The Anonymous Widower

Converting Class 456 Trains Into Two-Car Battery Electric Trains

Mark Hopwood is the interim Managing Director of South Western Railway and in Special Train Offers A Strong Case For Reopening Fawley Line, I quote him as saying the following about the trains for the Fawley Branch Line.

However, SWR’s Mark Hopwood favours a much bolder plan. “We’d have to take a decision, once we knew the line was going ahead. But my personal belief is that we should be looking for a modern environmentally-friendly train that can use third-rail electricity between Southampton and Totton and maybe operate on batteries down the branch line.”

Pressed on whether that would mean Vivarail-converted former-London Underground stock, Hopwood ads. “It could be. Or it could be a conversion of our own Class 456, which will be replaced by new rolling stock very shortly. But I don’t think this is the time to use old diesels.

Mark Hopwood is so right about using old diesels.

  • Where possible new and refurbished trains should be zero-carbon.
  • Fiesel is to be banned by 2035 in Scotland and 2040 in England and Wales.
  • Diesel trains and hydrogen trains for that matter need to refuelled.
  • Get the diagrams right and battery electric trains can be charged on existing electrification or automatic Fast Charging systems, when they turn back at terminal stations.
  • Electric trains attract passengers.
  • Battery electric trains are mouse-quiet!

Who would use anything else other than electric trains with a battery option for sections without electrification?

The Class 456 Train

These pictures show some of the twenty-four Class 456 trains, that are in South Western Railway’s fleet.

This is the specification of a Class 456 train.

  • Two cars
  • Operating speed – 75 mph.
  • Capacity – 152 seats – Although the plate on the train says 113!
  • Built 1990-1991
  • Ability to work in pairs.

Most trains seem to be used to lengthen trains from eight to ten cars, as some of the pictures shows. As these 4+4+2 formations will be replaced with new 10-car Class 701 trains or pairs of five-car Class 701 trains, the trains will be looking for a new role.

Does this explain Mark Hopwood’s statement?

It should be noted that the Class 456 trains are members of the Mark 3 family, and bare a strong resemblance to the Class 321 train, which are shown in these pictures.

Note that I have included the side view, as it shows the amount of space under these trains.

Some Class 321 trains are being converted to Class 600 hydrogen trains, by Alstom at Widnes. Others have been given a life-extending Renatus upgrade.

Are The Driver Cars Of Class 456 and Class 321 Trains Identical?

The trains may look similar, but does the similarity go deeper?

Could Alstom Use Class 600 Hydrogen Train Technology To Create A Class 456 Train With a Battery Capability?

Consider.

  • Alstom are positioning themselves as Train Upgrade Specialists in the UK. They have already signed a near billion pound deal to upgrade and maintain Avanti West Coast’s fleet of Class 390 trains.
  • Alstom are creating the Class 600 hydrogen train from withdrawn Class 321 trains.
  • A hydrogen-powered  train is basically a battery electric train with a hydrogen tank and fuel cell to charge the batteries.
  • The Class 600 train doesn’t appear to be making fast progress and is still without an order.
  • One possible hydrogen route must surely be London Waterloo and Exeter, so I suspect Alstom are talking to South Western Railway.
  • The Class 456 trains are owned by Porterbrook, who would probably like to extend the useful life of the trains.

Could it be that the battery core and AC traction package of Alstom’s hydrogen system for the Class 600 train can turn old British Rail-era electric multiple units into battery electric multiple units with a useful range?

It is certainly a possibility and one that is also within the capability of other companies in the UK.

Could The Class 456 Trains Receive a Class 321 Renatus Interior And Traction Package?

As Class 321 and Class 456 trains were built around the same time, the two trains must share components.

These pictures show the current interior of a Class 456 train.

This is excellent for a two-car electric multiple unit, built thirty years ago! Although, the refurbishment is more recent from 2014-15.

  • Note the wheel-chair space and the copious rubbish bins.
  • I also spotted a stowed wheel-chair ramp on the train. It can be seen if you look hard in the picture than shows the wheel-chair space.
  • Some might feel that toilets should be provided.

These pictures show the interior of a Class 321 train, that has been given the Renatus upgrade.

What is not shown is the more efficient AC traction package.

I have been told or read, that the Renatus interior will be used in the conversion of a Class 321 train to an Alstom Class 600 or Breeze hydrogen train.

On the other hand, the current Class 456 interior would probably be ideal for a branch line, where one of initial aims would be to attract passengers.

Could A Class 456 Train Have a Lightweight Traction Package?

Consider.

  • The Class 456 train will access electrification that is only 750 VDC third-rail.
  • Batteries work in DC.
  • The new traction motors will work in AC, if they follow the practice in the Class 321 Renatus and the Class 600 train.
  • Regenerative braking will charge the batteries in both trains.
  • Air-conditioning and other hotel services can work in DC.

