The Anonymous Widower

South Lincolnshire, West Norfolk And The North Netherlands

These three areas are very similar.

This sentence comes from the Wikipedia entry for The Fens, which are found where Cambridgeshire, Lincolnshire and Norfolk come together.

Most of the Fenland lies within a few metres of sea level. As with similar areas in the Netherlands, much of the Fenland originally consisted of fresh- or salt-water wetlands. These have been artificially drained and continue to be protected from floods by drainage banks and pumps.

I have heard it said, that The Fens owe a lot of their landscape to the Dutch, as it was the Dutch, who originally had a lot to do with draining the land.

It should also be noted, that one of the most famous people from the area is Commander George Vancouver of the Royal Navy, who was the son of John Jasper Vancouver, a Dutch-born deputy collector of customs in King’s Lynn. He gave his name to the Canadian city of Vancouver.

The Dutch have returned in that two of the three rail franchises in the area, are under the control of the Dutch company; Abellio; Greater Anglia (GA) and East Midlands Railway (EMR).

Current and future services through the area include.

  • GA – Stansted Airport and Norwich via Ely and Cambridge
  • GA – Liverpool Street and King’s Lynn via Ely and Cambridge
  • GA – Colchester and Peterborough via Ipswich, Bury St. Edmunds and Ely
  • EMR – Norwich and Nottingham
  • EMR – Peterborough and Doncaster via Spalding, Sleaford and Lincoln
  • EMR – Nottingham and Skegness via Grantham, Sleaford and Boston
  • CrossCountry – Birmingham and Stansted Airport via Peterborough, Cambridge and Ely.
  • Great Northern – King’s Cross and King’s Lynn via Ely and Cambridge
  • Thameslink – King’s Cross and Peterborough
  • Thameslink – King’s Cross and Cambridge

Note.

Most services are hourly, with some London services at a higher frequency.

  1. EMR are planning to increase certain early, late and Sunday services, so there may be improvements.
  2. GA are planning to introduce new Class 755 trains pn diesel services and new Class 720 trains on electric services.
  3. The Ely, Cambridge North and Cambridge corridor can have a frequency as high as eight trains per hour (tph)

Will EMR and GA work together to improve services in the area they jointly serve?

These are a few of my thoughts.

A Look At The North Of The Netherlands

In The Train Station At The Northern End Of The Netherlands, I looked at what the Dutch are doing in the North of the country, near to the city of Groningen.

  • Groningen is a city of around 200,000 people and a major rail hub, with services fanning out through the flat landscape.
  • The trains are mainly Stadler GTWs, which are the forerunners of GA’s Class 755 trains.
  • The Dutch are developing a hydrogen-based economy in the area, which I described in The Dutch Plan For Hydrogen.

Are Abellio looking to bring some of the ideas from the Netherlands to the UK?

I think to a certain extent, we’re going the same way. For instance, in the North of Lincolnshire a lot of development is going on to develop an energy economy based on offshore wind and energy storage.

The Cambridge Effect

Cambridge effects the whole of the area, in its demand for housing and premises for research, development and manufacture.

The Cambridge And Peterborough Problem

I used to play tennis, with a guy, who was promoting Peterborough as an expansion area for Cambridge. Peterborough is a city, with space and good connections to London and the North, by rail and the A1 road.

,But the problem is that the road and rail links between the two cities are atrocious, with a two-lane dual-carriageway and an hourly three-car diesel train.

It is my view, that the gap in the electrification between Ely and Peterborough should eventually be removed.

  • The land is flat.
  • The route is thirty miles long.
  • The route was recently upgraded to take the largest container trains, so electrification, surely wouldn’t be too difficult.
  • The biggest problem would probably be dealing with the numerous level crossings.

Electrification would allow.

  • More frequent and faster passenger trains between Cambridge, Ely and Peterborough.
  • Freight trains between Felixstowe and the North would be easier to haul using electro-diesel locomotives like the Class 88 and Class 93.
  • It would create an electrified diversion route for trains on the East Coast Main Line.

After electrification, it would be possible to have a much-needed four tph service between Cambridge and Peterbough with stops at Cambridge North, Waterbeach, Ely, Manea, March and Whittlesea.

  • Cambridge and Peterborough sstations both have several platforms, that could be used to terminate extra services.
  • The service could be extended to Cambridge South station, when that is built in a few years.

GA’s Class 755 trains could even provide the service without electrification.

What About Wisbech?

Wisbech is a town of 33,000 people without a passenger rail link.

But it does have the Bramley Line.

This is the introductory paragraph in Wikipedia.

The Bramley Line is a railway line between March and Wisbech in Cambridgeshire, England. A number of proposals are currently being investigated relating to the possible restoration of passenger services along the route.

The Association of Train Operating Companies and various politicians have supported creating a passenger service between Wisbech and Cambridge via March and Ely.

The service could be as follows.

It would use an existing single-track line, which would probably just need upgrading.

  • Cambridge and Wisbech would take around forty-five minutes.
  • A train would take two hours for the round trip.
  • An hourly service would take two trains.

What is useful, is that the length of the branch line is short enough, that it may be possible to be run the service using One Train Working.

Improvements Between Cambridge And King’s Lynn

This article on Rail Technology Magazine is entitled Work On £27m East of England Upgrades Set To Begin.

It lists the work to be done and the benefit in these two paragraphs.

The upgrades, between Cambridge and King’s Lynn, will include two platform extensions at Waterbeach and a platform extension at Littleport.

This will allow the introduction of eight-car services during peak times, providing passengers with more seats and a better experience.

The works will certainly add capacity for commuters to and from Cambridge and London.

