesel engines, can replace one or two of these with battery modules. This could make conversion between the two types of Flirt, just a matter of swapping a diesel module for a battery one or vice-versa.

Note that the three-car Class 755 trains for Greater Anglia have two diesel engines and the four-car trains have four engines.

This document on the KeolisAmey web site details their plans for the new Wales and Borders Franchise.

It gives a few extra details about the Tri-Mode Stadler Flirts

The KeolisAmey document gives extra a few extra details.

I assume the following.

  • That 100% electric operation includes battery operation.
  • Batteries will certainly be used in the mile-long Caerphilly tunnel.
  • Batteries will be charged when running on electrified lines or by capturing regenerative breaking energy whilst descending to Cardiff.
  • The diesel engine will be used for primary power on the Vale of Glamorgan Line, which is without electrification and nearly twenty miles long?

There will be a lot of commonality between the two types of Flirts and I suspect driver and other staff training for the two variant will be the same.

How Big Will The Batteries Need To Be?

Consider a three-car Tri-Mode Stadler Flirt

  • I reckon, that the weight of the train will be around 130 tonnes.
  • Rhymney has an altitude of 287 metres.
  • I will assume 150 passengers at 80 Kg. each, which gives a weight of 12 tonnes.

This means that the train has a potential energy of 111 kWh at Rhymney station.

On the way down the hill from Rhymney the regenerative braking will convert this potential energy into electricity, which will be stored in the battery.

But also consider.

  • There will be losses in energy conversion in the regenerative braking process.
  • Energy will be used running the train’s systems.
  • Energy will be used stopping and starting the train at each station.
  • Energy will be used bringing the train through some sections without electrification.
  • Energy will be used keeping the crew and passengers comfortable.
  • Energy can be burned off using braking resistors on the roof of the train.

When you consider that the battery on a London New Routemaster bus, has a capacity of 75 kWh, I think it is highly likely, that Stadler can design a battery module to fit one of the two spare engine positions in the power-pack.

Now, consider a four-car Tri-Mode Stadler Flirt

  • I reckon, that the weight of the train will be around 150 tonnes.
  • Rhymney has an altitude of 287 metres.
  • I will assume 200 passengers at 80 Kg. each, which gives a weight of 16 tonnes.

This means that the train has a potential energy of 130 kWh at Rhymney station.

Looking at the weight of Bombardier’s 50 kWh batteries, I suspect that it would be possible to design a battery module with the following characeristics.

  • 100 kWh capacity
  • A weight less than that of the Deutz engine, which is around 1.3 tonnes.
  • Plug compatibility with the diesel engine.

Doing this calculation with real data, is the sort of mathematics that I relished doing in my twenties.

How Far Would A Full 100 kWh Battery Take A Three-Car Flirt?

In an article in the October 2017 Edition of Modern Railways, which is entitled Celling England By The Pound, Ian Walmsley says this in relation to trains running on the Uckfield Branch, which probably has a terrain not much different to the lines to the South and West of Cardiff.

A modern EMU needs between 3 and 5 kWh per vehicle mile for this sort of service.

This would mean that a 100 kWh battery would take a three-car train between six and ten miles. It might even take the train from Cardiff to Barry Island or Penarth and back..

Conclusion

It looks a very interesting concept.

  • Most of the energy is provided by the electrification, which would power the train up the hill.
  • Coming down the hill, the batteries would be recharged using the regenerative braking.
  • Battery power would used to take the train on routes without electrification to the West and South of Cardiff.
  • When the battery power was low, the diesel engines would cut in.

Energy efficiency would be high.

 

 

June 8, 2018 Posted by | Travel | , , , | 9 Comments

Stadler Flirt DEMUs

Over a thousand Stadler Flirts have been sold to operators around the world. Most have been or will be built in Switzerland.

Greater Anglia

The first fleet in the UK, comprise fourteen three-car and twenty-four four-car Class 755 trains for Greater Anglia.

This visualisation shows a Class 755 train in Greater Anglia livery, running through the typical flat lands of East Anglia.