Some components needed to run from 25 KVAC like a transformer could be left out to save weight and improve acceleration.

I would suspect that a Class 456 train with batteries could use a slimmed-down traction system from the Class 600 train.

On both Class 456 and 600 trains a core system, that would power the train, might contain.

  • The traction battery or batteries.
  • The traction motors that both drive and brake the train,
  • Third-rail electrification shoes, so that the batteries could be charged in a station, as required.
  • A clever computer system, that controls the acceleration, braking and charging as required.

On the Class 600 train, there would also be the following.

  • Hydrogen tanks and fuel cells to provide an independent power source to charge the batteries.
  • A pantograph to access 25 KVAC overhead electrification.
  • Extra electrical gear to access the electrification.

I think it would be possible to design the Class 456 train with batteries as the basic train and just add the extra  hydrogen and electrical gubbins to make it a Class 600 train.

What Battery Range And Size Would Be Needed In A Class 456 Train?

These are typical branch line lengths for South Western Railway.

  • Fawley Branch – 8 miles
  • Wareham and Swanage – 11 miles
  • Lymington Branch – 5.6 miles
  • Reading and Basingstoke – 15.5 miles

I would suspect that a range of thirty miles on battery power would be sufficient for a Class 456 train with batteries.

In an article in the October 2017 Edition of Modern Railways, which is entitled Celling England By The Pound, Ian Walmsley says this in relation to trains running on the Uckfield Branch, which is not very challenging.

A modern EMU needs between 3 and 5 kWh per vehicle mile for this sort of service.

So applying that formula gives battery capacity of between 180 kWh and 300 kWh.

In Issue 864 of Rail Magazine, there is an article entitled Scotland High Among Vivarail’s Targets for Class 230 D-Trains, where this is said.

Vivarail’s two-car battery units contains four 100 kWh lithium-ion battery rafts, each weighing 1.2 tonnes.

If 200 kWh can be placed under the floor of each car of a rebuilt London Underground D78 Stock, then I think it is reasonable that up to 200 kWh can be placed under the floor of each car of the proposed train.

This picture of the Driver Car of a Class 321 train, shows that there is quite a bit of space under those trains.

Are the Class 456 trains similar? This is the best picture I have got so far.

It does appear that space is similar to that under a Class 321 train.

If we assume that the Class 456 train can have the following specification.

  • Battery capacity of 200 kWh in both cars.
  • Regenerative braking to battery.
  • Power consumption of 4 kWh per vehicle mile.

I think we could be approaching a range of fifty miles on a route without too many energy-consuming stops.

Charging The Batteries

I like the Vivarail’s Fast Charge concept of using third-rail equipment to charge battery trains.

This press release from the company describes how they charge their battery electric Class 230 trains.

  • The system is patented.
  • The system uses a trickle-charged battery pack, by the side of the track to supply the power.
  • The first system worked with the London Underground 3rd and 4th rail electrification standard.

As the length of rails needed to be added at charging points is about a metre, installing a charging facility in a station, will not be the largest of projects.

Under How Does It Work?, the press release says this.

The concept is simple – at the terminus 4 short sections of 3rd and 4th rail are installed and connected to the electronic control unit and the battery bank. Whilst the train is in service the battery bank trickle charges itself from the national grid – the benefit of this is that there is a continuous low-level draw such as an EMU would use rather than a one-off huge demand for power.

The train pulls into the station as normal and the shoe-gear connects with the sections of charging rail. The driver need do nothing other than stop in the correct place as per normal and the rail is not live until the train is in place.

That’s it!

As an electrical engineer, I’m certain the concept could be adapted to charge the batteries of a conventional third-rail train.

Vivarail’s press release says this about modification to the trains.

The train’s shoe-gear is made of ceramic carbon so it is able to withstand the heat generated during the fast charge process.

That wouldn’t be a major problem to solve.

Class 456 Train With Batteries And Class 600 Train Compared

The following sub-sections will compare the trains in various areas.

Lightweight Design

As I suspect that the basic structure of the Class 456 and Class 600 trains are similar, systems like toilets, air-conditioning, traction motors and seats will be chosen with saving weight in mind.

Every kilogram saved will mean faster acceleration.

Operating Speed

The current Class 321 train is a 100 mph train, whilst the current Class 456 train is only a 75 mph train.

I wonder if applying the modern traction package of the Class 321 Renatus to the Class 456 train could speed the shorter train up a bit?

Range Away From Electrification

Alstom have quoted ranges of hundreds of miles for the Class 600 train on one filling of hydrogen, but I can’t see the Class 456 train with batteries doing much more than fifty miles on a full charge.