Will the upgrade at Waterbeach station allow Greater Anglia’s four-car Class 755 trains to call.?

There is a section in the Wikipedia entry for Waterbeach station, which is entitled Future Plans, where this is said.

Plans to develop a New Town of 8,000 to 9,000 homes on the former Waterbeach Barracks site have been outlined by South Cambridgeshire District Council. As part of the proposal, there are plans to relocate the station to a new site and extend the platforms to accommodate 12 car trains.

This is more housing for Cambridge and I’m sure that the promised Norwich and Stansted Airport service will call.

Will Services Be Joined Back-To-Back At Peterborough?

Train companies sometimes find that joining two services together in a busy station is a good idea.

  • It may use less trains and drivers.
  • It uses a through platform rather than two bay platforms.
  • Trains could be turned in a more convenient station.

A proportion of passengers don’t have to change trains.

Note.

  1. |East Midlands Railway are joining the Doncaster and Lincoln, and Lincoln and Peterborough services into one service.
  2. Greater Anglia are extending the Peterborough and Ipswich service to Manningtree.
  3. Greater Anglia are extending the Norwich and Cambridge service to Stansted Airport.

But East Midlands Railway are also splitting the Norwich and Liverpool service into two.

These are the services that are planned to terminate at Peterborough.

  • Peterborough and Colchester via Ipswich, Bury St. Edmunds and Ely
  • Peterborough and Doncaster via Spalding, Sleaford and Lincoln

As I said earlier, I would’ve be surprised to see extra Cambridge and Peterborough services to increase capacity between the two cities.

Current timings of the various sections are as follows.

  1. Peterborough and Lincoln – one hour and twenty-three minutes
  2. Lincoln and Doncaster – fifty-four minutes
  3. Peterborough and Ipswich – one hour and thirty-nine minutes
  4. Ipswich and Colchester – nineteen minutes
  5. Peterborough and Cambridge – fifty minutes

Adding up 3 and 4 gives a Colchester and Peterborough timing of one hour and fifty-eight minutes. But the new Class 755 trains are faster and will be running at full speed on electrification for sections of the journey.

With the turnround at both ends, a round trip would be under four hours. This would mean that four trains would be needed for an hourly service.

Adding up 1 and 2 gives a Peterborough and Doncaster timing of two hours and seventeen minutes.

With the turnround at both ends, a round trip would be under five hours. This would mean that five trains would be needed for an hourly service.

Could these two services be run back-to-back to create a Colchester and Doncaster service?

It would take four hours and fifteen minutes or nine hours for a round trip. This would mean that nine trains would be needed for an hourly service.

This is the same number of trains that would be needed for the two separate services.

The two companies might decide to run a joint service, but!

  • In whose colours would the train run?
  • Would there be crewing difficulties?
  • If a train fails, it would probably be a long way from home.
  • It has been felt sensible to split the five hour and thirty-five minute Norwich and Liverpool services.

Would it be possible to run a service between Cambridge and Lincoln?

  • Adding up 1 and 5 gives a timing of two hours and thirteen minutes.
  • With the turnround at both ends, a round trip would be under five hours.
  • This would mean that five trains would be needed for an hourly service.

It would be possible, but would the convenience attract enough passengers to make the service viable?

Would It Be Worth Reinstating March And Spalding?

There used to be a railway between March and Spalding.

Wikipedia says this about the closure of the route.

When the line closed between March and Spalding in 1982,[3] freight traffic was diverted through Peterborough station instead of cutting across the western edge of the Fens to avoid the line through Peterborough station

Some have called for the route to be reinstated to enable freight trains to by-pass Peterborough, when travelling between Felixstowe and the route to the North through Spalding, Sleaford, Lincoln and Doncaster.

  • It is not a long route.
  • It could provide a passenger route between Cambridge and Lincoln.

I suspect that Network Rail looked at this scheme as an alternative to the Werrington Dive Under, which has been costed at £200 million.

Wikipedia says this about the Werrington Dive Under.

The project will see the construction of 1.9 miles (3 km) of new line that will run underneath the fast lines, culverting works on Marholm Brook and the movement of the Stamford lines 82 feet (25 m) westwards over the culverted brook. The project, coupled with other ECML improvement schemes (such as the four tracking from Huntingdon to Woodwalton) will improve capacity on the line through Peterborough by 33% according to Network Rail. This equates to two extra train paths an hour by 2021, when the work is scheduled to be completed.

A thirty-three percent capacity increase seems a powerful reason to build the Werrington Dive Under.

Would it also enable a faster route for trains between King’s Cross and Lincoln?

As to whether the direct route between March and Spalding will ever be reinstated, this will surely depend on several factors.

  • The number of freight trains needing to go between Felixstowe and Doncaster.
  • The maximum number of freight trains, that can use the freight route, through Spalding, Sleaford and Lincoln.
  • Whether a passenger service on the route is worthwhile.

There are also protests about the number of freight trains already using the route.

I can see the capacity of the freight route being increased and the route being made a more friendly neighbour, after the opening of the Werrington Dive Under.

  • Level crossings will be replaced by bridges.
  • Adoption of zero-carbon locomotives.
  • Installation of noise-reduction measures.

The line might even be electrified.

Peterborough After Werrington

If we assume that the services stay as currently proposed, the following trains will stop at Peterborough on their way to either Cambridge or Lincoln.

  • GA – Peterborough and Ipswich or Colchester – Platform 6
  • EMR – Peterborough and Lincoln or Doncaster- Platform 1 or 2
  • EMR- Norwich and Nottingham – Platform 7
  • EMR- Nottingham and Norwich – Platform 6
  • CrossCountry – Stansted Airport and Birmingham – Platform 7
  • CrossCountry – Birmingham and Stansted Airport- Platform 6

Note.

