The Anonymous Widower

Breeze Hydrogen Multiple-Unit Order Expected Soon

The title of this post is the same as that of this article on Railway Gazette.

This is the first paragraph.

Alstom Transport is hopeful of confirming an order before the end of this year for its Breeze hydrogen multiple-unit trains being developed in partnership with leasing company Eversholt Rail, suggesting that the first trains could enter service ‘as early as 2022’.

It then goes out to fill out some of the thinking behind the Alstom Breeze hydrogen-powered train.

The Breeze Is A Stop-Gap

Alstom are quoted as indicating the Breeze is an interim solution, until the next generation of train is available.

But after a ride to Southend recently in a Class 321 Renatus, I’m sure that the ride and passenger acceptance will be of a high standard.

And that’s what counts. Hydrogen is only the train’s personal power supply.

Alstom Are Not Building A Suburban Trundler

The Alstom Coradia iLint is not an exciting train.

  • It has a cruising speed of 87 mph.
  • It has a range of 370-500 miles.
  • It has a noisy mechanical transmission.
  • It always runs on hydrogen-power.
  • The prototypes have covered 100,000 km.

In my view, it is very much a first generation compromise design.

The article says more about the Alstom Breeze.

  • It has a slightly faster cruising speed of 90 mph
  • The Breeze will have 50% more power than the iLint. Does this mean better acceleration and/or a longer and heavier train?
  • It will have a 1,000 km range.
  • It will have regenerative breaking.
  • It will have a new AC traction package, as does a Class 321 Renatus. So will the two systems be the same?

I am also fairly sure, the train will be able to use electrification of both 25 KVAC overhead and 750 VDC third-rail, as Class 321 trains can now!

Train Capacity

This is said about train capacity.

Despite the loss of some seating space, each set of three 20 m vehicles would provide slightly more capacity than a two-car DMU with 23 m cars which it would typically replace.

The Class 172/0 trains, that are two-car 23 metre diesel multiple units, have 124 seats.

In Hydrogen Trains Ready To Steam Ahead, I estimated that a three-car Alstom Breeze would have a seating capacity of around 140 seats, with the ability to perhaps take an additional 160 standees.

So was my seat estimate fairly good? I also think, that as the Breeze has been designed with bags of grunt, I suspect that the basic train could be increased in size by adding extra trailer cars.

After all, the legendary Class 442 train is a five-car train, with a power-car in the middle. South Western Railway, think they are worth pulling out of the scrapyard and refurbishing to run expresses between Waterloo and Portsmouth.

I am fairly certain, that Alstom can create a five-car Class 321 Breeze with the following characteristics.

A capacity of about three hundred seats.

  • A near-100 mph top speed.
  • A 1000 km range on hydrogen.
  • The ability to use 25 KVAC overhead and/or 750 VDC third rail electrification.
  • The ability to run two trains as a ten-car train.

It would be ideal for the following routes.

  • Liverpool and North Wales via Chester
  • Norwich and Derby
  • Newcastle and Carlisle
  • Preston and Carlisle via Barrow
  • Cardiff and the South Coast of England
  • Borders Railway
  • Southampton and Ashford
  • Waterloo and Exeter

All of these routes have partial electrification, which would reduce the amount of hydrogen needed to be carried around.

Now that is an interesting multi-variable calculation!

Hydrogen Infrastructure

Alstom seem to be developing infrastructure solutions to supply hydrogen for fleets of ten or more trains, which could be shared with other applications. The obvious one could be where a train depot and a fleet of buses share a facility in say a large city like Exeter, which has an extensive diesel train network.

The article also says this about the source of hydrogen.

Ideally, the trains would use ‘green’ hydrogen manufactured by electrolysis using surplus renewable energy rather than ‘brown’ hydrogen from steam methane reforming.

I agree wholeheartedly with that!

Delivery In 2022?

Consider what has already been achieved in other projects.

  • Alstom have proved they can generate enough electricity to power a practical train.
  • Eversholt have proved that you can turn Class 321 trains into comfortable and efficient 100 mph Class 321 Renatus trains for routes up to a hundred miles.
  • Several classes of Mark 3-based electrical multiple units have been re-engined with AC traction, including the Class 321 Renatus.
  • Engineers all over the UK have modified Mark 3-based coaches and multiple units to create better and more-efficient trains.

Helping delivery of the project, is a legacy of drawings and philosophy from British Rail Engineering.

If Alstom say 2022, I believe that that could be a feasible date.

Conclusion

The ghost of British Rail Engineering is certainly a benign one allowing all sorts of worthwhile development paths.

May 16, 2019 - Posted by | Transport | , , ,

No comments yet.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.