The Anonymous Widower

Why Firms Are Racing To Produce Green Ammonia

The title of this post, is the same as that of this article on the BBC.

This is the sub-heading.

In the 19th Century, Europeans realised what the Inca had known long before. Bird droppings, or guano, made a fantastic fertiliser.

These are the first three paragraphs.

And so sprang up a gigantic industry dedicated to the harvesting of guano from Latin American bird colonies, where there were huge piles of the stuff.

It was so rich in ammonia, the key ingredient, that a mere whiff could induce coughing and sneezing. Not exactly a pleasant cargo to ferry across the world.

As demand for fertiliser rose in the early 1900s, someone began to think, “Perhaps there’s another way?” That someone was Fritz Haber, a German chemist who, along with Carl Bosch, developed the Haber-Bosch process for synthesising ammonia.

This Wikipedia entry describes the Haber-Bosch process.

This is the first paragraph.

The Haber process, also called the Haber–Bosch process, is the main industrial procedure for the production of ammonia. The German chemists Fritz Haber and Carl Bosch developed it in the first decade of the 20th century. The process converts atmospheric nitrogen (N2) to ammonia (NH3) by a reaction with hydrogen (H2) using an iron metal catalyst under high temperatures and pressures. This reaction is slightly exothermic (i.e. it releases energy), meaning that the reaction is favoured at lower temperatures and higher pressures. It decreases entropy, complicating the process. Hydrogen is produced via steam reforming, followed by an iterative closed cycle to react hydrogen with nitrogen to produce ammonia.

These companies are mentioned in the BBC article.

Starfire Energy

This is their web site.

Their home page has a title of Modular, Variable-Rate Ammonia (NH3) Production and this description of their technology.

We are scaling up technologies to make and use carbon-free ammonia fuel. Rapid Ramp is a variable-rate ammonia production process engineered into a modular plant design. Prometheus Fire is a lower temperature, high flow ammonia cracking process that allows ammonia to be used like natural gas, but with no CO2 emissions.

According to the co-founder of the company, Starfire’s process can use intermittent power, like wind and solar.

Could a farmer make their own fertiliser with a containerised system and say a 5MW wind turbine or a small solar farm?

Atmonia

This is their web site.

This description of their process is on their home page.

Atmonia is developing a nitrogen electrolyser with our patented catalyst. The technology uses only air, water and electricity for direct ammonia production. This enables zero carbon ammonia production, when applying renewable electricity.

Could a farmer make their own fertiliser with a containerised system and say a 5MW wind turbine or a small solar farm?

Jupiter Ionics

This is their web site.

Their home page has an endless video and this statement.

We’re commercialising carbon-neutral, electrochemical technology for sustainable agriculture, ammonia-fuelled transport and renewable energy exports.

These three paragraphs in the BBC article, say more about the process used by Jupiter Ionics.

Jupiter Ionics is currently planning to build an ammonia production module on the megawatt scale, which could produce a tonne per day.

Jupiter Ionics’ technology differs from Starfire Energy and Atmonia’s in that it uses lithium as a mediator to break apart nitrogen molecules, which naturally exist as strongly bonded pairs of nitrogen atoms, to form lithium nitride. This then reacts with hydrogen to make the ammonia.

Within the next 12-18 months, Jupiter Ionics aims to scale up its equipment so that it can produce a kilogram of ammonia per day. A grape farmer in the state of Victoria who has solar panels on his land is hoping to trial the system, says Prof MacFarlane.

It appears that Starfire Energy, Atmonia and Jupiter have containerised systems, that can take air, water and electricity and can create sizeable quantities of ammonia for fertiliser or a fuel.

This page on the Ammonia Energy Association web site is entitled Amogy: Ammonia-Powered Tractor, where this is said, alongside a picture of a standard John Deere tractor.

Earlier this month, Amogy demonstrated a new ammonia-powered tractor in Stony Brook, New York. A 100 kW ammonia-to-power system was successfully integrated into a John Deere mid-size standard tractor, which can operate on liquid ammonia fuel for a period of several hours. The tractor conversion demonstration was made possible by significant seed funding secured in late 2021.

The unique system is comprised of a standard liquid-storage tank and highly efficient ammonia-cracking modules integrated into a hybrid fuel cell system, which can provide consistent primary power for several hours per refueling. Therefore, the pioneering vehicle maintains the functionality and duration requirements operators rely on to support farming tasks, which has never been offered with other alternative energy solutions. The ammonia-powered tractor was driven for separate periods, with a refueling session in between. Refueling a tractor with liquid ammonia is fast and simple, similar to gas or diesel refueling.