  1. Trains going to Cambridge use Platform 6.
  2. Trains coming from Cambridge  use Platform 7
  3. The Ipswich or in the future; Colchester service uses Platform 6 to turnback.
  4. The Lincoln or in the future; Doncaster service uses Platform 1 or 2 to turnback.
  5. Platform 6 and 7 is a new island platform with direct access to the Stamford Lines and the tracks in the Werrington Dive Under that connect to Spalding, Sleaford and Lincoln.

This means that after the Werrington Dive Under opens in a couple of years, the Peterborough and Doncaster service will stop in the wrong side of the station.

So it is likely, that Doncaster services will continue from the Werrington Dive Under into Platform 6 or 7 in Peterborough station.

As the Colchester service will probably still turnback in Platform 6 could we see the Doncaster and Colchester services timed to be in the island platform 6 & 7 at the same time.

Passengers would just walk a few metres between the two trains.

This Google Map shows the lines South of the station.

The Peterborough-Ely Line can be seen running East-West, to the South of the River Nene and then going under the East oast Main Line, before connecting to Platforms 6 and 7 on the West side of the station.

This Google Map shows the station.

Note the three island platforms, which are numbered 6 & 7, 4 & 5 and 2 & 3 from West to East.

The Wikipedia entry for Peterborough station, says this about Platforms 6 & 7.

Platforms 6 & 7: These new platforms were commissioned over the Christmas break 2013, and are now used by CrossCountry services between Stansted Airport/Cambridge via Ely and Birmingham New Street via Leicester; East Midlands Trains services between Norwich and Liverpool; and Greater Anglia services to Ipswich.

North from Peterborough station and just South of the site of the Werrington Dive Under is the Cock Lane Bridge. I took these pictures in November 2018.

Note the three fast lines of the East Coast Main Line on the Eastern side and the two Stamford Lines on the Western side.

Just North of thie bridge, the Stamford Lines will split and trains will be able to continue to  Stamford or cross under the East Coast Main Line towards Lincoln.

As there is a loop for freight trains through Peterborough station, the Werrington Dive Under will be able to handle sufficient trains.

Conclusion

The layout of Peterborouh station and the Werrington Dive Under will give Abellio a lot of flexibility to improve services in South Lincolnshire and West Norfolk.

Network Rail gets a lot of criticism, but you can’t fault the design and what lies behind it, in this instant!

 

 

 

 

 

 

 

August 8, 2019 Posted by | Transport | , , , , , , , , , | Leave a comment

Could A Battery- Or Hydrogen-Powered Freight Locomotive Borrow A Feature Of A Steam Locomotive?

Look at these pictures of the steam locomotive; Oliver Cromwell at Kings Cross station.

Unlike a diesel or electric locomotive, most powerful steam locomotives have a tender behind, to carry all the coal and water.

The Hydrogen Tank Problem

One of the problems with hydrogen trains for the UK’s small loading gauge is that it is difficult to find a place for the hydrogen tank.

The picture is a visualisation of the proposed Alstom Breeze conversion of a Class 321 train.

There is a large hydrogen tank between the driving compartment and the passengers.

The passenger capacity has been substantially reduced.

The train will have a range of several hundred miles on a full load of hydrogen.

The Alstom Breeze may or may not be a success, but it does illustrate the problem of where to put the large hydrogen tank needed.

In fact the problem is worse than the location and size of the hydrogen tank, as the hydrogen fuel cells and the batteries are also sizeable components.

An Ideal Freight Locomotive

The Class 88 locomotive, which has recently been introduced into the UK, is a successful modern locomotive with these power sources.

  • 4 MW using overhead 25 KVAC overhead electrication.
  • 0.7 MW using an onboard diesel engine.

Stadler are now developing the Class 93 locomotive, which adds batteries to the power mix.

The ubiquitous Class 66 locomotive has a power of  nearly 2.5 MW.

But as everybody knows, it comes with a lot of noise, pollution and smell.

An ideal locomotive must be able to handle these freight trains.

  • An intermodal freight train between Felixstowe and Manchester.
  • An intermodal freight train between Southampton and Leeds.
  • A stone train between the Mendips and London.

The latter is probably the most challenging, as West of Basingstoke, there is no electrification.

I also think, that locomotives must be able to run for two hours or perhaps three,  on an independent power source.

  • Independent power sources could be battery, diesel hydrogen, or a hybrid design
  • This would enable bridging the many significant electrification gaps on major freight routes.

I feel that an ideal locomotive would need to meet the following.

  • 4 MW when running on a line electrified with either 25 KVAC overhead or 750 VDC third-rail.
  • 4 MW for two hours, when running on an independent power source.
  • Preferably no diesel!
  • Ability to change from electric to independent power source at speed.
  • 110 mph operating speed.

Even running without the independent power source, this locomotive could haul a heavy intermodal freight train between London and Glasgow on the fully-electrified West Coast Main Line.

Batteries For Regenerative Braking

Stadler have shown, in the design of the Class 88 locomotive, that there is space in a 4 MW electric locomotive, there is still space to fit a heavy diesel engine.

I wonder how much  battery capacity could be installed in a UK-sized 4 MW electric locomotive, based on Stadler’s UK Light design.

Would it be enough to give the locomotive a useful Last Mile capabilty?

In Thoughts On A Battery Electric Class 88 Locomotive On TransPennine Routes, I estimated that a Class 88 locomotive could replace the diesel engine with a battery with a battery capacity of between 700 kWh and 1 MWh.

This would give about fifteen minutes at full power.

Would this be a useful range?

Probably not for heavy freight services, if you consider that a freight train leaving Felixstowe Port takes half-an-hour to reach electrification.