But using a Fast Charge system, I can see the Class 456 train with batteries fully-charging in under ten minutes.

Fast Charge systems at Romsey and Salisbury stations would surely enable the Class 456 trains with batteries to run the hourly service over the thirty-eight mile route between the two stations.

Passenger Capacity

The current Class 456 trains have a capacity of 152 seats.

In Orders For Alstom Breeze Trains Still Expected, I said this.

The three-car Alstom Breeze is expected to have a similar capacity to a two-car diesel multiple unit.

But until I see one in the flesh, I won’t have a better figure.

If South Western Railway were wanting to replace a two-car diesel Class 158 train, they’d probably accept something like 180 seats.

Increasing Passenger Capacity

There are compatible trailer cars around from shortening Class 321 trains from four to three cars and their may be more from the creation of the Class 600 trains.

I suspect that these could be added to both Class 456 and Class 600 trains to increase capacity by fifty percent.

As a two-car train, the Class 456 train might be a bit small, but putting in a third car, which had perhaps slightly more dense seating and possibly a toilet and even more batteries could make the train anything the operator needed.

Suitability For London Waterloo and Exeter via Salisbury

This is South Western Railway’s big need for a zero emission train.

  1. It is around 170 miles
  2. Only 48 miles are electrified.
  3. It is currently worked by three-car Class 159 trains working in pairs.
  4. Class 159 trains are 90 mph trains.

I have believed for some time, that with fast charging, a battery electric train could handle this route.

But, I would feel that.

  • Class 456 trains would be too slow and too small for this route.
  • Class 600 trains would be too small for this route.

On the other hand, I believe that Hitachi’s Class 800 train with a battery electric capability or Regional Battery Train, which is described in this infographic from the company, could be ideal for the route.

The proposed 90 km or 56 mile range could even be sufficient take a train between Salisbury and Exeter with a single intermediate charge at Yeovil Junction station, where the trains wait up to ten minutes anyway.

There are other reasons for using Hitachi’s Regional Battery Train rather than Class 600 trains.

  • First Group have a lot of experience of running Hitachi Class 80x trains, through their various subsidiaries.
  • They could share depot facilities at Exeter.
  • No specialist facilities would be needed.
  • A five-car Class 801 with batteries would have a convenient 300 seats.
  • I suspect they could be delivered before Alstom’s Class 600 train.

As the only new infrastructure required would be Fast Charge facilities at Salisbury and Yeovil Junction stations, I feel that Hitachi’s Regional Battery Train, should be a shoe-in for this route.

First Delivery

The Wikipedia entry for the Class 600 train, says introduction into traffic could be in 2024. Given, the speed with which Greater Anglia’s Class 321 trains were updated to the Renatus specification, we could see Class 456 trains with a battery capability and new interiors running well before 2024.

A Few Questions

These questions have occurred to me.

Could The Technology Be Used To Create A Class 321 Battery Electric Train?

I don’t see why not!

I believe a Class 321 battery electric train could be created with this specification.

  • Three or four cars. Remember the Class 320 train is a three-car Class 321 train.
  • 100 mph operating speed.
  • Regenerative braking to the batteries.
  • Renatus or operator-specified interior.
  • Toilet as required.
  • Electrification as required.
  • Battery range of around sixty miles.
  • Ability to use a Fast Charge system, that can easily be installed in a terminal platform.

Trains could be tailored to suit a particular route and/or operator.

Any Other Questions?

If you have any other questions, send them in and I’ll add them to this section.

Conclusion

It does appear that if the Class 456 trains, were to be fitted with a battery capability, that they would make a very useful two-car battery electric train, with the following specification.

  • Two cars
  • Operating speed – 75 mph. This might be a bit higher.
  • Capacity – 152 seats
  • Ability to work in pairs.
  • Modern interior
  • Range of 45-50 miles on batteries.
  • Ability to charge batteries in ten minutes in a station.
  • Ability to charge batteries on any track with 750 VDC third-rail electrification.

This is the sort of train, that could attract other operators, who don’t have any electrification, but want to electrify short branch lines.

 

 

 

August 12, 2020 Posted by | Energy Storage, Hydrogen, Transport | , , , , , , , , | 8 Comments

Eversholt Rail And Alstom Invest A Further £1 Million In Breeze Hydrogen Train Programme

The title of this post, is the same as that of this press release from Alstom.

The major point  made is that the train will be called a Class 600 train.

July 23, 2020 Posted by | Transport | , , , | Leave a comment

Alstom And Snam To Develop Hydrogen Trains In Italy

The title of this post, is the same as that of this article on H2 View.

This paragraph sums up the agreement.

