The Anonymous Widower

Could A Modular Family Of Freight Locomotives Be Created?

In Thoughts On A Battery/Electric Replacement For A Class 66 Locomotive, I looked at the possibility of creating a battery/electric locomotive with the performance of a Class 66 locomotive.

  • I felt that the locomotive would need to be able to provide 2,500 kW for two hours on battery, to bridge the gaps in the UK electrification.
  • This would need a 5,000 kWh battery which would weigh about fifty tonnes.
  • It would be able to use both 25 KVAC overhead and 750 VDC third-rail electrification.
  • It would have a power of 4,000 kW, when working on electrification.
  • Ideally, the locomotive would have a 110 mph operating speed.

It would be a tough ask to design a battery/electric locomotive with this specification.

The Stadler Class 88 Locomotive

Suppose I start with a Stadler Class 88 locomotive.

  • It is a Bo-Bo locomotive with a weight of 86.1 tonnes and an axle loading of 21.5 tonnes.
  • It has a rating on electricity of 4,000 kW.
  • It is a genuine 100 mph locomotive when working from 25 KVAC overhead electrification.
  • The locomotive has regenerative braking, when working using electrification.
  • It would appear the weight of the diesel engine is around seven tonnes
  • The closely-related Class 68 locomotive has a 5,600 litre fuel tank and full of diesel would weight nearly five tonnes.

In Thoughts On A Battery Electric Class 88 Locomotive On TransPennine Routes, I said this about replacing the diesel-engine with a battery.

Supposing the seven tonne diesel engine of the Class 88 locomotive were to be replaced by a battery of a similar total weight.

Traction batteries seem to have an energy/weight ratio of about 0.1kWh/Kg, which is increasing with time, as battery technology improves.

A crude estimate based on this energy/weight ratio would mean that at least a 700 kWh battery could be fitted into a Class 88 train and not make the locomotive any heavier. Given that lots of equipment like the alternator and the fuel tank would not be needed, I suspect that a 1,000 kWh battery could be fitted into a Class 88 locomotive, provided it just wasn’t too big.

This would be a 4,000 kWh electric locomotive with perhaps a twenty minute running time at a Class 66 rating on battery power.

The Stadler Class 68 Locomotive

The Stadler Class 68 locomotive shares a lot of components with the Class 88 locomotive.

  • It is a Bo-Bo locomotive with a weight of 85 tonnes and an axle loading of 21.2 tonnes.
  • It has a rating on diesel of 2,800 kW.
  • It is a genuine 100 mph locomotive.
  • The locomotive has regenerative braking to a rheostat.
  • It has a 5,600 litre fuel tank and full of diesel would weight nearly five tonnes.

They are a locomotive with a growing reputation.

A Double Bo-Bo Locomotive

My devious engineering mind, thinks about what sort of locomotive would be created if a Class 68 and a Class-88-based battery/electric locomotive were integrated together.

  • It would be a double Bo-Bo locomotive with an axle loading of 21.5 tonnes.
  • It has a rating on electricity of 4,000 kW.
  • It has a rating on diesel of 2,800 kW.
  • Battery power can be used to boost the power on diesel as in the Stadler Class 93 locomotive.
  • It would be nice to see regenerative braking to the batteries.

Effectively, it would be a diesel and a battery/electric locomotive working together.

This picture shows a Class 90 electric locomotive and a Class 66 diesel locomotive pulling a heavy freight train at Shenfield.

If this can be done with a diesel and an electric locomotive, surely a company like Stadler have the expertise to create a double locomotive, where one half is a diesel locomotive and the other is a battery/electric locomotive.

A Control Engineer’s Dream

I am a life-expired Control Engineer, but I can still see the possibilities of creating an sdvanced control system to use the optimal power strategy, that blends electric, battery and diesel power, depending on what is available.

I feel that at most times, the locomotive could have a power of up to 4,000 kW.

The Ultimate Family Of Locomotives

I have used a diesel Class 68 and a Class 88-based battery/electric locomotive,, to create this example locomotive.

In the ultimate family, each half would be able to work independently.

In time, other members of the family would be created.

A hydrogen-powered locomotive is surely a possibility.

The Control System on the master locomotive, would determine what locomotives were coupled together and allocate power accordingly.

Conclusion

I have used Stadler’s locomotives to create this example locomotive.

I suspect they are working on concepts to create more powerful environmentally-friendly locomotives.

As are probably, all the other locomotive manufacturers.

Someone will revolutionise haulage of heavy freight trains and we’ll all benefit.

 

 

June 6, 2019 Posted by | Transport | , , , , | Leave a comment

Stadler’s New Tri-Mode Class 93 Locomotive

In Thoughts On A Battery/Electric Replacement For A Class 66 Locomotive, I looked at an electro-diesel freight locomotive with batteries instead of a diesel engine, as a freight locomotive. It would have the size and weight of a Class 70 locomotive and perhaps use similar technology to Stadler’s Class 88 locomotive.

I concluded the article like this.

It would be a heavyweight locomotive with a performance to match.

I believe that such a locomotive would be a very useful addition to the UK’s fleet of freight locomotives.

Stadler have not produced a battery/electric replacement for a Class 66 locomotive, but they have added a diesel/electric/battery Class 93 locomotive with a heavyweight performance to their Class 68/88 or UKLIGHT family of locomotives built at Valencia in Spain.

Details of the locomotive are given in this article in Rail Magazine, which is entitled Rail Operations Fuels Its Ambitions With Tri-Mode Class 93s. There is also a longerand more detailed  article in the print edition of the magazine, which I purchased today.

Reading both copies of the article, I can say the following.

A More Powerful Class 88 Locomotive

At a first glance, the Class 93 locomotive appears to be a more powerful version of the Class 88 locomotive.

  • The power on electric mode is the same in both locomotives at four megawatt. It would probably use the same electrical systems.
  • Some reports give the diesel power of the Class 93 locomotive as 1.34 MW as opposed to 0.7 MW of the Class 88 locomotive.
  • The Class 93 locomotive has a top speed of 110 mph, as opposed to the 100 mph of the Class 88 locomotive.
  • The article says, “It’s an ’88’ design with the biggest engine we could fit.”

It would also appear that much of the design of the two locomotives is identical, which must make design, building and certification easier.

The Class 93 Locomotive Is Described As A Hybrid Locomotive

Much of the article is an interview with Karl Watts, who is Chief Executive Officer of Rail Operations (UK) Ltd, who have ordered ten Class 93 locomotives. He says this.

However, the Swiss manufacturer offered a solution involving involving an uprated diesel alternator set plus Lithium Titanate Oxide (LTO) batteries.

Other information on the batteries includes.

  • The batteries are used in regenerative braking.
  • Batteries can be charged by the alternator or the pantoraph.
  • Each locomotive has two batteries slightly bigger than a large suitcase.

Nothing is said about the capacity of the batteries, but each could be a cubic metre in size.

I have looked up manufacturers of lithium-titanate batteries and there is a Swiss manufacturer of the batteries called Leclanche, which has this helpful page that compares various batteries.

  • The page gives an energy density of 120-200 Wh/Kg for their traditional lithium-ion batteries and 70-80 Wh/Kg for LTO batteries.
  • But it gives LTO batteries a five-star rating, for charge power, discharge power and energy efficiency.

Leclanche also have a product called a TiRack63, which is intended for industrial applications, such as.

  • ,Grid stabilization in on-grid application
  • Providing short term power to cover the first seconds in a grid failure incident to industrial users.
  • Managing the integration of renewable energy (solar and wind) into off grid applications with diesel generators (e.g. mining),

The battery has the following characteristics.

  • 15000 charge/discharge cycles
  • 100 % depth of discharge.
  • Charging and discharging at 300 Amps.
  • Modular setup.
  • 510-810 VDC output.
  • 63 kWh capacity.
  • Size of 2300 x 1800 x 600 mm
  • Weight of 1800 Kg.

These batteries with their fast charge and discharge are almost like supercapacitors.

, It would appear that, if these batteries are used the Class 93 locomotive will have an energy storage capacity of 126 kWh.

But this is said about Class 93 locomotive performance..

LTO batteries were chosen because they offer a rapid recharge and can maintain line speed while climbing a gradient, and will recharge when running downhill.

Looking at the batteries, they could provide up to around 240 kW of extra power for perhaps half an hour to help the train climb a gradient and then recharge using regenerative braking or the diesel alternator.

This is a hybrid vehicle, with all the efficiency advantages.

The article does say, that with a light load, the locomotives can do 110 mph on hybrid. Nothing is said about what is a light load. Could it be a rake of five modern Mark 5A coaches?

In Thoughts On A Battery Electric Class 88 Locomotive On TransPennine Routes, I said this.

It is worth looking at the kinetic energy of a Class 88 locomotive hauling five forty-three tonne CAF Mark 5A coaches containing a full load of 340 passengers, who each weigh 90 Kg with baggage, bikes and buggies. This gives a total weight would be 331.7 tonnes.

The kinetic energy of the train would be as follows for various speeds.

90 mph – 75 kWh
100 mph – 92 kWh
110 mph – 111 kWh
125 mph – 144 kWh

The increase in energy is because kinetic energy is proportional to the square of the speed.

There would be little difference in this calculation, using a Class 93 locomotive, which is only a tonne heavier. The kinetic energy at 110 mph, would be 112 kWh.