Batteries For Traction

If batteries are to provide 4 MW power for two hours, they will need to have a capacity of 8 MWh.

In Thoughts On A Battery Electric Class 88 Locomotive On TransPennine Routes, I said this.

Traction batteries seem to have an energy/weight ratio of about 0.1kWh/Kg, which is increasing with time, as battery technology improves.

So this means that a one tonne battery holds about 100 kWh.

So to hold 8 MWh or 8,000 kWh, there would be a need to be an 80 tonne battery.

Note that a Stadler Class 88 locomotive weighs 86 tonnes and has a 21.5 tonne axle load, so the battery would almost double the weight of the locomotive.

So to carry this amount of battery power, the batteries must be carried in a second vehicle, just like some steam locomotives have a tender.

But suppose Stadler developed another version of their UK Light locomotive, which was a four-axle locomotive that held the largest battery in the standard body.

  • It would effectively be a large battery locomotive, with cabs on either end.
  • It would have a pantograph for charging the battery if required.

It could work independently or electrically-connected to the proposed 4 MW electric locomotive.

I obviously don’t know all the practicalities and economics of designing such a pair of locomotives, but I do believe that the mathematics say  that if a 4 MW electric locomotive can be paired with a large enough battery, very formidable zero-carbon haulage is possible, by using battery-power to bridge the gaps in the UK’s electrification network.

Hydrogen Power

I don’t see why a 4 MW electric locomotive , probably with up to 1,000 kWh of batteries couldn’t be paired with a second vehicle, that contained a hydrogen tank, a hydrogen fuel-cell.and some more batteries.

It’s all a question of design and mathematics.

It should also be noted, that over time the following will happen.

  • Hydrogen tanks will be able to store hydrogen at a greater pressure.
  • Fuel cells will have a higher power to weight ratio.
  • Batteries will have a higher power storage density.

These improvements will all help to make a viable hydrogen-powered generation or locomotive possible.

What About The Extra Length?

A Class 66 lo motive is 21.4 metres long and a Class 68 locomotive is 20.3 metres long. Network Rail is moving towards a maximum freight train length of 775 metres, so it would appear that another twenty metre long vehicle wouldn’t be large in the grand scheme of things.

Conclusion

My instinct says to be that it would be possible to design a pair of locomotives or an electric locomotive with a second vehicle containing batteries or a hydrogen-powered electricity generator, that could haul freight trains on some of the partially-electrified routes in the UK.

 

 

 

July 28, 2019 Posted by | Transport | , , , , , , | Leave a comment

Could A Modular Family Of Freight Locomotives Be Created?

In Thoughts On A Battery/Electric Replacement For A Class 66 Locomotive, I looked at the possibility of creating a battery/electric locomotive with the performance of a Class 66 locomotive.

  • I felt that the locomotive would need to be able to provide 2,500 kW for two hours on battery, to bridge the gaps in the UK electrification.
  • This would need a 5,000 kWh battery which would weigh about fifty tonnes.
  • It would be able to use both 25 KVAC overhead and 750 VDC third-rail electrification.
  • It would have a power of 4,000 kW, when working on electrification.
  • Ideally, the locomotive would have a 110 mph operating speed.

It would be a tough ask to design a battery/electric locomotive with this specification.

The Stadler Class 88 Locomotive

Suppose I start with a Stadler Class 88 locomotive.

  • It is a Bo-Bo locomotive with a weight of 86.1 tonnes and an axle loading of 21.5 tonnes.
  • It has a rating on electricity of 4,000 kW.
  • It is a genuine 100 mph locomotive when working from 25 KVAC overhead electrification.
  • The locomotive has regenerative braking, when working using electrification.
  • It would appear the weight of the diesel engine is around seven tonnes
  • The closely-related Class 68 locomotive has a 5,600 litre fuel tank and full of diesel would weight nearly five tonnes.

In Thoughts On A Battery Electric Class 88 Locomotive On TransPennine Routes, I said this about replacing the diesel-engine with a battery.

Supposing the seven tonne diesel engine of the Class 88 locomotive were to be replaced by a battery of a similar total weight.

Traction batteries seem to have an energy/weight ratio of about 0.1kWh/Kg, which is increasing with time, as battery technology improves.

A crude estimate based on this energy/weight ratio would mean that at least a 700 kWh battery could be fitted into a Class 88 train and not make the locomotive any heavier. Given that lots of equipment like the alternator and the fuel tank would not be needed, I suspect that a 1,000 kWh battery could be fitted into a Class 88 locomotive, provided it just wasn’t too big.

This would be a 4,000 kWh electric locomotive with perhaps a twenty minute running time at a Class 66 rating on battery power.

The Stadler Class 68 Locomotive

The Stadler Class 68 locomotive shares a lot of components with the Class 88 locomotive.

  • It is a Bo-Bo locomotive with a weight of 85 tonnes and an axle loading of 21.2 tonnes.
  • It has a rating on diesel of 2,800 kW.
  • It is a genuine 100 mph locomotive.
  • The locomotive has regenerative braking to a rheostat.
  • It has a 5,600 litre fuel tank and full of diesel would weight nearly five tonnes.

They are a locomotive with a growing reputation.

A Double Bo-Bo Locomotive

My devious engineering mind, thinks about what sort of locomotive would be created if a Class 68 and a Class-88-based battery/electric locomotive were integrated together.

  • It would be a double Bo-Bo locomotive with an axle loading of 21.5 tonnes.
  • It has a rating on electricity of 4,000 kW.
  • It has a rating on diesel of 2,800 kW.
  • Battery power can be used to boost the power on diesel as in the Stadler Class 93 locomotive.
  • It would be nice to see regenerative braking to the batteries.