As part of the agreement, Alstom will manufacture and maintain newly built or converted hydrogen trains, while Snam will develop the infrastructures for production, transport and refuelling.

It does appear that Alstom is setting up similar deals across Europe, with now Germany, the Netherlands, the UK and Austria being prepared for hydrogen trains, manufactured or converted by Alstom.

The only recent reference, that I can find to the Alstom Breeze for the UK, is this article in Electric And Hybrid Vehicle Technology International, which is entitled Is Post-Covid The Perfect Time To Start A Hydrogen Transportation Revolution?

There is just a new visualisation pf the train to illustrate an article.

June 5, 2020 Posted by | Transport | , , | Leave a comment

300th Coradia Polyvalent Train Delivered By Alstom

The title of this post is the same as rgar of this article on Rail Advent.

The Polyvalent is a variety of the Alston Coradia, that was first ordered for France.

This is the description of the train in Wikipedia.

As of 2018, the Coradia Polyvalent is the latest variant in the Coradia family. It can operated at a maximum speed of 160 km/h in electric or bi-mode at voltages of 25 kV and 1,500 kV; a cross-border version capable of operating at a voltage of 15 kV, suitable for the German and Swiss rail networks, has also been made available. The low integrated floor of the carriages provides improved accessibility and a high level of visibility to passengers. As a measure to restrict vibrations and noise levels, motorised bogies are placed at both ends of each carriage.

The Rail Advent article adds this.

In response to the hydrogen plan by the French Minister, Alstom is now looking to incorporate a dual-mode hydrogen version of the Coradia Polyvalent range.

I would assume, this means an electric train, that can use hydrogen power, when the electrification stops.

This is how a hydrogen train should work and from reports, it appears the Alstom Breeze based on a rebuilt Class 321 train, will work like this.

The Alstom Coradia iLint may have proved the concept of hydrogen power, but compared to other hydrogen and battery powered buses and trains, I’ve ridden, it scores poorly in terms of noise, vibration and harshness.

May 24, 2020 Posted by | Transport | , , , , | 3 Comments

‘World First’: SGN Launches Bid For 300 Green Hydrogen Homes Project In Fife

This title of this post, is the same as that of this article on Business Green.

This is the introductory paragraph.

Around 300 homes in Scotland could soon have their heating and cooking powered by green hydrogen produced from renewable electricity under proposals for “the world’s first green hydrogen-to-homes network” unveiled today by SGN.

A few points from the article.

  • Construction could start in the winter of 2020/21.
  • The project will take two or three years.
  • The modified houses appear to be in Levenmouth.
  • The project has been dubbed H100 Fife.
  • The hydrogen will be produced by electrolysis using electricity generated by offshore wind.

The article also gives a round-up of the state of hydrogen in the UK.

Could This Have Other Implications For Levenmouth?

In Scottish Government Approve £75m Levenmouth Rail Link, I discussed the rebuilding of the Levenmouth Rail Link.

I suggested that the route could be run by Hitachi Class 385 trains with batteries, which Hitachi have stated are being developed. I covered the trains in more detail in Hitachi Plans To Run ScotRail Class 385 EMUs Beyond The Wires.

If there were to be a source of hydrogen at Levenmouth, could hydrogen-powered trains be used on the route?

The Levenmouth Rail link could be a prototype for other short rail links in Scotland.

 

In

 

 

May 21, 2020 Posted by | Transport, World | , , , , , , , , | Leave a comment

Government’s Bias Against Hydrogen Buses Challenged

The title of this post, is the same as that of this article on Fleetpoint.

This is the introductory paragraph.

Industry leaders, campaign groups and academics today challenged the Government’s “deliberate” and “misjudged” bias against hydrogen buses in its pursuit of decarbonising public transport.

I do find this article a bit surprising.

  • We have had a couple of trials of hydrogen buses in London and Aberdeen and I can’t remember any serious adverse stories.
  • Jo Bamford has rescued Wrightbus and plans to make thousands of hydrogen-powered buses.
  • Councils seem keen on hydrogen-powered buses.
  • There has been articles praising hydrogen in quality newspapers.
  • It’s almost, as if someone in the Department of Transport, is saying No, for an illogical reason.

The government also seems to have given Alstom the nod to develop hydrogen trains.

Or has it?

I wrote Breeze Hydrogen Multiple-Unit Order Expected Soon, almost exactly a year ago and nothing has happened.

The only valid excuse is that the Department for Transport is up to its neck in work for COVID-19!

 

May 20, 2020 Posted by | Transport | , , , | Leave a comment

Orders For Alstom Breeze Trains Still Expected

It is almost a year since I wrote Breeze Hydrogen Multiple-Unit Order Expected Soon, but no order has so far been placed.