This could be very convenient, as it looks like the battery capacity could be larger than the kinetic energy of a fully-loaded train.

Similar Weight And Axle Load To A Class 88 Locomotive

The article states that the locomotive will weight 87 tonnes, as opposed to the 86 tonnes of a Class 88 locomotive.

As both locomotives have four axles, this would mean that their axle loading is almost the same.

So anywhere the Class 88 locomotive can go, is most likely to be territory suitable for the Class 93 locomotive.

Again, this must make certification easier.

A Modular Design

In a rail forum, members were saying that the Class 93 locomotive has a modular design.

So will we see other specifications with different sized diesel engines and batteries?

The TransPennine routes, for example, might need a locomotive with a smaller diesel engine, more battery capacity and a 125 mph-capability for the East Coast Main Line.

Stadler have said they specialise in niche markets. Have they developed the tailor-made locomotive?

Power Of Various Locomotives

These are various UK locomotives and their power levels in megawatts.

  • Class 43 – Diesel – 1.7
  • Class 66 – Diesel – 2.4
  • Class 67 – Diesel – 2.4
  • Class 68 – Diesel – 2.8
  • Class 88 – Electric – 4
  • Class 88 – Diesel – 0.7
  • Class 90 – Electric – 3.9
  • Class 91 – Electric – 4.8
  • Class 93 – Electric – 4
  • Class 93 – Diesel – 1.3

The interesting figure, is that the Class 93 locomotive has 76 % of the diesel power of a Class 43 locomotive from an InterCity 125. The difference could probably be made up using battery power, where needed.

Could The Locomotive Be Uprated To 125 mph?

Consider.

  • The UK has successfully run 125 mph Class 43 and 91 locomotives for many years.
  • Stadler has built trains that run at that speed.
  • Mark 3, Mark 4 and Mark 5A coaches are all certified for 125 mph.
  • There are hundreds of miles of track in the UK, where 125 mph running is possible.

I would think it very unlikely, that the engineers designing the Class 93 locomotive, ruled out the possibility of 125 mph running in the future!

Only Stadler will know!

Could A Battery/Electric Version Of The Locomotive Be Created?

I don’t see why not!

The diesel engine, fuel, exhaust and cooling systems and some ancilliary systems could all be removed and be replaced with an equivalent weight of batteries.

As the C27 diesel engine in a Class 88 locomotive weighs almost seven tonnes, I suspect a ten tonne battery would be possible.

Given the current typical energy density and using the Leclanche figures, this would mean that thr batteries would have a total capacity of around 700-800 kWh.

Possible Uses Of The Class 93 Locomotive

The Rail Magazine article goes on to detail some of the uses of a Class 93 locomotive.

Express Freight

Karl Watts says this.

They can operate express freight. In Europe, there are vehicles capable of 100 mph running, and these are perfect for high-speed domestic freight. We have been running intermodals at 75 mph since the 1960s – It’s time to change that.

The locomotive would certainly be able to haul express freight at 100 mph on an electrified main line.

Note the following.

  1. This would greatly help with freight between Felixstowe and London on the 100 mph Great Eastern Main Line.
  2. Running freight trains at 100 mph on the major electrified lines would increase capacity, of the lines.
  3. Ports and freight terminals wouldn’t need to be electrified.

Overall, the proportion of freight mileage, where electric power was used, would grow significantly.

Electrification Gap Jumping

In Thoughts On A Battery/Electric Replacement For A Class 66 Locomotive, I gave a list of typical gaps in the electrification in the UK.

  • Didcot and Birmingham – Around two-and-a-half hours
  • Didcot and Coventry – Just under two hours
  • Felixstowe and Ipswich – Around an hour
  • Haughley Junction and Peterborough – Around two hours
  • Southampton and Reading – Around one-and-a-half hours
  • Werrington Junction and Doncaster via Lincoln – Around two hours
  • Werrington Junction and Nuneaton – Just under two hours

How many of these gaps could be bridged by a Class 93 locomotive working in a diesel hybrid mode?

It should be noted, that many of the busiest gaps are in the flatter Eastern areas of England.

I’m sure Stadler and Rail Operations Group have done extensive simulation of possible routes and know where the locomotives are best suited.

Class 66 Locomotive Replacement

I suspect that several of these locomotives will end up replacing duties currently done by Class 66 locomotives.

It could haul an intermodal freight from Felixstowe to Manchester, Liverpool, Glasgow or Doncaster, using electrification where it exists.

And do it at a speed of 100 mph, where speed limits allow!

No other locomotive on the UK network could do that!

Use On Electrified Urban Freight Routes

Near to where I live there are two electrified lines passing through North London; the North London Line and the Gospel Oak To Barking Line.

Both lines have several freight trains a day passing through, that are still hauled by diesel locomotives.

There are other urban freight routes around the UK, where despite electrification, polluting diesel locomotives are still used.

Class 93 locomotives would be an ideal environmentally-friendly replacement locomotive on these routes.

Thunderbird Duties

Karl Watts says this.

They can be used for network recovery as a more comprehensive Thunderbird. Currently, stand-by locomotives are hired or used by an operator to rescue its own trains, but these would be available for anything or anyone. I have sopken to Network Rail about this and they need convincing. But as the network gets busier, so it will be that one failure causes chaos.

Perhaps, a better method for recovering failed trains could be developed.

Passenger Trains

Karl Watts says this.

I can say that the 93s’ feature n two franchise bids, although I cannot say which, due to non-disclosure agreements.

We can only speculate!

Class 93 locomotives could replace the Class 68 locomotives on TransPennine Express services between Liverpool and Scarborough, where Mark 5A coaches will be used.

  • Electric mode could be used between Liverpool and Stalybridge and on the East Coast Main Line.
  • Diesel or hybrid mode would be used where needed.
  • If the locomotives could be uprated to 125 mph, that would help on the East Coast Main Line.

There are certainly, redundant Mark 4 coaches or new Mark 5A coaches that could be used to provide services.

An InterCity 125 For the Twenty-First Century

The InterCity 125 is a masterpiece of engineering, that passengers love.

One of the reasons for the success, is the superb dynamics of the train, which gives them a very comfortable ride.

Could it be that by putting two Class 93 locomotives at each end of a rake of suitable coaches could create a 125 mph train, with the same faultless dynamics?

The answer is probably yes, but in many cases either half-length trains or bi-mode multiple units may be a more affordable or capable train.

The locomotive certainly gives a lot of flexibility.

Conclusion

This is going to be a very useful locomotive.

This was the last paragraph of the printed article, as spoken by Karl Watts.

I don’t think I will be ordering only ten or 20 – there will be more.

I have registered 93001 to 93050.

The word hybrid opens the door.

I think this might be the third member of a very large and widespread family.

 

 

 

December 19, 2018 Posted by | Transport | , , , , , , , , , | 6 Comments

Thoughts On A Battery/Electric Replacement For A Class 66 Locomotive

Many of the long freight routes from Felixstowe and Southampton are hauled by diesel locomotives like the environmentally-unfriendly Class 66 locomotive.

Electric haulage can’t be used because of significant gaps in the 25 KVAC overhead electrification. Gaps and a typical transit time of a Class 66-hauled heavy freight train include.

  • Didcot and Birmingham – Around two-and-a-half hours
  • Didcot and Coventry – Just under two hours
  • Felixstowe and Ipswich – Around an hour
  • Haughley Junction and Peterborough – Around two hours
  • Southampton and Reading – Around one-and-a-half hours
  • Werrington Junction and Doncaster via Lincoln – Around two hours
  • Werrington Junction and Nuneaton – Just under two hours

Would it be possible to design a battery/electric hravy locomotive, that could bridge these gaps?

Consider the following.

  • A Class 66 locomotive has a power output of around 2500 kW.
  • To run for two hours on battery would require a battery of 5000 kWh.
  • A 5000 kWh battery would weigh around fifty tonnes.
  • A Class 70 locomotive is a heavy freight diesel Co-Co locomotive with a weight of 134 tonnes with a full tank of diesel.
  • A Class 88 locomotive is an electro-diesel locomotive, that without the diesel engine weighs about 80 tonnes.
  • A Class 88 locomotive has a power output of 4,000 kW on 25 KVAC  overhead electrification

Putting this information together and I think it would be possible to design a battery/electric locomotive with the following specification.

  • 4000 kW on 25 KVAC  overhead electrification
  • Ability to use 750 VDC third-rail electrification
  • A 5000 kWh battery.
  • Ability to use a rapid charging system.
  • Two hour range with 2500 kW on battery power.
  • Regenerative braking to the battery.
  • Co-Co configuration
  • Dimensions, weight and axle loading similar to a Class 70 locomotive.

These are a few other thoughts.

Last Mile Applications

Ports and Container Terminals are often without electrification.

The proposed locomotive would be able to work in these environments.

A couple of yeas ago, I had a long talk with a crane operator at the Port of Felixstowe, who I met on a train going to football. He was of the opinion, that Health and Safety is paramount and he would not like 25 KVAC overhead electrification all over the place.

So if freight locomotives used battery power inside the port, most would be pleased.

The only cost for ports and freight terminals would be installing some form of charging.

Maximum Power On Batteries

I suspect that the maximum power on battery would also be the same as the 4,000 kW using 25 KVAC overhead electrification, as the locomotive may have applications, where very heavy trains are moved on partially electrified lines.