These trains will enter service next year.

  • They are 100 mph trains.
  • They can run on 25 KVAC overhead electrification.
  • They have a diesel power-pack, which can have up to four Deutz diesel engines, for running on lines without electrification.
  • The three-car trains have two diesel engines and the four-car trains have four engines.
  • They can change power source at line speed.
  • Length is easily changed, by adding or removing cars.
  • Three-car Flirts have 166 seats and four-car Flirts have 224 seats.
  • They are designed to handle two-hour plus journeys, like Lowestoft to London for Greater Anglia.

I suspect they are fairly powerful trains and I wrote about this in Greater Anglia’s Class 755 Trains Seem To Have Bags Of Grunt.

Comparing the trains with a Class 170 train, I said this.

But the four-car Class 755/4 trains have fifty percent more power per car, than the Class 170 train, so these will be no sedate rural trundlers.

I’m certain, that their performance, will allow them to mix it on the Great Eastern Main Line with the London-Ipswich-Norwich expresses.

KeolisAmey Wales

From the pictures, the trains, that will be delivered to KeolisAmey Wales, look very much like the trains, that have been ordered by Greater Anglia.

The trains will operate services between Cardiff and Ebbw Vale, Maesteg and extending to Severn Tunnel Junction and beyond.

I would assume that the trains will use diesel, where there is no electrification. One current service goes between Maesteg and Cheltenham Spa stations. On the South Wales Main Line between Cardiff and Seven Tunnel Junction, the trains would use the 25 KVAC  overhead wires, but at both ends of the route, they would use diesel.

One great advantage of bi-mode trains like these Flirts, is that as more electrification is added, they can take advantage.

I’m certain, that their performance, will allow them to mix it on the South Wales Main Line with the London-Newport-Cardiff-Swansea expresses.

Aosta Valley

A European version of the train will start to operate soon in the Aosta Valley in Italy, so when the trains for Wales are delivered, there will be lots of operational experience. Especially with climbing steep hills!

Norway

This article on the Railway Gazette is entitled Bi-Modes In Norway’s Next Flirt Order.

The bi-modes will be used around Trondheim, on routes without elewctrification.

What does Norway have a lot of? Mountains!

June 8, 2018 Posted by | Travel | , , , , , | 2 Comments

The Greening Of The Valleys

This document on the KeolisAmey web site details their plans for the new Wales and Borders Franchise.

The documents gives these two definitions.

  • South Wales Metro – Includes the full set of local services around South East Wales. This includes what is currently known as the ‘Valley Lines’, plus services between Cardiff and Ebbw Vale, Maesteg and extending to Severn Tunnel Junction and beyond.
  • Central Metro -Refers to the sub-set of the South Wales Metro train services which run from Treherbert, Aberdare, Merthyr Tydfil, Radyr, Rhymney and Coryton, through Queen Street to Cardiff Bay, Cardiff Central, Penarth, Barry Island and Bridgend.

For these services around Cardiff and on the Cardiff Valley Lines, KeolisAmey Wales intend to acquire the following fleet.

  • 11 x four-car Stadler Flirt DEMU
  • 7 x three-car Stadler Flirt Tri-mode MU
  • 17 x four-car Stadler Flirt Tri-mode MU
  • 36 x three-car Stadler Citylink Metro Vehicles

This diagram from the document shows the routes and the frequencies.

They also say the following surrounding the map in the document.

  • Maintains all existing connections to Cardiff Queen Street and Cardiff Central stations.
  • Service pattern easy to understand
  • Most frequencies even in the hour ‘clockface’ (e.g. 00-15-30-45 past)
  • Vale of Glamorgan, Barry, Penarth and City Lines integrated into Central Metro solution.
  • 2tph from Pontypridd station ‘divert’ via City Line but don’t terminate at Central i.e. Aberdare – City Line – Central – Merthyr

Note that Aberdare, Merthyr Tydfil, Rhymney and Treherbert stations all get a total of four trains per hour (tph)

The Trains In More Detail

Stadler Rail are building the three fleets of rail vehicles.