This is Amogy’s web site.

I can also see a problem, if every farmer of a certain size wants to make their own ammonia for both fertiliser and fuel.

The NIMBYs will have a field day, but at least the countryside’s low-life won’t be nicking your diesel.

Nitricity

The BBC article also talks about Nitricity.

As Josh McEnaney, president and chief executive of Nitricity in the US, explains, spreading ammonia on fields results in greenhouse gas emissions that could be avoided if we took a more direct approach to applying nitrogen, the crucial element that promotes plant growth, to the soil.

His company is developing a system that uses solar-powered plasma cells to fix nitrogen from the air. This is then used to make nitric acid, which can be applied to the soil. Early experiments with tomato plants yielded success and the company is now trialling its technology with suppliers for the US fast food chain Chipotle.

“We don’t require any hydrogen production,” says Dr McEnaney. “We go straight for the fertiliser.”

This is the Nitricity web site.

Two Experts Give Their Views

The BBC article finishes with the views of two experts.

Bill David at the University of Oxford points out that, around the world, there is already lots of infrastructure designed to store and transport ammonia.

He praises large projects for manufacturing ammonia using renewable energy, such as the one in Uzbekistan that will reportedly spew out 454,000 tonnes of ammonia per year with the help of 2.4 gigawatts of wind energy.

While ammonia can be used as a fuel, it can also be cracked to release hydrogen, which may itself be burned as a fuel, points out Lindsey Motlow, senior research associate at Darcy Partners, a technology firm that works with the oil and gas industry.

“We’re seeing real progress in [the] development of ammonia cracking technology,” she says.

Conclusion

According to the BBC article, two percent of the carbon dioxide emitted on the planet comes from the creation of fertiliser.

So it looks like we can either fry or starve, if we don’t address the problem of zero-carbon fertiliser.

But the downside could be every farm having its own wind turbine.

The BBC article and the related web sites are a must-read.

 

 

February 28, 2024 Posted by | Energy | , , , , , , , , , , , , | Leave a comment

Centrica Energy, Bord Gáis Energy And Mitsubishi Power Announce Development Of Europe’s First Ammonia Fired Power Generation Facility

The title of this post, is the same as that of this press release from Centrica.

This is the sub-heading.

Centrica plc and Mitsubishi Power Europe Limited “Mitsubishi Power Europe” have signed a Memorandum of Understanding (MOU) to explore the development, construction, and operation of Europe’s first-ever ammonia-fired power generation facility at Bord Gáis Energy’s Whitegate Combined Cycle Gas Turbine (CCGT) power station in Cork, Ireland.

These four paragraphs outline the project.

The project is being led by Centrica through its Bord Gáis Energy and Centrica Energy businesses and Mitsubishi Power Europe and would become Europe’s inaugural ammonia-fired power generation facility and one of only two such facilities in the world.

The utilisation of low carbon ammonia as a clean and sustainable fuel source for power generation has the potential to provide security of supply while reducing greenhouse gas emissions. Low carbon ammonia has a higher volumetric density than hydrogen, enabling the utilisation of low carbon hydrogen in a form which is easy to transport and store, resulting in a fuel that can be combusted with no carbon emissions at point of use. Its use as a fuel is a promising long-term energy solution for the transition to a low-carbon energy value chain.

Bord Gáis Energy’s facility at Whitegate CCGT power station would serve as a global demonstration site for ammonia-fired power generation technology, providing insight into the feasibility and scalability of low carbon ammonia as a green fuel and shaping the future of power generation worldwide, with low carbon ammonia being sourced through Centrica Energy’s global trading network.

Following the signing of the MOU, the project team is being established to commence project feasibility assessments. Upon the successful outcome of this assessment, extensive local stakeholder engagement will commence.

Note.

  1. No mention of the size of the new power station is given in the press release.
  2. Whitegate power station is a 445 MW combined cycle gas turbine (CCGT), that was built in 2010.
  3. It can meet ten percent of Ireland’s electricity demand.

I have a few thoughts.

Will The Existing Power Station Be Converted To Ammonia Or Will A New Ammonia-Fired Power Station Be Built Alongside?

Consider.

  • If the second station doesn’t work, there’s no reduction in power.
  • If a replacement station doesn’t work, ten percent of Ireland will be in the dark.
  • Ireland will be needing more power in the next few years.
  • A second power station can be appropriately-sized.
  • Japanese don’t like to lose face!

Prudence probably says that building a second station alongside is the least risky route.

Wind Power In Ireland

This Wikipedia entry is entitled Wind Power In Ireland.

This is the first paragraph.