Effectively, it would be a diesel and a battery/electric locomotive working together.

This picture shows a Class 90 electric locomotive and a Class 66 diesel locomotive pulling a heavy freight train at Shenfield.

If this can be done with a diesel and an electric locomotive, surely a company like Stadler have the expertise to create a double locomotive, where one half is a diesel locomotive and the other is a battery/electric locomotive.

A Control Engineer’s Dream

I am a life-expired Control Engineer, but I can still see the possibilities of creating an sdvanced control system to use the optimal power strategy, that blends electric, battery and diesel power, depending on what is available.

I feel that at most times, the locomotive could have a power of up to 4,000 kW.

The Ultimate Family Of Locomotives

I have used a diesel Class 68 and a Class 88-based battery/electric locomotive,, to create this example locomotive.

In the ultimate family, each half would be able to work independently.

In time, other members of the family would be created.

A hydrogen-powered locomotive is surely a possibility.

The Control System on the master locomotive, would determine what locomotives were coupled together and allocate power accordingly.

Conclusion

I have used Stadler’s locomotives to create this example locomotive.

I suspect they are working on concepts to create more powerful environmentally-friendly locomotives.

As are probably, all the other locomotive manufacturers.

Someone will revolutionise haulage of heavy freight trains and we’ll all benefit.

 

 

June 6, 2019 Posted by | Transport | , , , , | Leave a comment

Stadler’s New Tri-Mode Class 93 Locomotive

In Thoughts On A Battery/Electric Replacement For A Class 66 Locomotive, I looked at an electro-diesel freight locomotive with batteries instead of a diesel engine, as a freight locomotive. It would have the size and weight of a Class 70 locomotive and perhaps use similar technology to Stadler’s Class 88 locomotive.

I concluded the article like this.

It would be a heavyweight locomotive with a performance to match.

I believe that such a locomotive would be a very useful addition to the UK’s fleet of freight locomotives.

Stadler have not produced a battery/electric replacement for a Class 66 locomotive, but they have added a diesel/electric/battery Class 93 locomotive with a heavyweight performance to their Class 68/88 or UKLIGHT family of locomotives built at Valencia in Spain.

Details of the locomotive are given in this article in Rail Magazine, which is entitled Rail Operations Fuels Its Ambitions With Tri-Mode Class 93s. There is also a longerand more detailed  article in the print edition of the magazine, which I purchased today.

Reading both copies of the article, I can say the following.

A More Powerful Class 88 Locomotive

At a first glance, the Class 93 locomotive appears to be a more powerful version of the Class 88 locomotive.

  • The power on electric mode is the same in both locomotives at four megawatt. It would probably use the same electrical systems.
  • Some reports give the diesel power of the Class 93 locomotive as 1.34 MW as opposed to 0.7 MW of the Class 88 locomotive.
  • The Class 93 locomotive has a top speed of 110 mph, as opposed to the 100 mph of the Class 88 locomotive.
  • The article says, “It’s an ’88’ design with the biggest engine we could fit.”

It would also appear that much of the design of the two locomotives is identical, which must make design, building and certification easier.

The Class 93 Locomotive Is Described As A Hybrid Locomotive

Much of the article is an interview with Karl Watts, who is Chief Executive Officer of Rail Operations (UK) Ltd, who have ordered ten Class 93 locomotives. He says this.

However, the Swiss manufacturer offered a solution involving involving an uprated diesel alternator set plus Lithium Titanate Oxide (LTO) batteries.

Other information on the batteries includes.

  • The batteries are used in regenerative braking.
  • Batteries can be charged by the alternator or the pantoraph.
  • Each locomotive has two batteries slightly bigger than a large suitcase.

Nothing is said about the capacity of the batteries, but each could be a cubic metre in size.

I have looked up manufacturers of lithium-titanate batteries and there is a Swiss manufacturer of the batteries called Leclanche, which has this helpful page that compares various batteries.

  • The page gives an energy density of 120-200 Wh/Kg for their traditional lithium-ion batteries and 70-80 Wh/Kg for LTO batteries.
  • But it gives LTO batteries a five-star rating, for charge power, discharge power and energy efficiency.

Leclanche also have a product called a TiRack63, which is intended for industrial applications, such as.

  • ,Grid stabilization in on-grid application
  • Providing short term power to cover the first seconds in a grid failure incident to industrial users.
  • Managing the integration of renewable energy (solar and wind) into off grid applications with diesel generators (e.g. mining),

The battery has the following characteristics.

  • 15000 charge/discharge cycles
  • 100 % depth of discharge.
  • Charging and discharging at 300 Amps.
  • Modular setup.
  • 510-810 VDC output.
  • 63 kWh capacity.
  • Size of 2300 x 1800 x 600 mm
  • Weight of 1800 Kg.

These batteries with their fast charge and discharge are almost like supercapacitors.

, It would appear that, if these batteries are used the Class 93 locomotive will have an energy storage capacity of 126 kWh.

But this is said about Class 93 locomotive performance..

LTO batteries were chosen because they offer a rapid recharge and can maintain line speed while climbing a gradient, and will recharge when running downhill.

Looking at the batteries, they could provide up to around 240 kW of extra power for perhaps half an hour to help the train climb a gradient and then recharge using regenerative braking or the diesel alternator.

This is a hybrid vehicle, with all the efficiency advantages.

The article does say, that with a light load, the locomotives can do 110 mph on hybrid. Nothing is said about what is a light load. Could it be a rake of five modern Mark 5A coaches?

In Thoughts On A Battery Electric Class 88 Locomotive On TransPennine Routes, I said this.