Stadler Flirt DEMUs

Over a thousand Stadler Flirts have been sold to operators around the world. Most have been or will be built in Switzerland.

From the pictures, the trains, that will be delivered to Wales, look very much like the Class 755 trains, that have been ordered by Greater Anglia. These trains will enter service next year.

Stadler Flirt DEMUs gives more details of these trains and the closely-related fleets.

The trains will operate services between Cardiff and Ebbw Vale, Maesteg and extending to Severn Tunnel Junction and beyond.

Tri-Mode Stadler Flirts

I would expect that these trains are very similar to the bi-mode Flirt DEMUs, but that the power-pack would also contain a battery.

Tri-Mode Stadler Flirts gives more details of these trains and how I think they will operate.

The Tri-Mode Stadler Flirts are intended for Rhymney/Coryton <> Penarth/Barry Island/Bridgend via the Vale of Glamorgan Line.

There will be a lot of commonality between the two types of Flirts and I suspect driver and other staff training for the two variants will be the same.

Stadler Citylink Metro Vehicles

The Stadler Citylink Metro Vehicles in the KeolisAmey document. look very similar to Sheffield Supertram‘s Class 399 tram-trains, that are providing a tram service in Sheffield and will soon be running on the heavy rail network to Rotherham.

Stadler Citylink Metro Vehicles gives more details of these trains and how I think they will operate.

From Cardiff Queen Street To The Flourish

It looks like the Metro vehicles will use the batteries for power on the extension to the new terminal station at The Flourish.

I describe the proposal for the extension to the Flourish in The Flourish Station Is The Focus Of The South Wales Metro.

Electrically-Efficient Operation Of The Metro

I have a feeling that Stadler are bringing some of their mountaineering experience from Switzerland to the valleys of South Wales.

It is interesting that both the Tri-mode Stadler Flirts and the Stadler Citylink Metro Vehicles will have batteries.

Climbing The Hills

The main purpose of the batteries is to make the climb and descent to the terminals at the heads of the valleys as energy efficient as possible.

Efficient climbing of the hills will need all uphill tracks to be electrified.

The KeolisAmey document states this about the electrification.

Discontinuous overhead line electrification to 25 KVAC with permanently earthed sections around restricted structures, saving 55 interventions e.g. rebuilding bridges/no need for wire in Caerphilly tunnel.

Battery power would be invaluable for jumping the gaps in the electrification.

Coming down, I believe that the trains and tram-trains will use the batteries to handle the energy generated by regenerative braking.

This means.

  • The electrification can be simpler.
  • There might be no need to electrify the downhill track in double-track sections.
  • Trains can use the battery power  to cross sections without wires or restarting from stations, when going downhill.
  • Tram-trains going to The Flourish will arrive at Cardiff Queen Street station with enough energy in the batteries for the return trip to The Flourish.
  • The Cardiff Bay Line doesn’t need to be electrified, which saves money and possibly increases safety and reduces visual intrusion.

It is not only energy efficient, but it saves construction costs and time.

Why Aren’t Citylink Metro Vehicles  Used On The Rhymney Line?

There are several possible reasons.

  • Calculations have shown, that the battery capacity of the smaller Citylink vehicle might not be enough to go uphill through the Caerrphilly tunnel.
  • The route may need more powerful vehicles.
  • More capacity may be needed on this line, so the larger Tri-mode Stadler Flirts will be used.
  • The Flirts could use their diesel engines to rescue a train stuck in the tunnel.

But whatever the reason, I’m sure it’s a good one!

Could Downhill Tracks Not Be Electrified?

I think this may be possible, as vehicles coming down the hills could use gravity and small amounts of battery power.

Regenerative braking would also be continuously charging the batteries.

It would certainly be simpler, than having to constantly swap between overhead and battery power on the descent, where the electrification was discontinuous.

As the lines are going to have a more intensive service, there will be additions of a second track in places to allow trains to pass.