Diesel-Free Operation

The proposed lovomotive will not use any diesel and will essentially be an electric locomotive, with the ability to use stored onboard power.

Environmentally-Friendly Operation

Freight routes often pass through areas, where heavy diesel locomotives are not appreciated.

  • The proposed locomotive will not be emitting any exhaust or noxious gases.
  • Noise would be similar to an electric locomotive.
  • They would be quieter using battery-power on lines without overhead electrification, as there would be no pantograph noise.

I think on balance, those living by freight routes will welcome the proposed locomotive.

Would Services Be Faster?

This would depend on the route, but consider a heavy freight train going from Felixstowe to Leeds.

  • On the electrified East Coast Main Line, the proposed battery-electric locomotive would have a power of 4,000 kW, as opposed to the 2,500 kW of the Class 66 locomotive.
  • On sections without electrification, the locomotive would have more power if required, although it would probably be used sparingly.
  • The locomotive would have a Driver Assistance System to optimise power use to the train weight and other conditions.

I feel on balance, that services could be faster, as more power could be applied without lots of pollution and noise.

Creeping With Very Heavy Loads

I suspect they would be able to creep with very heavy loads, as does the Class 59 locomotive.

Class 59 Locomotive Replacement

The proposed locomotive may well be able to replace Class 59 locomotives in some applications.

Any Extra Electrification Will Be Greatly Appreciated

Some gaps in electrification are quite long.

For example, Didcot and Birmingham takes about two and a half hours.

  • Didcot is on the electrified Great Western Main Line.
  • Birmingham has a lot of electrified lines.

So perhaps there could be some extra electrification at both ends of busy freight routes.

Electrification between Didcot and Wolvercote Junction would be a possibility.

  • It would be about twelve miles
  • It is very busy with heavy freight trains.
  • The natives complain about the railway.
  • It would allow Great Western Railway to run electric trains to and from London.
  • If Chiltern Railways were to run battery-electric trains to Oxford, it would provide electrification for charging at Oxford.
  • Electrification could be extended to Oxford Parkway station to make sure battery-electric trains would get a good send-off to Cambridge

This simple example shows, why bi-mode and battery/electric trains don’t mean the end of electrification.

All vehicles; rail or road and especially electric ones, need to take on fuel!

I also think, that there is scope to electrify some passing loops, so that locomotives can top-up en route.

Conclusion

It would be a heavyweight locomotive with a performance to match.

I believe that such a locomotive would be a very useful addition to the UK’s fleet of freight locomotives.

 

December 8, 2018 Posted by | Transport | , , , , | 5 Comments

Thoughts On A Battery Electric Class 88 Locomotive On TransPennine Routes

In Issue 864 of Rail Magazine, there is an article, which is entitled Johnson Targets A Bi-Mode Future.

As someone, who has examined the mathematics of battery-powered trains for several years, I wonder if the Age of the Hybrid Battery/Electric Locomotive is closer than we think.

A Battery/Electric Class 88 Locomotive

 After reading Dual Mode Delight (RM Issue 863), it would appear that a Class 88 locomotive is a powerful and reliable locomotive.

  • It is a Bo-Bo locomotive with a weight of 86.1 tonnes and an axle load of 21.5 tonnes.
  • It has a rating on electricity of 4,000 kW.
  • It is a genuine 100 mph locomotive when working from 25 KVAC overhead electrification.
  • The locomotive has regenerative braking, when working using electrification.
  • It would appear the weight of the diesel engine is around seven tonnes
  • The closely-related Class 68 locomotive has a 5,600 litre fuel tank and full of diesel would weight nearly five tonnes.

It is worth looking at the kinetic energy of a Class 88 locomotive hauling five forty-three tonne CAF Mark 5A coaches containing a full load of 340 passengers, who each weigh 90 Kg with baggage, bikes and buggies. This gives a total weight would be 331.7 tonnes.

The kinetic energy of the train would be as follows for various speeds.

  • 90 mph – 75 kWh
  • 100 mph – 92 kWh
  • 110 mph – 111 kWh
  • 125 mph – 144 kWh

The increase in energy is because kinetic energy is proportional to the square of the speed.

Supposing the seven tonne diesel engine of the Class 88 locomotive were to be replaced by a battery of a similar total weight.

Traction batteries seem to have an energy/weight ratio of about 0.1kWh/Kg, which is increasing with time, as battery technology improves.

A crude estimate based on this energy/weight ratio would mean that at least a 700 kWh battery could be fitted into a Class 88 train and not make the locomotive any heavier. Given that lots of equipment like the alternator and the fuel tank would not be needed, I suspect that a 1,000 kWh battery could be fitted into a Class 88 locomotive, provided it just wasn’t too big.

A short length of electrification could be installed at terminal stations without electrification to charge the batteries during turnround.

This size of battery would be more than large enough to handle the braking energy of the train from full speed, so would improve the energy efficiency of the train on both electrified and non-electrified lines.

It would also contain more than enough energy to accelerate the train to line speeds that are typical of non-electrified routes.

TransPennine Express will soon run similar rakes of coaches hauled by Class 68 diesel locomotives between Liverpool and Manchester Airport and the North East.

The following sections of the Northern TransPennine route, are not electrified.

  • Stalybridge and Leeds – 35 miles taking 46 minutes
  • Leeds and Colton Junction – 20 miles taking 18 minutes
  • Northallerton and Middlesbrough – 21 miles taking 29 minutes
  • York and Scarborough – 42 miles taking 56 minutes

When running on these sections without electrification, consider the following.

  • The train consists of modern coaches, which must be energy efficient.
  • The train would enter the sections with a full battery, that had been charged using the 25 KVAC electrification on part of the route.
  • Scarborough and possibly Middlesbrough stations, would have means to charge the battery.
  • The train would enter the sections as close to line speed as possible, after accelerating using electrification.
  • Regenerative braking would help conserve energy at any planned or unplanned stops.
  • The driver will be assisted by a modern in-cab signaling and a very capable Driver Assistance System.
  • Stadler and Direct Rail Services must have extensive theoretical and measured data of the performance of Class 88 locomotives and the related Class 68 locomotive, when they are hauling trains across the Pennines, which will enable extensive mathematical models to be built of the route.

For these reasons and especially the last about mathematical modelling, I believe that Stadler could create a battery/electric locomotive based on the Class 88 locomotive, that would be able to bridge the electrification gaps on battery power and haul a five-coach train on the Northern routes across the Pennines.

A Quick Look At The Mathematics

As I said earlier, the weight of a Class 88 locomotive and five Mark 5A coaches, full of passengers is 331.7 tonnes.

There would appear to be little weight difference between a diesel Class 68 locomotive and an electro-diesel Class 88 locomotive, so in this rough exercise, I will assume the train weight is the same.

The current Class 185 trains, that run across the Pennines have the following characteristics.

  • Three-cars
  • A weight of 168.5 tonnes.
  • A passenger capacity of 169.
  • Installed power of 560 kW in each coach, which means there is 1560 kW in total.

If each passengers weighs 90 Kg, with all their extras, a full train will weigh 183.7 tonnes.

So a full train has a power-weight ratio of nine kW/tonne, which must be sufficient to maintain the timetable across the Pennines.

The diesel Class 68 locomotive, which will be hauling trains on the route in the New Year,  has an installed power of 2,800 kW, which gives a power/weight ratio of 8.4 kW/tonne.

I would be interested to know, if a Class 88 locomotive running in diesel mode with a power output of only 700 kW, could take one of the new trains across the Pennines. I suspect Stadler and/or DRS know the answer to this question.

But it would be a power/weight ratio of only 2.1 kW/tonne!

The challenging route is between Stalybridge and Leeds via Huddersfield, where the Pennines has to be crossed. I’m pretty certain, that all the other sections lack the gradients of the section between Stalybridge and Leeds.

So would a Class 88 locomotive with a 1,000 kWh battery be able to cross the Pennines with a full train?

Theoretically, up and down routes are good for battery/electric trains with regenerative braking, as energy used going uphill can be recovered on the other side.

The thirty-five miles between Stalybridge and Leeds take forty-six minutes, so for how long on this journey will the locomotive be applying full power? Perhaps for twenty minutes. If the locomotive applied an average of 2,000 kW for twenty minutes or a third of an hour, that would be 667 kWh.

With an electric multiple unit like an Aventra, where most if not all axles are driven and they can also contribute to regenerative braking, reasonably high rates of braking energy can be recycled.

But what proportion can be recycled, when the locomotive is doing all the regenerative braking. Any braking done by disc brakes on the coaches will result in lost energy.

As an aside, I wouldn’t be surprised to find out that train manufacturers simulate train braking in order to develop braking systems, that turn less energy into wasted heat.

I’d also love to see a simulation using Stadler’s real data of a Class 88 locomotive with batteries attempting to cross the Pennines, with a rake of Mark 5A coaches!

  • What size of battery will be needed?
  • Can this battery be fitted in the locomotive?
  • Would distributing the batteries along the train increase performance?
  • Would short lengths of electrification on the route, increase performance?

I was doing problems of similar complexity to attempt to design efficient chemical plants nearly fifty years ago. We had our successes, but not as great as we hoped. But we certainly eliminated several blind alleys.