But some things have happened or are happening.

At present, Greater Anglia appear to have 102 Class 321 trains in service, all of which could be converted to Alstom Breeze trains.

Although it should be noted that thirty trains have been upgraded to a Renatus specification, as cover, if there are any problems during Greater Anglia’s fleet changeover.

The Conversion Process

The 102 Class 321 trains will release the same number of each of the following coaches.

  • DTCO – Driving Trailer Composite Open
  • TSO – Trailer Standard Open
  • PMSO – Pantograph Motor Standard Open
  • DTSO – Driving Trailer Standard Open

Each three-car Breeze will need two Driver Trailer cars and a Pantograph Motor car to be converted.

Driver Trailer Cars

Consider.

  • Most two- and three-car diesel multiple units in the UK, don’t have First Class seats.
  • Many new trains like those of Greater Anglia and South West Trains don’t have First Class seats.
  • Seating in these cars will be very much reduced by the fitting of a large hydrogen tank.

I wouldn’t be surprised to see both types of Driver Trailer cars converted into identical cars.

Pantograph Motor Car

The Pantograph Motor car will be seriously modified, with these systems and components installed.

  • A new AC traction system.
  • Batteries fed by the fuel cells,
  • Regenerative braking

All will be controlled by a sophisticated energy management system.

  • Will regenerative braking be able to charge the batteries?
  • Will the pantograph be retained, so that on electrified lines, the trains can use the electrification?
  • Will the fitting of third-rail shoes be considered?
  • Will the train retain the 100 mph capability of the Class 321 train?

The train could be a real 100 mph efficient go-anywhere train.

New Interiors

New Class 321 Renatus-style interiors will be fitted.

The Class 321 Renatus is a high-class interior for a suburban train.

  • There are both fully-accessible and standard toilets.
  • There are power sockets and wi-fi.
  • Passenger information displays are fitted.

I suspect tables could be fitted, if the operator required them.

Northern Trains And The Alstom Breeze

The three-car Alstom Breeze is expected to have a similar capacity to a two-car diesel multiple unit.

Northern Trains Current And Future Trains

At present Northern have the following two-car diesel multiple units in service, according to Wikipedia.

In addition, there are eight three-car Class 158 trains, which gives a total of 107 trains, that could be suitable for replacement by Alstom Breeze trains.

If these were the only trains available, Northern would have to keep some old diesel multiple units in service for longer.

But there are other trains expected to enter service, in the coming months.

Northern should just about scrape through, especially as COVID-19 has reduced services.

I would think, that Northern could absorb quite a lot of Alstom Breeze trains.

Deployment On Teesside

In Fuelling The Change On Teesside Rails, I talked about using the trains on Teesside.

  • Services would be centred on Darlington and Middlesbrough.
  • There is a supply of hydrogen nearby.
  • Bishop Auckland, Newcastle, Nunthorpe, Redcar and Whitby could be served.
  • The 1000 km range could be useful.
  • The trains could even be a tourist attraction for the area.

In Northern’s Hydrogen Plans, I wrote about progress on these plans, which included applying for planning permission for the depot at Lackenby.

Deployment Around Widnes

In A Hydrogen Mobility Roadmap For North-West England, I wrote using the trains around Widnes.

  • Services could be centred around Alstom’s Widnes factory.
  • Hydrogen could be supplied by pipeline from Runcorn.
  • Chester, Liverpool and Manchester could be served.
  • Some routes might need more capacity.

Could Alstom introduce a couple of pre-production trains on a route past Widnes, in a similar way, that they have introduced the Coradia iLint train in Germany?

This approach seems to have helped a successful introduction into service of the trains.

Increasing Capacity

I do think that these trains will need extra capacity on some routes, like perhaps Liverpool and Manchester via Widnes and Warrington.

The solution would surely be to add one of the spare Trailer cars to bring the trains up to four cars and increase the passenger capacity by perhaps fifty percent.

Northern Routes Currently Run By Two-Car Diesels

Wikipedia lists these services as run by two-car-diesels in Classes 150, 155, 156 and 158.