Any electrification that could be removed from the project would be beneficial in terms of building and operational costs.

How Would Discountinuous Electrification Be Handled?

I discus this in How Can Discontinuous Electrification Be Handled?

The Lines In More Detail

Click these links to find out more about the individual lines.

Rhymney Line

Conclusion

The two types of compatible vehicles, allows the plans for the South Wales Metro to be a cost-effective and very green solution for Cardiff’s transport needs.

It is a model, that can be used elsewhere.

Will railway engineers in future talk of the Cardiff Model, just as they talk of the Karlsruhe Model?

June 6, 2018 Posted by | Travel | , , , , , , , , | 1 Comment

A Reason Why The UK Is Fertile Territory For Tram Trains

The UK has several modern tram systems. If you look at the cross section of trams you get the following figures.

I wonder why Nottingham is twenty-five centimetres narrower!

If you look at the Class 399 tram-train, it has a width of 2.65 metres and a height of 3.67 metres.

So no wonder, there has been no problems with Class 399 tram-trains running on the Sheffield Supertram as trams!

Various trains that run local rail networks include.

  • Class 142 – Width 2..8 metres – Height 3.86 metres
  • Class 150 – Width 2.8 metres – Height 3.8 metres
  • Class 222 – Width 2.73 metres
  • Class 319 – Width 2.82 metres – Height – 3.58 metres
  • Class 345 – Width 2.78 metres – Height N/A
  • Class 378 – Width 2.80 metres – Height 3.78 metres
  • Class 700 – Width 2.80 metres – Height N/A
  • Class 769 – Width 2.82 metres – Height 3.58 metres
  • Mark 4 Coach – Width 2.73 metres – Height 2.79 metres

These are some figures from German trains.

  • DBAG 641 – Width 2.90 metres – Height 3.7 metres
  • BD Class 420 – With 3.08 metres
  • ICE 3 – Width 2.95 metres – Height 3.89 metres

I’ll look at various issues.

Tram And Train Height

I think this is not a big issue.

If a tram or electric train can run on a particular track, then there should be no height problems running a tram-train over the route, providing overhead wires can be erected.

UK Tram And Train Width

It would appear that the maximum width of UK trains is 2.82 metres. In some stations, where there is only one class of train, level access is possible.

The picture shows a Class 378 train on the London Overground.

This is not one of the best I’ve seen, but there is no reason, why someone in a wheelchair shouldn’t be able to wheel themselves into every train at every station.

This is in the train operating company’s interest, as one of the things that delays trains, is getting someone in a wheelchair on and off the train with a portable ramp.

If we take the UK train width of 2.82 metres and compare that to the width of a Class 399 tram-train, which is 2.65 metres, that means that there is seventeen  centimetres difference or eight and a half centimetres on each side of the train.

If the platform can be arranged to be level, that is not a large gap. It’s probably about the same size as this gap in this picture.

Shown is a Class 399 tram-train at a tram stop on the Sheffield Supertram.

Continental Tram And Train Width

But on the Continent, where the trains are wider and the loading gauge is bigger, the gap will be larger.

Trains on the Continent also often have a significant step up as this picture shows.

Shown is an Italian High Speed train.

If the EU wanted to improve train travel for the disabled, those in wheelchairs, those with buggies and the elderly, they should make it compulsory for all trains to have level access from the platform.

It’s very rare to find level access on the Continent and not that easy in parts of the UK.

Gap Fillers

But things are getting better, as this picture shows.

Shown is a Stadler Flirt with a rather nifty automatic gap filler.

Merseyrail’s New Class 777 Trains

Gap fillers will be fitted to Merseyrail‘s new Class 777 trains, which are being built by Stadler.

The Class 777 trains and the current Class 507 trains have the same width of 2.82 metres, but the new Stadler trains have an eighteen centimetre lower floor.

The picture shows a Class 507 train at one of Liverpool’s underground stations.

Eighteen centimetres wouldn’t be far away from the height of the step in the picture.