My figures don’t show conclusively, that a Class 88 locomotive with a 1,000 kWh battery instead of a diesel engine and all the related gubbings, would be able to perform services across the Pennines.

But.

  • Battery technology is improving at a fast pace.
  • Train manufacturers are finding surprising ways to use batteries to improve performance.
  • I don’t have access to Stadler’s real performance figures of their diesel locomotives.
  • Finding a way to make it work, has a very high cost benefit.

Who knows what will happen?

125 Mph Running

The Class 88 locomotive, has a similar power output to the 125 mph Class 91 locomotive of the InterCity 225 and I believe that the locomotive might have enough power, when running on 25 KVAC overhead wires to be able to haul the train at 125 mph on the East Coast Main Line.

Conclusion

I believe that it is possible to create a battery/electric version of the Class 88 locomotive, that should be able to take a rake of five Mark 5A coaches across the Pennines.

Timings across the Pennines would benefit substantially, without any new infrastructure, other than that already planned and the charging system at Scarborough.

December 8, 2018 Posted by | Transport | , , , , | 4 Comments

GE To Partner BNSF On Battery Freight Locomotive Tests

The title of this post is the same as that of this article on Rail Engineer.

The article includes this image.

I think that there are some mixed up captions on the image.

It talks about Massive Power Generation Capabilities up to 2400 kWhrs.

kWhrs are a unit of total energy and could refer to the battery storage capability of the locomotive.

If you look at our much smaller ubiquitous UK diesel freight locomotive, the Class 66, this has a power output of 2,460 kW.

If the GE locomotive, which is experimental had a battery of 2400 kWh, then it could supply 2400 kW for an hour.

But the concept seems sound, where the battery electric locomotive would be paired with a diesel locomotive to haul a freight train. Fuel savings of ten percent are expected.

A Diesel/Electric/Battery Hybrid Locomotive For The UK

I could see a practical diesel/electric/battery locomotive being developed for the UK.

A Class 66 Replacement

Over four hundred of the these locomotives were built and they are currently used by these operators  in the UK.

Which adds up to a surprisingly precise four hundred locomotives.

  • They have a power output of 2,460 kW – Call it 2500 kW for ease of calculation.
  • They have a top speed of 75 mph, although some can only manage 65 mph.
  • They weigh 68 tonnes.
  • They are noisy, smelly and don’t meet the latest EU pollution regulations.
  • Class 66 drivers, I’ve spoken to, are not keen on the working environment.

But they do various jobs for their operators competently and are not the most expensive of locomotives.

There are also other modern similar-sized diesel locomotives like the thirty Class 67 and thirty-seven Class 70, but these are not as unfriendly, to the environment and staff.

Many of the Class 66 locomotives pull heavy freight trains on routes that are fully or partly electrified like the East Coast Main Line, West Coast Main Line, Great Western Main Line, Midland Main Line and Great Eastern Main Line. The services are diesel-hauled because at the ends of the route, they need to use diesel power.

A specification for a locomotive to replace the long-haul Class 66 locomotives for working fully or partly-electrified routes could be something like.

  • Power on electrification of upwards of 3000 kW.
  • Ability to move a heavy freight train in and out freight terminals to and from electrification.
  • Ability to do a small amount of shunting.
  • Sufficient diesel or battery power to handle the train, away from electrification.
  • Ability to switch between electric and diesel/battery power at line speed.

I’ve heard from those who work at the Port of Felixstowe, that port operators wouldn’t electrify the port, for both cost and Health and Safety reasons.

The Felixstowe Problem

The Port of Felixstowe is at the end of the twelve mile long Felixstowe Branch Line, which is not electrified.

Trains seem to be allocated up to just over an hour for the journey between the Great Eastern Main Line and the Port.

This would mean that any proposed locomotive must be capable of handling a branch line to a port or freight depot remote from the electrified network.

Similar problems exist at other ports and freight depots including Hull, Immingham, Liverpool, Southampton, Tilbury and Teesport.

The Southampton Problem

If anything, the Port of Southampton has the worst problem, in that it only has access to the third-rail electrification South of the Thames, until freight trains reach Reading, where there is 25 KVAC overhead electrification. It looks like that trains take about ninety minutes between the Port of Southampton and Reading.

Even, if a powerful dual-voltage locomotive were to be available, I doubt that the power supply to the electrification could provide enough power.

The proposed solution to the Southampton problem was the Electric Spine, which would have linked the port to Northern and Central England with a 25 KVAC overhead electrified route.

It has now been largely cancelled.

An alternative would be a locomotive, that could pull a heavy freight train between the Port of Southampton and Reading in an environmentally-friendly way.

One point to note is that a Class 92 locomotive is rated at 4000 kW on 750 VDC third-rail electrification.

Thoughts On A Battery Locomotive

Suppose an operator needed a battery locomotive to go between Southampton and Cardiff, that would be a straight replacement for a Class 66 locomotive.

The proposed battery locomotive  would need to be able to supply the 2500 kW of the Class 66 locomotive for two hours to handle the route between Reading and Southampton.

So it would need a battery capacity of around 5000 kWh, which is twice the size of the American test locomotive. A battery this size would probably weigh around fifty tonnes.

I am probably being conservative here, as regenerative braking would probably reduce the amount of energy needed to move the train.

The electro-diesel Class 88 locomotive would probably weigh around eighty tonnes without the diesel engine. So would it be possible to design an electric locomotive incorporating a 5000 kWh battery, with a weight of perhaps one hundred and thirty tonnes.

  • It would be about the weight of a Class 70 locomotive.
  • It would probably need to be a Co-Co locomotive, to reduce the axle-loading, to that of a Class 70 locomotive.
  • It might need to be longer than other comparable locomotives to have enough space for the battery.
  • The battery would handle the energy generated by the regenerative braking.
  • It could have the 4000 kW power of a Class 88  locomotive.
  • It should probably be designed with a 100 mph top speed and the ability to haul passenger trains
  • It would be able to use both 25 KVAC overhead and 750 VDC third-rail electrification.

If it is not possible now, as battery energy densities improve, it will be in a few years time.

Other countries other than the UK need a locomotive with a similar specification and I am certain at least one manufacturer in Europe will build a locomotive to this or a similar specification.

A Battery/Electric Locomotive And Felixstowe

Handling the Felixstowe Branch Line would entail the following.

  • The locomotive must enter the branch with a battery containing enough energy for the sixty minute run to the Port.
  • As the locomotive would probably have hauled a train from London or Haughley Junction using the existing electrification, a full enough battery probably wouldn’t be difficult.
  • In the Port, there could be a charging station for the locomotive, where they would connect to a short length of 25 KVAC overhead electrification.
  • On leaving the Port, the locomotive would start with a full battery, which would be enough power to reach the Great Eastern Main Line.
  • Trains going South to London would run on electrification as far as they could and would arrive in London with a full battery.
  • Trains going West to Peterborough, would hopefully be able to top up their battery between Ipswich and Haughley Junction, where they would enter the section without electrification to Peterborough, which takes between two and two-and-a half hours.

It should be noted that, freight trains often wait at Ely in a passing loop alongside the station, to keep out of the way of passenger trains. As Ely is electrified with 25 KVAC, this loop could be electrified, so that locomotives could sneak a top-up during the wait.

I am fairly certain, that a 4000 kW electric locomotive fitted with a 5000 kWh battery could handle all freight services to and from the Port of Felixstowe, at least as far as London and Peterborough.

A Battery/Electric Locomotive Between Peterborough And Nuneaton

How would a battery/electric locomotive handle this important route between Felixstowe and the Midlands and North?

Currently freight trains between Peterborough and Nuneaton have a timing on the section without electrification between Werrington Junction and Nuneaton of a few minutes under two hours.

This should be possible, given the battery range and power of the locomotive.

It would also mean that the battery/electric locomotive could haul a train between the West Coast Main Line and Felixstowe.

A Battery/Electric Locomotive And Southampton

Trains hauled by a battery/electric locomotive on this route, could probably take advantage of the third-rail electrification to top-up the battery as required, which would make it very likely that a 4000 kW electric locomotive fitted with a 5000 kWh battery could handle the route with ease.

A Battery/Electric Locomotive Between ReadingAnd The Midlands And The North

From Reading routes to Bristol, Cardiff and London are fairly easy, but the problems start, if trains need to go to Oxford, Birmingham or the Midlands and the North.

This is where the Electric Spine would have been useful

I have traced some trains from Southampton to the Midlands and the North.

  • Southampton to Birch Coppice – There is a three hour section without electrification from Didcot to Birch Coppice.
  • Southampton to Birmingham Freightliner Terminal – There is a two-and-a half hour section without electrification from Didcot to the terminal.
  • Southampton to Castle Bromwich Jagiuar – There is a two-and-a-half-hour section without electrification from Didcot to Castle Bromwich Jaguar.
  • Southampton to Liverpool – There is a two hour section without electrification from Didcot to Coventry.

All of these services are routed through Didcot, Oxford and Banbury. Extending the planned electrification between Didcot and Oxford to Banbury would probably reduce the amount of time on battery power by around thirty minutes.

TransPennine Passenger Services

TransPennine Express will soon be running services between Liverpool Lime Street and Newcastle using rakes of Mark 5 coaches, that will be hauled by a Class 68 diesel locomotive, which has a power of 2800 kW and a maximum speed of 100 mph.