  • Barrow-in-Furness and Carlisle
  • Barrow-in-Furness and Lancaster
  • Blackburn and Rochdale
  • Blackburn and Wigan Wallgate
  • Blackpool North and York
  • Clitheroe and Rochdale
  • Hexham and Nunthorpe *
  • Hull and Scarborough
  • Hull and York
  • Huddersfield and Castleford
  • Huddersfield and Leeds
  • Huddersfield and Sheffield
  • Lancaster and Morecambe/Heysham Port
  • Leeds and Carlisle
  • Leeds and Chester
  • Leeds and Goole
  • Leeds and Knottingley
  • Leeds and Lincoln
  • Leeds and Manchester Victoria
  • Leeds and Morecambe
  • Leeds and Nottingham
  • Leeds and Selby
  • Leeds and Sheffield
  • Leeds and Wigan Wallgate
  • Leeds and York
  • Liverpool Lime Street and Manchester Oxford Road *
  • Manchester Piccadilly and Buxton
  • Manchester Piccadilly and Chester
  • Manchester Piccadilly and New Mills Central
  • Manchester Piccadilly and Rose Hill Marple
  • Manchester Piccadilly and Sheffield
  • Manchester Victoria and Kirkby
  • Manchester Victoria and Southport
  • Manchester Victoria and Stalybridge
  • Middlesbrough and Whitby *
  • Newcastle and Carlisle
  • Newcastle and Chathill
  • Newcastle and Morpeth
  • Oxenholme Lake District and Windermere
  • Preston and Blackpool South
  • Preston and Colne
  • Preston and Ormskirk
  • Saltburn and Bishop Auckland/Darlington *
  • Sheffield and Adwick
  • Sheffield and Bridlington
  • Sheffield and Gainsborough Central
  • Sheffield and Hull
  • Southport and Alderley Edge

Those marked with an * could be served by hydrogen trains from Laverton and Widnes.

Positioning Hydrogen Trains

Trains often have to be positioned from and to the depot at the beginning and end of a day’s work.

On my list of services, there is an hourly shuttle service between Oxenholme Lake District and Windermere stations.

Suppose this service was to be run by an Alstom Breeze based at Widnes.

  • The train could be fuelled with hydrogen at Widnes, early in the day.
  • The train could position to Oxenholme Lake District along the West Coast Main Line, using the electrification, after joining it a few miles from the depot.
  • Each round trip to Windermere is 20 miles or 32 kilometres.
  • An Alstom Breeze train has a range of 1000 kilometres on hydrogen, so it could do thirty round trips without refuelling.
  • At the end of the day, the train would return to the depot using the electrification.

I would expect, that the long range of hydrogen trains could make them easier to diagram or schedule, than battery ones.

They might also be able to work some distance away from the depot, if they could use an electrified route for positioning.

So if we look at Widnes, these are approximate distances to stations where hydrogen services might run.

  • Liverpool Lime Street – 12 miles
  • Manchester Airport – 33 miles
  • Manchester Oxford Road – 22 miles
  • Preston – 33 miles
  • Warrington Central – 6 miles
  • Wigan North Western – 18 miles

Some of the routes to these stations are partially electrified, so the trains could position using the electrification.

Consider these routes.

  • Preston and Blackpool South – 20 miles
  • Preston and Colne – 19 miles
  • Preston and Ormskirk – 20 miles

A hydrogen train could position from Widnes and perhaps do fifteen trips before needing a refuel.

I will also look at distances from Lackenby, where the Teesside Depot will be built, as I wrote in Northern’s Hydrogen Plans.

  • Darlington – 23 miles
  • Newcastle via East Coast Main Line – 59 miles
  • Newcastle via Durham Coast Line – 54 miles
  • York via Northallerton and East Coast Main Line – 56 miles

I suspect quite a few services could be run from Lackenby depot, if the electrified East Coast Main Line was used to position the trains.

Possible Future Stages

If the trains are successful, I can see that Northern Trains will want to introduce more hydrogen trains.

As the Government controls this franchise, does this make more zero-carbon trains more or less likely?

More Trains

There are only so many Class 321 trains to convert, but after Alstom complete their takeover of Bombardier, I believe that a hydrogen-powered Aventra could become a reality.

I wrote about my ideas for this in I Design A Hydrogen Aventra.

So in the long term, if more hydrogen trains are needed, it shouldn’t be a problem.

More Depots

More depots will be needed and I would expect others like Lackenby will be added in strategic locations.

  • Given the service pattern, Blackburn, Leeds and Sheffield must be possibilities.
  • Hydrogen will probably be generated in the depots using electrolysers.

In the future could we see depots for hydrogen trains shared between bordering franchises?

  • A depot at Carlisle could be shared between Northern and Scotrail
  • A depot at Chester could be shared between Northern and Trains for Wales
  • A depot at Exeter could be shared between Great Western and South West Railways

ITM Power in Rotherham have the technology to generate the hydrogen, which could also be used to fuel the local buses and other vehicles.

Conclusion

From pubished reports, it looks to me, that Northern have been thinking hard how they can deploy a substantial fleet of Alstom Breeze trains, by using depots at Widnes and Lackenby, where the trains can be refuelled overnight.

I am also fairly sure that Alstom will design the Breeze, so that trains can position themselves along the West and East Coast Main Lines, using the 25 KVAC electrification.