The design must also allow both classes of trains to be in service at the same time, to ease introduction of the new Class 777 trains.

Talk about Swiss precision!

South Wales Metro

This document on the KeolisAmey web site details their plans for the new Wales and Borders Franchise.

For services around Cardiff and on the Cardiff Valley Lines, KeolisAmey Wales intend to acquire the following fleet.

  • 11 – four-car Stadler Flirt DEMU
  • 7 – three-car Stadler Flirt Tri-mode MU
  • 17 – four-car Stadler Flirt Tri-mode MU
  • 36 – three-car Stadler Citylink Metro Vehicles

Note.

  1. The Stadler Flirts look very similar to Greater Anglia‘s Class 755 trains, that by the time of delivery of these trains for Wales, will have proven themselves on the mountains of East Anglia.
  2. The tri-mode multiple units will be able to run on electric, diesel or battery power.
  3. The Stadler Citylink Metro Vehicles look very similar to Sheffield Supertram‘s Class 399 tram-trains, that are providing a tram service in Sheffield and will soon be running on the rail network to Rotherham.
  4. It is an all-Stadler fleet.

This is a clip from the KeolisAmey document.

This looks like a visualisation of one of the Flirts, as the Citylink tram-trains have flat sides.

I will be very surprised if Stadler don’t provide the Cardiff area, with one of the best step-free networks in the world.

Conclusion

The UK’s standard tram width of 2.65 metres and our small loading gauge must make it easier to design tram-train systems for the UK.

 

 

 

 

.

June 6, 2018 Posted by | Travel | , , , , , , , , | Leave a comment

Every Pair Of Pictures Tell A Story

This picture on the Rail Technology Magazine website shows a Greater Anglia Class 755 train.

And this picture on the Global Rail News website shows one of the new trains for Transport for Wales.

It is captioned “A Tri-mode unit on the Rhymney Line”.

On another report it is captioned “How a KeolisAmey tram-train will look”.

All trains look very similar and I’m pretty certain that Wales will be getting some Class 755 trains.

Class 755 Trains

Class 755 trains will have the following characteristics.

  • 100 mph operating speed.
  • Able to work on 25 KVAC overhead electrification
  • Able to work using an onboard diesel power-pack.
  • Three or more passenger cars.
  • Ability to be lengthened by adding extra cars as required.
  • Lots of power.

They would be ideal replacements for the current Class 175 trains, as the performance would appear to be similar.

They would also be ideal for services on the following routes.

When running around Birmingham, Cardiff, Crewe, Liverpool and Manchester, they would be able to use the electrification.

So are Keolis/Amey going for a predominantly uniform fleet of perhaps three-car and four-car Class 755 trains outside of the Cardiff Valley Lines, just as Greater Anglia used these trains on their routes without electrification North of Cambridge and Ipswich?

The Borderlands Line

The interesting route is the Borderlands Line between Wrexham Central and Bidston stations.

Currently, to get to and from Liverpool, there is a need to change trains at Bidston.

Merseyrail‘s new Class 777 trains are being built by Stadler.

  • They will link Bidston station to Liverpool, where they will call at several stations in a single-track loop tunnel.
  • The trains have been designed to work under battery power.
  • Both classes of train are likely to be very similar under the skin.

So to eliminate the time-wasting change of train at Bidston station, I wonder if Stadler have designed the Class 755 and Class 777 trains, so that they can both run in the loop tunnel.

The additions needed to the Welsh Class 755 trains, over the Greater Anglian versions would be.

  • Ability to use Merseyrail’s third rail electrification.
  • Clearance to run in the tunnel with diesel onboard.
  • Ability to evacuate passengers in the tunnel, in an emergency.

As Merseyrail have recently rebuilt the tunnel for the new Class 777 trains, I suspect that Stadler can design a Class 755 train, that would be able to avoid the change of train at Bidston.

I’ll Wait For More Information

It would seem prudent to wait for more information.

 

June 4, 2018 Posted by | Travel | , , , , , , | 2 Comments