On the TransPennine route, the current service takes seventy-one minutes between the electrified stations of Manchester Victoria and York.

The proposed battery/electric locomotive could handle this with ease to provide a flagship electrically-hauled service across the Pennines without any difficult electrification.

The locomotive would be charged on the current electrification between Liverpool and Manchester Victoria and along the East Coast Main Line.

Chiltern Main Line Passenger Services

Chiltern Main Line passenger services between London Marylebone and Birmingham, are another route, where a rake of coaches are hauled by a Class 68 locomotive.

The problem is that there is no electrification on this route and although a charging station could be provided at Marylebone and Moor Street, it is questionable, if enough power could be taken on during turnround.

But I said earlier, that to ease the passage of freight from Soiuthampton to the Midlands, that Didcot to Banbury should be electrified.

So could this electrification be continued all the way to Birmingham?

This would mean that the battery/electric locomotives would only need to be able to handle the hour-long journey to and from Marylebone, which would have 25 KVAC electrication over the platforms to top up the battery.

The solution is not as easy as TransPennine, but Chiltern Main Line to Birmingham would become an electric service.

The Stadler Class 88 Battery/Electric Locomotive

As Stadler seem to have a monopoly of new locomotives in the UK at present, I will look at their proven Class 88 locomotive.

  • It has a power of 4,000 kW on electricity.
  • It has a power of 700 kW using an onboard diesel.
  • It has a top speed of 100 mph.
  • The Caterpillar C27 diesel engine weighs around seven tonnes.
  • The locomotive has regenerative braking.

The locomotive is certainly no weakling on electricity, although performance, when pulling a heavy freight train on diesel might be desired to be better. This article on Rail Magazine is entitled Inside Direct Rail Services. This is an extract about the pulling ability of the Class 88 locomotive.

Sample performances over the northern section of the West Coast Main Line (Preston –Carlisle–Mossend) demonstrate that Class 88 can operate the same train weight to the same schedule as Class 68 using 15% less energy. Alternatively, it offers a 45-minute time advantage over a ‘68’ and 80 minutes for Class 66. This gives a competitive edge because a significant proportion of movement costs are absorbed by fuel.

When hauling the maximum permitted load of 1,536 tonnes on the 1 in 75 banks on this route, Class 88 has a balancing speed of 34mph in electric mode or 5mph in diesel mode. Taken together, all these factors helped Class 88 win the Rail Freight Group ‘Rail Freight Project of the Year’ Award in the Innovation and Technical Development category this year.

The locomotive doesn’t appear to be a wimp.

But could the Class 88 locomotive be fitted with a battery?

Current energy storage technology seems to be able to store about 100Wh/kg. So on this basis a seven tonne battery would store about 700 kWh.

I think in a few years it would be possible to build a version of a Class 88 locomotive with no diesel engine and a battery with a 1000 kWh capacity.

But even so, the 1000 kWh battery may be too small.

Would it be able to handle these important routes with a full-length freight train?

  • Haughley Junction to Peterborough
  • Peterborough to Doncaster via Lincoln
  • Peterborough to Nuneaton.
  • Southampton to Reading
  • Immingham to Doncaster

However, Stadler and Direct Rail Services will be able to extensively model the performance of a battery/electric Class 88 locomotive pulling various weights of freight train on different routes in the UK.

The modelling would show how much battery capacity would be needed for various routes.

Suppose though the battery capacity needed was say 2400 kWh, as I suspect has been specified by the Americans for their locomotive. This would be too heavy and large for the small Class 88 locomotive

But just as the Americans are using their battery/electric locomotive in combination with a diesel locomotive, why not run the battery-electric Class 88 locomotive as a pair with a standard electro-diesel Class 88 locomotive?

TransPennine Passenger Services With A Class 88 Battery/Electric Locomotive

Currently electrification is planned or very likely on the Liverpool to Newcastle route between.

  • Manchester Victoria and Stalybridge
  • Leeds and Colton Junction on the East Coast Main Line.

This would mean that only around forty minutes of the entire Liverpool to Newcastle route would be without electrification.

Would a battery/electric locomotive with a 1000 kWh battery be able to bridge the gap in the wires between Stalybridge and Leeds?

The battery would be fully charged, at both Stalybridge and Leeds, as the locomotive would have been running under the wires for some time.

It is a very interesting and in my view, a totally feasible possibility.

Conclusion

My modelling experience says that there is at least one solution in there.

  • A new build battery/electric locomotive could be designed.
  • A battery/electric version of the Class 88 locomotive must be possible and it could work alone or with the current electro-diesel Class 88 locomotive.

I am sure that Jo Johnson’s dream of removing diesel from UK railways will take a big step forward in the next decade, when a battery/electric locomotive with sufficient performance becomes available.

I also believe that short lengths of electrification like Oxford to Banbury, may usefully increase the range of an electric/battery locomotive.

 

October 22, 2018 Posted by | Transport | , , , | Leave a comment

Five Mark 4 Coaches, A Driving Van Trailer And A Stadler UKLight Locomotive

In writing Would Electrically-Driven Trains Benefit From Batteries To Handle Regenerative Braking?, I started to analyse the mathetics and possibilities of a train with the following formation.

The sub-section got too large and important so I decided to write it as a separate post.

I like the Class 68 locomotive, as it looks professional and seems to do all asked of it.

So what would be the kinetic energy of a formation of five Mark 4 coaches, between a DVT and a Class 68 Locomotive?

  • The five Mark 4 coaches would weigh 209 tonnes.
  • The Class 68 locomotive weighs 85 tonnes.
  • The DVT weighs 42.7 tonnes
  • I will assume that a five cars will seat around 300 passengers.
  • The passengers weigh 27 tonnes, if you assume each weighs 90 Kg, with baggage, bikes and buggies.
  • The train weight is 363.7 tonnes.

At 100 mph, which is the maximum speed of the Class 68 locomotive, the Omni Kinetic Energy Calculator gives the kinetic energy of the train as 100 kWh.

I doubt there’s the space to squeeze a 100 kWh of battery into a Class 68 locomotive to handle the regenerative braking of the locomotive, but I do believe that a locomotive can be built with the following specification.

  • Enough diesel power to pull perhaps five or six Mark 4 coaches and a DVT at 125 mph.
  • Ability to use both 25 KVAC and 750 VDC electrification.
  • Battery to handle regenerative braking.
  • As the Class 88 electro-diesel locomotive, which is around the same weight as a Class 68 locomotive, I suspect the proposed locomotive would be a bit heavier at perhaps 95 tonnes.

This train would have a kinetic energy of 160 kWh at 125 mph.

Consider.

  • If the locomotive could have a 200 kWh battery, it could harvest all the regenerative braking energy.
  • Accelerating the train to cruising speed uses most energy.
  • Running at a constant high speed, would conserve the kinetic energy in the train.
  • Stadler, who manufacture the Class 68 and 88 locomotives are going to supply a diesel/electric/battery version of the Class 755 train, for the South Wales Metro. In What Is The Battery Size On A Tri-Mode Stadler Flirt?, I estimated the battery size is about 120 kWh.
  • The Class 68 and 88 locomotives are members of Stadler’s Eurolight family, which are designed for a 125 mph capability with passenger trains.
  • I don’t believe the UK is the only country looking for an efficient locomotive to haul short rakes of coaches at 125 mph, on partially-electrified lines.

It should also be noted, that to pull heavy freight trains, the Class 88 locomotive has a 700 kW Caterpillar C27 diesel that weighs over six tonnes, whereas 200 kWh of battery, would weigh about two tonnes. I believe that a smaller diesel engine might allow space for a large enough battery and still be able to sustain the 125 mph cruise.

Stadler have the technology and I wonder, if they can produce a locomotive to fill the market niche!

In HS2 To Kick Off Sheffield Wiring, I reported on the news that the Northern section of the Midland Main Line between Clay Cross and Sheffield will be electrified.

This would greatly improve the performance of diesel/electric/battery hybrid trains between London and Sheffield.

  • Between London and Kettering, the trains would be electrically-powered.
  • Between Kettering and Clay Cross, they would use a mixture of diesel and battery operation.
  • Between Clay Cross and Sheffield, the trains would be electrically-powered.

Note.

  1. Going North, trains would pass Kettering with a full battery.
  2. Going South, trains would pass Clay Cross with a full battery.
  3. Regenerative braking at stops between Kettering and Clay Cross would help recharge the batteries.
  4. The diesel engine would be sized to keep the train cruising at 125 mph on the gentle Midland Main Line and back up the acceleration needed after stops.

It would be a faster and very electrically-efficient journey, with a large reduction in the use of diesel power.

The locomotive would also have other uses in the UK.

  • TransPennine services, where they could surely replace the Class 68 locomotives, that will haul Mark 5A coaches between Liverpool and Scarborough and Manchester Airport and Middlesborough.
  • Between London and Holyhead
  • Waterloo to Exeter via Basingstoke and Salisbury.
  • Marylebone to Birmingham via the Chiltern Main Line, if the two ends were to be electrified.
  • Services on the East West Rail Link.
  • Between Norwich and Liverpool
  • CrossCountry services.

Note.

  1. Services could use a rake of Mark 4 coaches and a DVT or a rake of new Mark 5A coaches.
  2. If more electrification is installed, the trains would not need to be changed, but would just become more efficient.
  3. The competition would be Bombardier’s proposed 125 mph bi-mode Aventra with batteries, that I wrote about in Bombardier Bi-Mode Aventra To Feature Battery Power.

