The Anonymous Widower

Could A Modular Family Of Freight Locomotives Be Created?

In Thoughts On A Battery/Electric Replacement For A Class 66 Locomotive, I looked at the possibility of creating a battery/electric locomotive with the performance of a Class 66 locomotive.

  • I felt that the locomotive would need to be able to provide 2,500 kW for two hours on battery, to bridge the gaps in the UK electrification.
  • This would need a 5,000 kWh battery which would weigh about fifty tonnes.
  • It would be able to use both 25 KVAC overhead and 750 VDC third-rail electrification.
  • It would have a power of 4,000 kW, when working on electrification.
  • Ideally, the locomotive would have a 110 mph operating speed.

It would be a tough ask to design a battery/electric locomotive with this specification.

The Stadler Class 88 Locomotive

Suppose I start with a Stadler Class 88 locomotive.

  • It is a Bo-Bo locomotive with a weight of 86.1 tonnes and an axle loading of 21.5 tonnes.
  • It has a rating on electricity of 4,000 kW.
  • It is a genuine 100 mph locomotive when working from 25 KVAC overhead electrification.
  • The locomotive has regenerative braking, when working using electrification.
  • It would appear the weight of the diesel engine is around seven tonnes
  • The closely-related Class 68 locomotive has a 5,600 litre fuel tank and full of diesel would weight nearly five tonnes.

In Thoughts On A Battery Electric Class 88 Locomotive On TransPennine Routes, I said this about replacing the diesel-engine with a battery.

Supposing the seven tonne diesel engine of the Class 88 locomotive were to be replaced by a battery of a similar total weight.

Traction batteries seem to have an energy/weight ratio of about 0.1kWh/Kg, which is increasing with time, as battery technology improves.

A crude estimate based on this energy/weight ratio would mean that at least a 700 kWh battery could be fitted into a Class 88 train and not make the locomotive any heavier. Given that lots of equipment like the alternator and the fuel tank would not be needed, I suspect that a 1,000 kWh battery could be fitted into a Class 88 locomotive, provided it just wasn’t too big.

This would be a 4,000 kWh electric locomotive with perhaps a twenty minute running time at a Class 66 rating on battery power.

The Stadler Class 68 Locomotive

The Stadler Class 68 locomotive shares a lot of components with the Class 88 locomotive.

  • It is a Bo-Bo locomotive with a weight of 85 tonnes and an axle loading of 21.2 tonnes.
  • It has a rating on diesel of 2,800 kW.
  • It is a genuine 100 mph locomotive.
  • The locomotive has regenerative braking to a rheostat.
  • It has a 5,600 litre fuel tank and full of diesel would weight nearly five tonnes.

They are a locomotive with a growing reputation.

A Double Bo-Bo Locomotive

My devious engineering mind, thinks about what sort of locomotive would be created if a Class 68 and a Class-88-based battery/electric locomotive were integrated together.

  • It would be a double Bo-Bo locomotive with an axle loading of 21.5 tonnes.
  • It has a rating on electricity of 4,000 kW.
  • It has a rating on diesel of 2,800 kW.
  • Battery power can be used to boost the power on diesel as in the Stadler Class 93 locomotive.
  • It would be nice to see regenerative braking to the batteries.

Effectively, it would be a diesel and a battery/electric locomotive working together.

This picture shows a Class 90 electric locomotive and a Class 66 diesel locomotive pulling a heavy freight train at Shenfield.

If this can be done with a diesel and an electric locomotive, surely a company like Stadler have the expertise to create a double locomotive, where one half is a diesel locomotive and the other is a battery/electric locomotive.

A Control Engineer’s Dream

I am a life-expired Control Engineer, but I can still see the possibilities of creating an sdvanced control system to use the optimal power strategy, that blends electric, battery and diesel power, depending on what is available.

I feel that at most times, the locomotive could have a power of up to 4,000 kW.

The Ultimate Family Of Locomotives

I have used a diesel Class 68 and a Class 88-based battery/electric locomotive,, to create this example locomotive.

In the ultimate family, each half would be able to work independently.

In time, other members of the family would be created.

A hydrogen-powered locomotive is surely a possibility.

The Control System on the master locomotive, would determine what locomotives were coupled together and allocate power accordingly.

Conclusion

I have used Stadler’s locomotives to create this example locomotive.

I suspect they are working on concepts to create more powerful environmentally-friendly locomotives.

As are probably, all the other locomotive manufacturers.

Someone will revolutionise haulage of heavy freight trains and we’ll all benefit.

 

 

June 6, 2019 - Posted by | Transport | , , , ,

No comments yet.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.