 

 

 

 

May 10, 2020 Posted by | Transport | , , , , | 5 Comments

A Hydrogen Mobility Roadmap For North-West England

In the last few days, the North West Hydrogen Alliance has published a document entitled A Hydrogen Mobility Roadmap.

Some information from a well-written and very informative document.

Vehicle Types Covered In The Roadmap

A composite picture at the start of the document shows the following hydrogen-powered vehicles.

  • A double-deck bus.
  • A heavy goods vehicle.
  • A passenger car.
  • A passenger train.

Other vehicles, which exist or are under development, could have been added.

  • A refuse truck.
  • A high capacity fork lift or dump truck.
  • A freight locomotive.
  • The availability of hydrogen fuel in an area, must encourage the use of hydrogen-powered vehicles.

Comparison Of Electric And Hydrogen

The document gives a comparison between electric and hydrogen power.

Speed Of Refuelling

  • Electric – The current long duration of battery recharges rules out many forms of transport
  • Hydrogen – Hydrogen refuelling speed is largely similar to current petrol and diesel fuelling

Distance On Single Charge/Tank

  • Electric – At the present time, cars will travel 150-250 miles per charge, but current battery weight means they are unsuitable for HGVs
  • Hydrogen – Vehicles can travel 500+ miles on a single tank of hydrogen, which can be scaled up to suit vehicle size

Availability Of Fuel

  • Electric – Growing network of charge points, but this is creating problems for power networks
  • Hydrogen – Only 12 refuelling stations in the UK

Availability Of Vehicles

  • Electric – Various cars to choose from, buses and trains readily available, with HGVs and ships in development
  • Hydrogen – Cars, buses and trains largely available. HGVs and ships in development

Note.

  1. The speed of refuelling and the range for hydrogen.
  2. The need for more hydrogen refuelling stations.
  3. Both battery and hydrogen ships are in development.

I think their points are fair.

Road, Rail And Marine

The document discusses the various modes of transport and how hydrogen can help, with respect to both carbon-emissions and pollution.

The Alstom Breeze Trains

This picture is a visualisation of the Alston Breeze.

This is said about the Alstom Breeze trains.

Alstom in Widnes is ready to deploy its new Breeze trains and is working with Northern Rail to identify routes that are suitable for conversion to hydrogen.

A map also shows hydrogen train symbols on the Liverpool and Manchester Line, that goes via Widnes and Warrington and conveniently passes the Alstom factory at Widnes.

I wonder, if we’ll see an acceleration of this project?

Consider.

  • Northern Rail is now directly controlled by the Government.
  • Some Class 321 trains for conversion, will surely be available this summer.
  • The updating of the trains, except for the hydrogen system has been developed in the Renatus project.
  • Alstom have the experience of the successful hydrogen-powered Alstom Coradia iLint from Germany.
  • Supplying the Alstom factory with hydrogen, shouldn’t be too difficult.
  • I doubt any extra infrastructure is needed to run the trains.
  • Alstom have sold two or three fleets of iLints on the back of a successful introduction into service of two prototype trains.

I don’t think, Alstom and all the various partners and stakeholders would object if the project were to be accelerated.

What’s Already Happening In The North West?

These hydrogen-powered projects are mentioned.

  • Twenty double-deck buses for Liverpool City Centre.
  • Alstom Breeze trains.
  • storengy refuse trucks for Cheshire.
  • ULEMCo are converting trucks and ferries.
  • Port of Liverpool air quality.

It does seem to be that if you give an area a hydrogen network, possible users will find ways to use it to their advantage.

Rising To The Challenge

This section answers these questions.

Where Will The Hydrogen Come From?

Initially from INEOS at Runcorn, where I used to work around 1970 and BOC at St. Helens.

How Will It Be Transported?

Mainly by innovative use of new and existing pipelines.

How Do We Get To Critical Mass?

It looks like they’ll start slowly with hydrogen from Runcorn and St. Helens and build from there.

I would add a further question.

Will They Be Adding Hydrogen Filling Stations To The Network?

The North West needs them!

Hydrogen Storage

This is said about storing hydrogen.

Geologically, Cheshire is one of the few places in the UK where major underground gas storage in salt caverns has been delivered, paving the way for potential hydrogen storage, which is already done at scale elsewhere.

When I worked at ICI, I was given a tour of one of salt caverns. One is rumoured to be large enough to enable a full-size replica of Salisbury cathedral to be built inside.

Research

This is said about research.

Esteemed universities, and a wealth of innovative research companies, mean the region can deliver new hydrogen technologies. With academia working side-by-side with industry, the North West’s institutions can equip the next generation of skilled workers to support the hydrogen economy.