And that is just the UK!

Conclusion

Using the Mark 4 coaches or new Mark 5A coaches with a new 125 mph diesel/electric/battery hybrid Stadler UKLight locomotive could create an efficient tri-mode train for the UK rail network.

The concept would have lots of worldwide applications in countries that like the UK, are only partially electrified.

 

 

August 5, 2018 Posted by | Transport | , , , , , | 1 Comment

A Hydrogen-Powered Locomotive

If Alstom’s ventures in Germany and the UK with hydrogen-powered trains, are successful, I don’t think it will be long before engineers start thinking about a hydrogen-powered locomotive.

Consider some of the various locomotives used in the UK.

  • Class 66 – Diesel – 2,500 kW – Over 400 in service
  • Class 67 – Diesel – 2,400 kW – 30 in service
  • Class 68 – Diesel – 2,800 kW – 34 in service
  • Class 70 – Diesel – 2,800 kW – 37 in service
  • Class 88 – Diesel – 700 kW – Electric – 4,000 kW – 10 in service
  • Class 90 – Electric – 3,700 kW – 50 produced.
  • Class 91 – Electric – 4,800 kW – 31 produced
  • Class 92 – Electric – 5.000 kW – 46 produced.

Note.

  1. Many of the diesel locomotives, like the Class 66, don’t meet the latest emission regulations.
  2. Class 66 locomotives spent a lot of time pulling freight trains on electrified lines.
  3. The Class 90 electric locomotives are getting old and need careful maintenance.
  4. The Rail Minister, Jo Johnson, would like to see diesel power on UK railways gone by 2040.

I have not included some of the heritage locomotives, that are regularly seen on the UK rail network pulling freight.

This picture shows a pair of Class 86 locomotives hauling a freight train through Hackney Wick station.

These two Class 86 locomotives date from the mid-1960s. But they do have 2,700 kW of power. Each!

According to Wikipedia, fourteen of Freightliner‘s thirty Class 86 locomotives are still in regular use.

Not only is this a tribute to 1960s engineering, but it does show that there is a shortage of suitable locomotives in the UK.

So could a modern environmentally-friendly locomotive be developed to fill the gap?

A Look At The Class 88 Locomotive

There could be a clue as to what could be a useful power output in the design of the Class 88 locomotive.

  • These are a modern design from Shadler that entered service in 2017.
  • They have a power output of 4,000 kW from electricity.
  • They have a power output of 700kW from diesel.
  • They can switch between power sources automatically.
  • They can haul passenger trains, as well as heavy freight trains.
  • They comply with Euro III B emission limits.

Did Direct Rail Services make sure they got a correctly-sized locomotive with the right capabilities?

They obviously find the diesel Class 68 locomotive to their liking, as they have bought over thirty.

So they probably knew very well, the sort of power that they would need from a dual-mode electro-diesel locomotive.

On electricity, the Class 88 locomotive is more powerful than a Class 90 electric locomotive, which commonly haul heavy freight trains on the electrified network.

In this article in Rail Magazine, the following is said about Class 88 locomotives, operating from Preston to Glasgow.

When hauling the maximum permitted load of 1,536 tonnes on the 1 in 75 banks on this route, Class 88 has a balancing speed of 34mph in electric mode or 5mph in diesel mode.

This shows how a well-delivered 700 kW, isn’t that inadequate.

I suspect that there is sufficient power to bring a heavy freight train out of Felixstowe and the other ports without electrification.

So perhaps, we should take the specification of a Class 88 train, as a starting point for the specification of a proposed hydrogen locomotive?

Possible Routes And Duties

There are also some specific problems associated with various routes and duties, where the current UK fleet of locomotives are used.

InterCity 225 Trains

There are currently thirty-one InterCity 225 trains, running on the East Coast Main Line.

  • They are hauled by a 4,800 kW Class 91 electric locomotive.
  • The trains consist of nine Mark 4 coaches and a driving van trailer.
  • The trains were designed for 140 mph, but normally run at 125 mph.
  • The trains have a capacity of over five hundred passengers.
  • The trains could be made to meet all proposed access regulations for those with reduced mobility, with not a great deal of expensive work.
  • Most of the trains will be replaced by Class 800 trains in the next couple of years.
  • The trains are owned by Eversholt Rail Group, who are gaining a reputation for innovation.

The trains could probably give a few more years of service.

One suggestion, that has been made, would be to run the trains on the Midland Main Line.

  • Sections of the route allow running at 125 mph.
  • The route needs an urgent replacement for InterCity 125 trains.
  • The route is only to be electrified as far as Kettering and Corby.

So an alternative and powerful  locomotive would be needed, that could run on both lines with and without electrification.

The Class 91 locomotives are powerful beasts running on electricity, but with careful calculations, I’m sure that the power needed on lines with and without wires should be known.

The trains might also be formed of less coaches and selective electrification could be used in stations to accelerate the trains.

Note that accelerating the train to 125 mph, will be the major use of electricity. Hence, electrified stations would be welcome.

Expect some innovative proposals to use Mark 4 coaches from the InterCity 225 on the Midland Main Line.

Initially, could two Class 88 locomotives working in push-pull mode, handle say six Mark 4 coaches between London and Derby, Nottingham and Sheffield?

Who knows? But there are probably teams of engineers working away to create plausible solutions for the bidders for the new East Midlands Franchise, which will be awarded in April 2019.

Class 66 Locomotive Replacement

Because of their number, you see Class 66 locomotives everywhere on the UK network.

  • They haul long inter-modal freight trains.
  • They haul freight into and out of docks like Felixstowe, that are without electrification.
  • They haul engineering trains.
  • They are often seen hauling trains using diesel power on electrified lines.

But they are one of the most environmentally-unfriendly of diesel trains, which don’t meet the latest emission regulations.

How long before residents and rail passengers, start to complain about these locomotives, where electric haulage is possible?

I believe there is an increasingly urgent need for a go-anywhere replacement for the Class 66 locomotive.

It would appear, that the Class 88 locomotive, was specified so it can take over some of the duties of a Class 66 locomotive,

Could this see more orders for the Stadler locomotive?

I also believe that we could see other types of locomotive built to replace the Class 66 locomotive.

We might even see a locomotive with a lower power rating able to use electric or hydrogen power for work with all the smaller trains, that Class 66 locomotives haul.

Hydrogen Instead Of Diesel

The 700 kW diesel engine in a Class 88 locomotive is a Caterpillar C27, which drives an ABB alternator.

The engine alone weighs three tonnes.

By comparison Ballard make a hydrogen fuel cell that has an output of 100 kW, for a weight of  385 Kg.

This gives a weight of 2.7 tonnes for an output of 700 kW.

There will need to be a substantial battery. I estimate that a 500 kWh battery will weigh about eight tonnes.

On balance, the hydrogen-powered locomotive will probably be heavier than a diesel one, but it will have environmental advantages.

But with good design, I do think that a locomotive with similar performance to a Class 88 can be produced.

It might need to be longer and have more powered axles, to cope with extra weight.

Conclusion

I am led to the belief that a hydrogen-powered locomotive with sufficient power is possible.

They may be able to handle a lot of the duties of Class 66 locomotives, but I doubt they would be powerful enough for hauling full rakes of Mark 4 coaches.

It will be interesting to see, what solutions are proposed to solve the forthcoming rolling stock shortage on the Midland Main Line.

 

 

 

May 18, 2018 Posted by | Transport | , , , , | 1 Comment

Jumbo Trains Are Arriving

This article on Global Rail News is entitled  DB Cargo UK’s First “Jumbo Train” From Cardiff Makes Maiden Journey. This is the first paragraph.

DB Cargo and Cemex UK made history earlier this month when the freight operator’s first “jumbo train” of 34 wagons made its maiden journey from Cardiff.

The cargo was building materials from South Wales for London and the South East.

Yesterday, I also took this picture of a very long cement train at Stratford.

The building boom in London and the South East is still requiring large amounts of cement and aggregate.

Long trains like these have various consequences.

  • They increase the capacity of the railway, as longer trains make better use of the available freight paths.
  • They take more trucks off the road.
  • Track, junctions and sidings may need to be updated to handle the longer trains.
  • The trains need two locomotives.

It’s not just aggregates and cement that will be transported this way, but containers, new cars and vans, bio-fuel for power stations and aviation fuel.

New Locomotives

The biggest need will be for new locomotives. At present, Wales to London aggregate trains are hauled by a pair of Class 66 diesel locomotives. When electrification is complete between London and Cardiff, surely this route should be handled by a pair or even a single large electric locomotive.

This article in Rail Magazine is entitled GB Railfreight In ‘Locomotive Acquisition’ Talks.

So at least one freight company is looking for new motive power.

What characteristics will the locomotives need?

Adequate Performance

The power and operating speed of the various modern locomotives used for freight are as follows.

  • Class 66 – Diesel – 2,460 kW – 75 mph
  • Class 67 – Diesel – 3,200 kW – 125 mph
  • Class 68 – Diesel – 2,800 kW – 100 mph
  • Class 70 – Diesel – 2,750 kW – 75 mph
  • Class 90 – Electric – 3,730 kW – 110 mph
  • Class 92 – Electric – 5,040 kW – 87 mph

There is also the Class 88, which can run on both electric or diesel power.