As of 2021 the island of Ireland has 5,585 megawatt and the Republic of Ireland has 4,309 MW of installed wind power nameplate capacity, the third highest per capita in the world. In 2020 wind turbines generated 36.3% of Ireland’s electrical demand, one of the highest wind power penetrations in the world.

There is also one 500 MW interconnector between the islands of Great Britain and Ireland, with another similar-sized one under construction.

As the wind doesn’t blow all the time, the island of Ireland will need some low-carbon backup.

Why Ammonia?

This paragraph from the press release gives several reasons.

The utilisation of low carbon ammonia as a clean and sustainable fuel source for power generation has the potential to provide security of supply while reducing greenhouse gas emissions. Low carbon ammonia has a higher volumetric density than hydrogen, enabling the utilisation of low carbon hydrogen in a form which is easy to transport and store, resulting in a fuel that can be combusted with no carbon emissions at point of use. Its use as a fuel is a promising long-term energy solution for the transition to a low-carbon energy value chain.

There may also be secondary issues here.

If you read the Applications section in the Wikipedia entry for ammonia, you will realise, what a useful chemical ammonia is.

As Ireland has a lot of agriculture, a fertiliser plant could be located close to the power station.

If the ammonia was green ammonia, then this will help to decarbonise the island of Ireland.

Where Will The Green Ammonia Come From?

These posts deal with the production and distribution of green ammonia.

Note.

  1. A continent with a lot of renewable energy like Africa or Australia can create lots of green ammonia.
  2. As the press release says, ammonia is easier to transport and store compared to hydrogen.
  3. The press release says that low carbon ammonia will be sourced through Centrica Energy’s global trading network.
  4. Fortescue Future Industries is mentioned in several posts, as producers of green hydrogen and green ammonia.
  5. Centrica is big enough to stand up to Andrew “Twiggy” Forrest and Fortescue Future Industries.

As in a few years, we will have many GWs of renewable energy, could we be making green ammonia for the Irish?

This news story on the UK Research and Innovation web site is entitled Designs For Green Ammonia Plant Become Reality.

This is the sub-heading.

Science and Technology Facilities Council (STFC) researchers are building a small-scale plant to generate ammonia using only renewable energy sources.

These two paragraphs outline the story.

Ammonia is a promising carbon-free fuel source of the future and so if successful, the plant has the potential to considerably advance the UK’s net zero ambitions.

It marks the second phase of the Ammonia Synthesis Plant from Intermittent Renewable Energy (ASPIRE) initiative which will be led by STFC in conjunction with the University of Bath, Johnson Matthey, and Frazer-Nash Consultancy.

The UK Research and Innovation news story has this description of the ASPIRE technology.

Current commercial ammonia synthesis is optimised for near steady production requiring constant power.

The first phase of ASPIRE however saw the design of a patented modular reactor and thermal management system that should enable operation from an intermittent renewable power supply.

The new plant will have three core elements:

  • a pressure swing adsorption system which extracts nitrogen from air
  • a modular electrolyser which splits hydrogen from water
  • a synthesis loop that uses the modular reactor and a thermal management system to combine hydrogen and nitrogen to make ammonia

This will enable the entire production process to operate autonomously, powered by a small wind turbine and series of solar canopies with an ammonia generation rate proportional to the available renewable power.

There is even this quote from a Dr. Alan Partridge.

Thanks to the incredible work on this initiative by the team at Rutherford Appleton Laboratory as well as the University of Bath and private sector partners, we are closer than ever to producing industry-scale green ammonia for the UK and the world.

Perhaps, this technology will allow the island of Ireland to make all the green ammonia it needs.

Will Centrica Be Going Into The Green Ammonia Business?

The Centrica press release says they will be dealing in green ammonia for the benefit of Ireland. So Yes!

Conclusion

The news story on the UK Research and Innovation web site is a must-read.

As we have so much renewable energy in the UK, some company will build an ASPIRE-based green ammonia plant in the UK.

 

 

 

November 29, 2023 Posted by | Energy | , , , , , , , , , , , , , , , , | Leave a comment

Yara Launches Green Hydrogen Trial To Reduce Food Production Carbon Emissions

The title of this post, is the same as that of this article on Hydrogen Fuel News.

This is the introductory paragraph.

Norwegian fertilizer manufacturing giant Yara is launching a landmark green hydrogen trial. The purpose is to separate the current connection between producing food and generating carbon emissions.

Read the article and then ask yourself, how much carbon dioxide was created to make the fertiliser you use on your lawn or allotment?

 

July 9, 2020 Posted by | Hydrogen | , , | Leave a comment