As a graduatev of one of those esteemed universities, how can I disagree?

Carbon Capture And Storage

This is said about carbon capture and storage.

Offshore reservoirs in the East Irish Sea can store carbon dioxide (CO2) produced from hydrogen production. Carbon Capture Utilisation and Storage (CCUS) is essential technology to help the UK in its fight against climate change. CCUS can capture up to 95% of the CO2 emissions associated with producing hydrogen from natural gas.

Whether you want to produce hydrogen this way is another matter. But the oil refineries and chemical plants along the Mersey are surely prime candidates for CCUS.

An Alliance

Not for nothing is the project called the North West Hydrogen Alliance!

Sixteen partners are mentioned at the end of the document.

 

May 8, 2020 Posted by | Transport | , , , , , , , , | 4 Comments

The Definitive Hydrogen Train

There is only one hydrogen-powered train in service and that is the Alstom Coradia iLint, which is running in Germany.

I feel it is very much an interim design, as Alstom has taken a diesel-mechanical Lint train and swapped the diesel for a hydrogen-powered electricity generator and an electric motor.

Alstom are converting electric Class 321 trains into a hydrogen-powered version called Breeze.

A typical train would be three cars. The visualisation shows one of the two driver cars, that contain a large hydrogen tank behind the cab.

Between the two driver cars would be a trailer car.

Using Electrification

Nothing has been disclosed yet, but it would surely be easy to allow this hydrogen train to keep its pantograph on the trailer car and be able to use electrification if it is installed.

This would increase the range of the train and might allow a version with a smaller hydrogen tank and a greater passenger capacity.

Charging Batteries

In a definitive hydrogen-powered train, which had been designed from scratch to use hydrogen, I could envisage, that the batteries could also be charged, when the train is connected to either electrification or a charging station.

A Smart Computer

The train would have a very smart computer, which would do the following.

  • Manage the various power sources.
  • Choose the appropriate source for the route, weather, passenger load, fuel and battery levels.
  • Raise and lower the pantograph automatically.
  • Control the trains systems to minimise electricity use.

This is little different to many trains, built in the last few years.

Conclusion

The definitive hydrogen-powered train will be a battery-electric-hydrogen hybrid train.

April 11, 2020 Posted by | Transport | , , | 1 Comment

First Passenger Train In 80 Years Runs On Camp Hill Line

The title of this post is the same as that of this article on Rail Technology Magazine.

These two paragraphs described the route, that the train took on the Camp Hill Line.

On Monday morning a train carrying the Mayor, West Midlands Railway’s customer experience director Jonny Wiseman and other representatives from across the rail industry, travelled along the line.

The train followed the route of what would be the re-opened line, stopping at the Moseley, Kings Heath and Hazelwell sites before arriving into Kings Norton, and later returning to Birmingham New Street.

The article has a picture showing the VIPs showing boards indicating the stations at Moseley, Kings Heath and Hazelwell, that will be reopened.

Wikipedia says this under Future for all three stations.

In 2019, the project to re-open the stations at Moseley, Kings Heath and Hazelwell received £15 million in Government funding, with construction due to start in 2020 and aimed for completion in time for the 2022 Commonwealth Games.

£15million seems good value to reopen three stations.

Let’s hope the world has solved the COVID-19 crisis before the 2022 Commonwealth Games.

Trains For The Service

The picture in the article, shows the test service was run by a two-car Class 170 train. This is an ideal train to do the testing, but as the Camp Hill Line is not electrified, self-powered trains will be needed for the passenger service.

West Midlands Trains will have a good selection of self-powered trains with which to run the service.

  • They already have a selection of Class 170 and Class 172 Turbostar diesel multiple units in very good condition, which total thirty-seven two-cars and twenty-one three-cars.
  • I’m sure Vivarail will pitch diesel-electric or battery-electric versions of their Class 230 trains.
  • Alstom will probably pitch the Breeze hydrogen-powered train.
  • Porterbrook will probably pitch their proposed Battery/FLEX conversion of Class 350 trains.

I don’t think there will be a problem finding a suitable fleet for this route.

I suspect some form of battery-electric train will be used, as there is lots of 25 KVAC overhead electrification in the Birmingham area, that can be used to charge the batteries.

Battery-electric trains with a range of perhaps forty miles would also open up the possibilities for other electric services for West Midlands Trains.

A Thought On Construction

Because of COVID-19, there will probably be numbers of unemployed in this part of Birmingham, who have skills that could be useful to do the building work.

So should the non-railway related parts of the reopening be accelerated to put money in the pockets of the local unemployed.

March 19, 2020 Posted by | Health, Sport, Transport | , , , , , , , , , , , | 1 Comment