It is worth looking at the kinetic energy of a Class 88 locomotive hauling five forty-three tonne CAF Mark 5A coaches containing a full load of 340 passengers, who each weigh 90 Kg with baggage, bikes and buggies. This gives a total weight would be 331.7 tonnes.

The kinetic energy of the train would be as follows for various speeds.

90 mph – 75 kWh
100 mph – 92 kWh
110 mph – 111 kWh
125 mph – 144 kWh

The increase in energy is because kinetic energy is proportional to the square of the speed.

There would be little difference in this calculation, using a Class 93 locomotive, which is only a tonne heavier. The kinetic energy at 110 mph, would be 112 kWh.

This could be very convenient, as it looks like the battery capacity could be larger than the kinetic energy of a fully-loaded train.

Similar Weight And Axle Load To A Class 88 Locomotive

The article states that the locomotive will weight 87 tonnes, as opposed to the 86 tonnes of a Class 88 locomotive.

As both locomotives have four axles, this would mean that their axle loading is almost the same.

So anywhere the Class 88 locomotive can go, is most likely to be territory suitable for the Class 93 locomotive.

Again, this must make certification easier.

A Modular Design

In a rail forum, members were saying that the Class 93 locomotive has a modular design.

So will we see other specifications with different sized diesel engines and batteries?

The TransPennine routes, for example, might need a locomotive with a smaller diesel engine, more battery capacity and a 125 mph-capability for the East Coast Main Line.

Stadler have said they specialise in niche markets. Have they developed the tailor-made locomotive?

Power Of Various Locomotives

These are various UK locomotives and their power levels in megawatts.

  • Class 43 – Diesel – 1.7
  • Class 66 – Diesel – 2.4
  • Class 67 – Diesel – 2.4
  • Class 68 – Diesel – 2.8
  • Class 88 – Electric – 4
  • Class 88 – Diesel – 0.7
  • Class 90 – Electric – 3.9
  • Class 91 – Electric – 4.8
  • Class 93 – Electric – 4
  • Class 93 – Diesel – 1.3

The interesting figure, is that the Class 93 locomotive has 76 % of the diesel power of a Class 43 locomotive from an InterCity 125. The difference could probably be made up using battery power, where needed.

Could The Locomotive Be Uprated To 125 mph?

Consider.

  • The UK has successfully run 125 mph Class 43 and 91 locomotives for many years.
  • Stadler has built trains that run at that speed.
  • Mark 3, Mark 4 and Mark 5A coaches are all certified for 125 mph.
  • There are hundreds of miles of track in the UK, where 125 mph running is possible.

I would think it very unlikely, that the engineers designing the Class 93 locomotive, ruled out the possibility of 125 mph running in the future!

Only Stadler will know!

Could A Battery/Electric Version Of The Locomotive Be Created?

I don’t see why not!

The diesel engine, fuel, exhaust and cooling systems and some ancilliary systems could all be removed and be replaced with an equivalent weight of batteries.

As the C27 diesel engine in a Class 88 locomotive weighs almost seven tonnes, I suspect a ten tonne battery would be possible.

Given the current typical energy density and using the Leclanche figures, this would mean that thr batteries would have a total capacity of around 700-800 kWh.

Possible Uses Of The Class 93 Locomotive

The Rail Magazine article goes on to detail some of the uses of a Class 93 locomotive.

Express Freight

Karl Watts says this.

They can operate express freight. In Europe, there are vehicles capable of 100 mph running, and these are perfect for high-speed domestic freight. We have been running intermodals at 75 mph since the 1960s – It’s time to change that.

The locomotive would certainly be able to haul express freight at 100 mph on an electrified main line.

Note the following.

  1. This would greatly help with freight between Felixstowe and London on the 100 mph Great Eastern Main Line.
  2. Running freight trains at 100 mph on the major electrified lines would increase capacity, of the lines.
  3. Ports and freight terminals wouldn’t need to be electrified.

Overall, the proportion of freight mileage, where electric power was used, would grow significantly.

Electrification Gap Jumping

In Thoughts On A Battery/Electric Replacement For A Class 66 Locomotive, I gave a list of typical gaps in the electrification in the UK.

  • Didcot and Birmingham – Around two-and-a-half hours
  • Didcot and Coventry – Just under two hours
  • Felixstowe and Ipswich – Around an hour
  • Haughley Junction and Peterborough – Around two hours
  • Southampton and Reading – Around one-and-a-half hours
  • Werrington Junction and Doncaster via Lincoln – Around two hours
  • Werrington Junction and Nuneaton – Just under two hours

How many of these gaps could be bridged by a Class 93 locomotive working in a diesel hybrid mode?

It should be noted, that many of the busiest gaps are in the flatter Eastern areas of England.

I’m sure Stadler and Rail Operations Group have done extensive simulation of possible routes and know where the locomotives are best suited.

Class 66 Locomotive Replacement

I suspect that several of these locomotives will end up replacing duties currently done by Class 66 locomotives.

It could haul an intermodal freight from Felixstowe to Manchester, Liverpool, Glasgow or Doncaster, using electrification where it exists.

And do it at a speed of 100 mph, where speed limits allow!

No other locomotive on the UK network could do that!

Use On Electrified Urban Freight Routes

Near to where I live there are two electrified lines passing through North London; the North London Line and the Gospel Oak To Barking Line.

Both lines have several freight trains a day passing through, that are still hauled by diesel locomotives.

There are other urban freight routes around the UK, where despite electrification, polluting diesel locomotives are still used.

Class 93 locomotives would be an ideal environmentally-friendly replacement locomotive on these routes.

Thunderbird Duties

Karl Watts says this.