  • Diesel – 700 kW
  • Electric – 4,000 kW

An operating speed of 100 mph is quoted in Wikipedia.

If the locomotive was to replace two Class 66 locomotives working together, it would appear the locomotive would need a power of around 5,000 kW.

I took this picture of a Class 90 electric locomotive and a Class 66 diesel locomotive double-heading a freight train.

The two locomotives would have a combined power of about 6,200 kW.

Diesel, Electric Or Dual Power

Does the picture, indicate a need for a high-power dual mode locomotive?

Or was it just convenient to pull the freight train out of the Port of Felixstowe with a Class 66 locomotive and then add a Class 90 locomotive to pull the train on the electrified route to London?

As the freight companies are regularly reported as needing more locomotives, I suspect some unusual motive power is used at times.

Now that the Class 88 dual-mode locomotives are coming into service, I would suspect that the capability of these locomotives is being examined in detail.

It may only have 700 kW using diesel, but 4,000 kW using electricity is very respectable, although not as much as two Class 66 locomotives working together.

The Bombardier TRAXX

The Bombardier TRAXX is a family of locomotives, that come in electric, diesel and dual-mode versions.

Several hundred have been ordered.

A version of this locomotive or something similar might fit the specification.

Conclusion

Some more powerful freight locomotives are needed, but the designs should be available.

 

September 27, 2017 Posted by | Transport | , , | 3 Comments

The Pressure For More Rail Electrification

Over the last few days, there have been several articles on the media pushing for more electrification.

This article in Rail Technology Magazine, which is entitled TfGM To Fight Corner For Full TransPennine Electrification.

This article in the Carlisle Times and Star, which is entitled Campaigners Urge Backtrack On Axed Electric Rail Projects.

This article in the Times, which is entitled New Oxford-Cambridge Rail Route Must Rely On Diesel Trains.

This article in the Nottingham Post, which is entitled Strong Condemnation Of Government Plan To Abandon Rail Electrification.

I feel that electric trains are the future, but like members of the current Government, I feel that we need an alternative approach to creating a modern railway network in the UK.

What Do Passengers Want?

Passengers in general want a comprehensive rail service, that is affordable, reliable, fast and frequent and gives them good comfort and service on trains and at their terminal stations.

What Do Train Operating Companies Want?

Train companies need and want to make profits.

Judging by the latest franchise awards to Northern, TransPennine Express, Greater Anglia, South Western Railway and West Midlands Trains, part of their philosophy to achieve this is to buy fleets of new trains to replace old ones, with the following characteristics.

  1. More carriages and increased capacity.
  2. Higher speed and performance.
  3. Power and USB points, wi-fi and 4G connectivity.
  4. Easier entrance and exit.
  5. Better facilities for persons of reduced mobility.
  6. Shorter dwell times at stations.
  7. Better driver assistance systems.

The best way to pay for these trains and make a profit is to fill them with happy passengers.

So Where Does Electrification Give Advantages?

In summarising what passengers and train companies want, I didn’t mention electrification, although electric trains do give advantages to both groups.

  • It must be easy to fit electrical equipment into an electric train.
  • Electric trains accelerate faster.
  • Electric trains can be fitted with regenerative braking to save energy

Electrification is not needed in all cases as electricity for the train can be provided by diesel or hydrogen-powered generators or some form of onboard energy storage can be used.

Why Are So Many Elecification Schemes In The UK Over Budget And Late?

With my experience of writing Project Management software and talking about it with numerous Project Managers all over the world, I suspect the following about electrifying an existing railway in the UK.

  • The drawings and documentation for some of the existing lines which go back well over a hundred years is questionable.
  • Politicians put undue pressure to keep costs down and corners are cut.
  • The scope of the project changes as it progresses.
  • Those against the electrification have lots of routes to delay the project.
  • We don’t have enough engineers or qualified personnel to do the work.
  • Often work is on constricted sites and the locals get annoyed.

I’m coming to the conclusion, that electrification is one of the most difficult of projects.

I do feel though there is hope for the future judged on what happened at Waterloo during August.

The Future Of Road Transport

We are seeing more and more electric and hybrid vehicles on the roads and this article in the Guardian, says that Britain will ban the sale of all diesel and petrol cars by 2040.

For this to happen, there needs to be a vast improvement in the efficiency and size of energy storage systems.

A few years ago, if you’d fitted solar panels to your house, your neighbours would have laughed at you. Now they don’t as technology has improved the performance of solar panels, just like it will improve energy storage in the next few years.

What Will Improved Energy Storage Mean For Trains?

The first trains with onboard energy storage are starting to appear on the UK’s railways.

Class 800 trains – Intercity Express Programme

This document on the Hitachi Rail web site, which is entitled Development of Class 800/801 High-speed Rolling Stock for UK Intercity Express Programme.

 

The document provides this schematic of the traction system of a Class 800 train.

Note BC which is described as battery charger.

This is said in the text.

The system can select the appropriate power source from either the main transformer or the GUs. Also, the size and weight of the system were minimized by designing the power supply converter to be able to work with both power sources. To ensure that the Class 800 and 801 are able to adapt to future changes in operating practices, they both have the same traction system and the rolling stock can be operated as either class by simply adding or removing GUs. On the Class 800, which is intended to run on both electrified and non-electrified track, each traction system has its own GU. On the other hand, the Class 801 is designed only for electrified lines and has one or two GUs depending on the length of the trainset (one GU for trainsets of five to nine cars, two GUs for trainsets of 10 to 12 cars). These GUs supply emergency traction power and auxiliary power in the event of a power outage on the catenary, and as an auxiliary power supply on non-electrified lines where the Class 801 is in service and pulled by a locomotive. This allows the Class 801 to operate on lines it would otherwise not be able to use and provides a backup in the event of a catenary power outage or other problem on the ground systems as well as non-electrified routes in loco-hauled mode.

Note that GU refers to Generator Unit, which in these trains are diesel-powered.

This is all very comprehensive, but if you look at how the braking system of the trains work and if it uses regenerative braking, you won’t find anything on the web.

But note how the four traction motors in the diagram are connected to the system. When they are in braking mode, what happens to the electricity?

  1. It is returned to the overhead wires. Difficult when using GUs on lines without electrification.
  2. It is passed to resistors on the roof of the train and burnt off as heat.
  3. It is stored in some form of onboard energy storage, so it can be reused later.

I feel that Hitachi are using Option 3, as it would work in both modes of the train and would save a lot of energy.

Note that in the above extract from the Hitachi document, the company states that the electric Class 801 trains have at least one GU to provide auxiliary and traction power in the event of catenary failure.

It looks like the only difference between the Class 800 and Class 801 trains, is that the Class 800 trains have more GUs.

Could this explain why Hitachi seem to be doing all their testing with Class 800 trains, as the differences between the two trains are minimal?

If the Class 800 works, then the Class 801 will!

Hitachi are also testing the Class 802 trains, but then these are built in Italy, have more powerful engines and bigger fuel tanks.

Bombardier Aventras

Bombardier have been developing battery technology for some years and as I described in Is The Battery Electric Multiple Unit (BEMU) A Big Innovation In Train Design?, I rode in the prototype converted from a Class 379 train in February 2015.

I believe that the Class 345 trains are fitted with onboard energy storage for the following reasons.

  • Onboard energy storage is the logical way to handle regenerative braking in tunnels.
  • Onboard energy storage means that each train reuses its own braking energy and draws less current from the electrification.
  • Onboard energy storage is the only way to move a train to a safe place, when the Russians or North Koreans hack the power suppky.
  • Some of the features announced for Aventras, like remote wakeup as I discussed in Do Bombardier Aventras Have Remote Wake-Up?, need onboard energy storage.
  • Bombardier have won awards for the technology.

Until Bombardier say otherwise, I’ll assume that Aventras like the Class 345 trains have onboard energy storage.

Overhead Power In Long Tunnels

It should also be noted that the overhead power supply in the Crossrail tunnels is a rail fed with power at both ends, as incidentally is the Severn Tunnel.

Could it be that money could have been saved on the electrification of these tunnels as all electric trains using them; IEPs and Aventras, can handle their own regenerative braking energy?

The Effect Of Large Onboard Energy Storage On Trains and Trams

There is a big difference between adding weight to a pneumatic-tyred vehicle like a car or truck, and adding weight to that of a steel-wheel-on-steel-rail vehicle like a train or tram.

With the former, the rolling resistance is increased, which means more power is needed to move the vehicle, but with the latter, surprisingly, the reverse is true.

This allows locomotives to pull iron ore, coal and stone trains carrying hundreds of tonnes.

So adding a heavy energy storage device under a train may not be as detrimental to performance as you may think.

I suspect Bombardier, Hitachi and others have determined the optimal size of storage device for their trains.

I believe the following,  if an appropriately-sized online storage device is fitted to a train.

  • It will be able to handle all the regenerative braking energy.
  • It will give the train a range of up to fifty kilometres on stored energy.

Without doubt, all trains driven by electricity and having regenerative braking will use onboard energy storage.

This applies even if their main power source is not electricity, but perhaps diesel, hydrogen or extra-strong knicker elastic!

Discontinuous Electrification

Modern trains like Aventras and Hitachi Class 80x trains have another ability.