They can be used for network recovery as a more comprehensive Thunderbird. Currently, stand-by locomotives are hired or used by an operator to rescue its own trains, but these would be available for anything or anyone. I have sopken to Network Rail about this and they need convincing. But as the network gets busier, so it will be that one failure causes chaos.

Perhaps, a better method for recovering failed trains could be developed.

Passenger Trains

Karl Watts says this.

I can say that the 93s’ feature n two franchise bids, although I cannot say which, due to non-disclosure agreements.

We can only speculate!

Class 93 locomotives could replace the Class 68 locomotives on TransPennine Express services between Liverpool and Scarborough, where Mark 5A coaches will be used.

  • Electric mode could be used between Liverpool and Stalybridge and on the East Coast Main Line.
  • Diesel or hybrid mode would be used where needed.
  • If the locomotives could be uprated to 125 mph, that would help on the East Coast Main Line.

There are certainly, redundant Mark 4 coaches or new Mark 5A coaches that could be used to provide services.

An InterCity 125 For the Twenty-First Century

The InterCity 125 is a masterpiece of engineering, that passengers love.

One of the reasons for the success, is the superb dynamics of the train, which gives them a very comfortable ride.

Could it be that by putting two Class 93 locomotives at each end of a rake of suitable coaches could create a 125 mph train, with the same faultless dynamics?

The answer is probably yes, but in many cases either half-length trains or bi-mode multiple units may be a more affordable or capable train.

The locomotive certainly gives a lot of flexibility.

Conclusion

This is going to be a very useful locomotive.

This was the last paragraph of the printed article, as spoken by Karl Watts.

I don’t think I will be ordering only ten or 20 – there will be more.

I have registered 93001 to 93050.

The word hybrid opens the door.

I think this might be the third member of a very large and widespread family.

 

 

 

December 19, 2018 Posted by | Transport | , , , , , , , , , | 6 Comments

Thoughts On A Battery/Electric Replacement For A Class 66 Locomotive

Many of the long freight routes from Felixstowe and Southampton are hauled by diesel locomotives like the environmentally-unfriendly Class 66 locomotive.

Electric haulage can’t be used because of significant gaps in the 25 KVAC overhead electrification. Gaps and a typical transit time of a Class 66-hauled heavy freight train include.

  • Didcot and Birmingham – Around two-and-a-half hours
  • Didcot and Coventry – Just under two hours
  • Felixstowe and Ipswich – Around an hour
  • Haughley Junction and Peterborough – Around two hours
  • Southampton and Reading – Around one-and-a-half hours
  • Werrington Junction and Doncaster via Lincoln – Around two hours
  • Werrington Junction and Nuneaton – Just under two hours

Would it be possible to design a battery/electric hravy locomotive, that could bridge these gaps?

Consider the following.

  • A Class 66 locomotive has a power output of around 2500 kW.
  • To run for two hours on battery would require a battery of 5000 kWh.
  • A 5000 kWh battery would weigh around fifty tonnes.
  • A Class 70 locomotive is a heavy freight diesel Co-Co locomotive with a weight of 134 tonnes with a full tank of diesel.
  • A Class 88 locomotive is an electro-diesel locomotive, that without the diesel engine weighs about 80 tonnes.
  • A Class 88 locomotive has a power output of 4,000 kW on 25 KVAC  overhead electrification

Putting this information together and I think it would be possible to design a battery/electric locomotive with the following specification.

  • 4000 kW on 25 KVAC  overhead electrification
  • Ability to use 750 VDC third-rail electrification
  • A 5000 kWh battery.
  • Ability to use a rapid charging system.
  • Two hour range with 2500 kW on battery power.
  • Regenerative braking to the battery.
  • Co-Co configuration
  • Dimensions, weight and axle loading similar to a Class 70 locomotive.

These are a few other thoughts.

Last Mile Applications

Ports and Container Terminals are often without electrification.

The proposed locomotive would be able to work in these environments.

A couple of yeas ago, I had a long talk with a crane operator at the Port of Felixstowe, who I met on a train going to football. He was of the opinion, that Health and Safety is paramount and he would not like 25 KVAC overhead electrification all over the place.

So if freight locomotives used battery power inside the port, most would be pleased.

The only cost for ports and freight terminals would be installing some form of charging.

Maximum Power On Batteries

I suspect that the maximum power on battery would also be the same as the 4,000 kW using 25 KVAC overhead electrification, as the locomotive may have applications, where very heavy trains are moved on partially electrified lines.

Diesel-Free Operation

The proposed lovomotive will not use any diesel and will essentially be an electric locomotive, with the ability to use stored onboard power.

Environmentally-Friendly Operation

Freight routes often pass through areas, where heavy diesel locomotives are not appreciated.

  • The proposed locomotive will not be emitting any exhaust or noxious gases.
  • Noise would be similar to an electric locomotive.
  • They would be quieter using battery-power on lines without overhead electrification, as there would be no pantograph noise.

I think on balance, those living by freight routes will welcome the proposed locomotive.

Would Services Be Faster?

This would depend on the route, but consider a heavy freight train going from Felixstowe to Leeds.

  • On the electrified East Coast Main Line, the proposed battery-electric locomotive would have a power of 4,000 kW, as opposed to the 2,500 kW of the Class 66 locomotive.
  • On sections without electrification, the locomotive would have more power if required, although it would probably be used sparingly.
  • The locomotive would have a Driver Assistance System to optimise power use to the train weight and other conditions.

I feel on balance, that services could be faster, as more power could be applied without lots of pollution and noise.

Creeping With Very Heavy Loads

I suspect they would be able to creep with very heavy loads, as does the Class 59 locomotive.