They can raise and lower their pantographs under GPS control, so that they only connect with the electrification, when it is there.

They can also do it at line speed.

This raises the possibility of discontinuous electrification, where the easy-to-electrify sections have wires and the difficult bits are run using either diesel, hydrogen or onboard storage power.

An example would be between Batley and Morley stations on the Huddersfield Line, between which is the Morley Tunnel.

  • The tunnel is four kilometres long and hopefully could be electrified using a conductor rail in the tunnel roof.
  • Morley station is hard by the Northern portal of the tunnel.
  • The line from Morley to the electrification at Leeds doesn’t appear to have any serious bridges to replace and the double-track line has wide margins.
  • Batley, Morley and Cottingley stations are all stations with platforms either side of the track and could probably have the gantries on the platform.

Would it be possible to electrify short sections of line like this and let the trains and the driver decide to use onboard or overhead power?

The TransPennine Route

I will look at the TransPennine route in detail.

Mainly Electrically-Driven Trains

Looking at the various trains on TransPennine routes, we see the following ways of driving the trains and locomotives.

The last three trains and all the locomotives in this list are electrically driven, where on-board diesel engines generate electricity to power the train.

In addition the Class 802 trains and the Class 88 locomotives are bi-mode and can use electrification to power the trains directly, if it is available.

So a Liverpool to Newcastle service using Class 802 trains or Class 88 locomotives and Mark 5 carriages could use the overhead electrification on the following sections of track.

  • From Liverpool to Stalybridge via Manchester Victoria
  • Through Leeds
  • On the East Coast Main Line

Electrifying between Leeds and the East Coast Main Line would seem to be a lot easier than that between Leeds and Manchester, so I suspect that there is some seriously difficulty that has prevented it being done already, as it would allow Kings Cross to Edinburgh services to stop at Leeds, if that was desired.

Improving The Current Service

Currently Liverpool Lime Street to Newcastle takes three hours and three minutes, with the following sectional times.

  • Liverpool to Manchester Victoria – 39 minutes
  • Manchester Victoria to Huddersfield – 30 minutes
  • Huddersfield to Leeds – 22 minutes
  • Leeds to York – 25 minutes
  • York to Newcastle – 67 minutes

Some places to save times are apparent.

  • Liverpool to Manchester Victoria could be speeded up by a couple of minutes, after the addition of the fourth track at Huyton.
  • According to the time table, most dwell times are reasonable, but nine minutes is allowed at Manchester Victoria.
  • Manchester Victoria to Stalybridge is being electrified.
  • Virgin’s fastest trains take 56 minutes between York and Newcastle, so I would assume that a TransPennine Class 802 train could match this.
  • If Leeds to York were to be electrified, I would think that the same percentage decrease in journey time could be expected, which would give a Leeds to York time of 21 minutes.

Could we see the following times on the route?

  • Liverpool to Manchester Victoria – 30 minutes
  • Manchester Victoria to Huddersfield – 28 minutes
  • Huddersfield to Leeds – 22 minutes
  • Leeds to York – 21 minutes
  • York to Newcastle – 56 minutes

This gives a timing of 157 minutes, which is a saving of twenty-three minutes.

Is The Track Up To It?

Under Timings And Line Speeds in the Wikipedia entry for Liverpool and Manchester Lines, this is said.

As of 2016, the fastest journey times are around half an hour, which is little better than over a century earlier. The fastest recorded run was from Manchester Exchange to Liverpool Lime St in 30 minutes 46 seconds by a 1936 built Jubilee 5707 with 7 coaches. An 1882-built compound steam locomotive was timed on the same route in 38 minutes 18 seconds. Until 1968 trains from Liverpool to Manchester by all 3 routes were scheduled to take 40 minutes and often took less. The southern route via Warrington is now restricted to 85 mph and the northern route via Earlestown to 90 mph, with 75 mph over Chat Moss.

Work is under way to four-track the line between Huyton and Roby which is scheduled for completion in December 2017.

Surely, Twenty-First Century engineering can sort out Stephenson‘s problems of nearly two centuries ago!

If it’s like this between Liverpool and Manchester on a fully-electrified line, what’s it like between Manchester and Leeds?

I believe that modern engineering should be able to create a 100 mph route between Liverpool and Leeds.

Are The Other Trains Slowing The Expresses?

Northern run an assortment of trains between Liverpool and Leeds via Manchester Victoria.

Between Liverpool and Manchester Victoria are all the services timed for and run by 100 mph Class 319 trains, or do some of the assortment of 75 mph trains share the route? If it’s the latter then they will delay the expresses.

Between Manchester Victoria and Hudderfield, I’m sure that slower trains are on the route.

Help is at hand as Northern have ordered fifty-five Class 195 trains, which have a 100 mph capability.

Should Stalybridge To Leeds Be Electrified?

Only when slow trains have been eliminated and the track has been improved to allow 100 mph running between Liverpool and Leeds should we answer this question!

Using rough estimates, I feel we might see the following timings with a Class 802 train.

  • Liverpool to Manchester Victoria – 26 minutes
  • Manchester Victoria to Huddersfield – 21 minutes
  • Huddersfield to Leeds – 16 minutes
  • Leeds to York – 21 minutes
  • York to Newcastle – 56 minutes

This gives a timing of 140 minutes, which is a saving of forty-three minutes on the current times.

Improving Leeds To Newcastle

The Class 802 trains are stated in Wikipedia as being capable of running at 140 mph with minor modifications.

How many minutes would this take off the journey, if this were to be possible?

Conclusion

There are a lot of things to do before the decision to electrify Stalybridge to Leeds is taken.

  • Sort the track for at least 100 mph running.
  • Remove all passenger trains not capable of 100 mph from the line.
  • Perhaps add some passing loops.
  • Electrify Leeds to Colton Junction.
  • Remove all level crossings.
  • Raise all bridges and other structures, so that electrification is possible.
  • Get the planning permission for electrifying the sensitive areas.

Hopefully these actions in themselves would deliver a time of under forty minutes between Manchester and Leeds.

That would be a spoonful of sugar for the passengers and the train operating companies.

Any attempt to electrify without doing all of these actions before the decision to electrify is taken, will result in the sort of mess seen in some of the electrification schemes of the last few years.

The East West Rail Link

I will look at the East West Rail Link in detail.

Linking To Electrified Lines

The East West Rail Link joins or crosses the following electrified lines.

  • The Great Western Main Line at Didcot
  • The West Coast Main Line at Bletchley
  • The Midland Main Line at Bedford
  • The East Coast Main Line at Sandy
  • The West Anglia Main Line at Cambridge

As connecting the National Grid to electrification is a major cost, if the line were to be electrified, then there are several places to connect at a cheaper cost.

Building For Electrification

The instructions from the Department for Transport seem to have stated the following.

  • The line will be double track.
  • The line will have an operating speed of at least 100 mph or possibly 125 mph.
  • All bridges and structures, will be built to accommodate overhead electrification.

I wonder if the specification suggests preparing the margins of the route, so putting up overhead gantries wouldn’t be a case of digging and hitting important cables or pipes.

Electrification of new lines like the East London Line, Crossrail and the Hitchin Flyover seem to have proceeded much smoother than schemes like the Gospel Oak to Barking Line.

Trains For The East-West Rail Link

The proposed services include.

  • Oxford to Bedford
  • Bletchley to Bedford
  • Oxford to Milton Keynes Central
  • Aylesbury to Milton Keynes Central.

I have also seen suggestions that the trains terminate at Reading.

The trains will need the following.

  • A 100 mph capability to make good use of the route.
  • Ability to use overhead electrification to get to Bedford, Milton Keynes Central and Reading.
  • Ability to use diesel to use the Chiltern routes to Aylesbury and Marylebone.

To meet all these requirements, it would appear bi-mode trains like a Class 800 train are needed.

Should The East-West Rail Link Be Electrified?

Consider.

  • The trains chosen for the route will be bi-mode and so the line doesn’t need to be electrified.
  • Freight trains using the route would be hauled by a diesel locomotive or possibly a bi-mode locomotive like a Class 88 locomotive.

However, if at a future date, all or part of the electrification were to be deemed needed, if the line had been built with electrification in mind, putting up the wires would be a lot easier than on the TransPennine route.

Conclusions

I have come to these conclusions from these two examples.

  • The bi-mode route allows a lot of flexibility and means that electrification with all its problems can be done when it is really necessary.
  • The bi-mode route, also means that passengers get the benefits of modern,  faster and more frequent trains at an earlier date.
  • Electrification of a new line is easier than electrifying an old Victorian one.
  • All new or reopened lines should be built to allow electrification at a future date.

Don’t underestimate the ingenuity of railway engineers to make a more comprehensive railway powered by electricity possible.

September 10, 2017 Posted by | Transport | , , , , , | 1 Comment

Stadler To Build Another Special

Stadlet seem to be getting a reputation for building trains for niche markets.

This article on Global Rail News is entitled Stadler to build narrow-gauge EMUs for Stockholm’s Roslagsbanan.

Wikipedia has an entry for the Roslagsbanan.

After trains for the Glasgow Subway and Merseyrail, the Class 88 locomotives and Class 399 tram-trains, they must be one of the companies in prime position for the new Docklands Light Railway trains.

April 26, 2017 Posted by | Transport | , , , , , | Leave a comment