Class 59 Locomotive Replacement

The proposed locomotive may well be able to replace Class 59 locomotives in some applications.

Any Extra Electrification Will Be Greatly Appreciated

Some gaps in electrification are quite long.

For example, Didcot and Birmingham takes about two and a half hours.

  • Didcot is on the electrified Great Western Main Line.
  • Birmingham has a lot of electrified lines.

So perhaps there could be some extra electrification at both ends of busy freight routes.

Electrification between Didcot and Wolvercote Junction would be a possibility.

  • It would be about twelve miles
  • It is very busy with heavy freight trains.
  • The natives complain about the railway.
  • It would allow Great Western Railway to run electric trains to and from London.
  • If Chiltern Railways were to run battery-electric trains to Oxford, it would provide electrification for charging at Oxford.
  • Electrification could be extended to Oxford Parkway station to make sure battery-electric trains would get a good send-off to Cambridge

This simple example shows, why bi-mode and battery/electric trains don’t mean the end of electrification.

All vehicles; rail or road and especially electric ones, need to take on fuel!

I also think, that there is scope to electrify some passing loops, so that locomotives can top-up en route.

Conclusion

It would be a heavyweight locomotive with a performance to match.

I believe that such a locomotive would be a very useful addition to the UK’s fleet of freight locomotives.

 

December 8, 2018 Posted by | Transport | , , , , | 5 Comments

Thoughts On A Battery Electric Class 88 Locomotive On TransPennine Routes

In Issue 864 of Rail Magazine, there is an article, which is entitled Johnson Targets A Bi-Mode Future.

As someone, who has examined the mathematics of battery-powered trains for several years, I wonder if the Age of the Hybrid Battery/Electric Locomotive is closer than we think.

A Battery/Electric Class 88 Locomotive

 After reading Dual Mode Delight (RM Issue 863), it would appear that a Class 88 locomotive is a powerful and reliable locomotive.

  • It is a Bo-Bo locomotive with a weight of 86.1 tonnes and an axle load of 21.5 tonnes.
  • It has a rating on electricity of 4,000 kW.
  • It is a genuine 100 mph locomotive when working from 25 KVAC overhead electrification.
  • The locomotive has regenerative braking, when working using electrification.
  • It would appear the weight of the diesel engine is around seven tonnes
  • The closely-related Class 68 locomotive has a 5,600 litre fuel tank and full of diesel would weight nearly five tonnes.

It is worth looking at the kinetic energy of a Class 88 locomotive hauling five forty-three tonne CAF Mark 5A coaches containing a full load of 340 passengers, who each weigh 90 Kg with baggage, bikes and buggies. This gives a total weight would be 331.7 tonnes.

The kinetic energy of the train would be as follows for various speeds.

  • 90 mph – 75 kWh
  • 100 mph – 92 kWh
  • 110 mph – 111 kWh
  • 125 mph – 144 kWh

The increase in energy is because kinetic energy is proportional to the square of the speed.

Supposing the seven tonne diesel engine of the Class 88 locomotive were to be replaced by a battery of a similar total weight.

Traction batteries seem to have an energy/weight ratio of about 0.1kWh/Kg, which is increasing with time, as battery technology improves.

A crude estimate based on this energy/weight ratio would mean that at least a 700 kWh battery could be fitted into a Class 88 train and not make the locomotive any heavier. Given that lots of equipment like the alternator and the fuel tank would not be needed, I suspect that a 1,000 kWh battery could be fitted into a Class 88 locomotive, provided it just wasn’t too big.

A short length of electrification could be installed at terminal stations without electrification to charge the batteries during turnround.

This size of battery would be more than large enough to handle the braking energy of the train from full speed, so would improve the energy efficiency of the train on both electrified and non-electrified lines.

It would also contain more than enough energy to accelerate the train to line speeds that are typical of non-electrified routes.

TransPennine Express will soon run similar rakes of coaches hauled by Class 68 diesel locomotives between Liverpool and Manchester Airport and the North East.

The following sections of the Northern TransPennine route, are not electrified.

  • Stalybridge and Leeds – 35 miles taking 46 minutes
  • Leeds and Colton Junction – 20 miles taking 18 minutes
  • Northallerton and Middlesbrough – 21 miles taking 29 minutes
  • York and Scarborough – 42 miles taking 56 minutes

When running on these sections without electrification, consider the following.

  • The train consists of modern coaches, which must be energy efficient.
  • The train would enter the sections with a full battery, that had been charged using the 25 KVAC electrification on part of the route.
  • Scarborough and possibly Middlesbrough stations, would have means to charge the battery.
  • The train would enter the sections as close to line speed as possible, after accelerating using electrification.
  • Regenerative braking would help conserve energy at any planned or unplanned stops.
  • The driver will be assisted by a modern in-cab signaling and a very capable Driver Assistance System.
  • Stadler and Direct Rail Services must have extensive theoretical and measured data of the performance of Class 88 locomotives and the related Class 68 locomotive, when they are hauling trains across the Pennines, which will enable extensive mathematical models to be built of the route.

For these reasons and especially the last about mathematical modelling, I believe that Stadler could create a battery/electric locomotive based on the Class 88 locomotive, that would be able to bridge the electrification gaps on battery power and haul a five-coach train on the Northern routes across the Pennines.

A Quick Look At The Mathematics

As I said earlier, the weight of a Class 88 locomotive and five Mark 5A coaches, full of passengers is 331.7 tonnes.

There would appear to be little weight difference between a diesel Class 68 locomotive and an electro-diesel Class 88 locomotive, so in this rough exercise, I will assume the train weight is the same.

The current Class 185 trains, that run across the Pennines have the following characteristics.

  • Three-cars
  • A weight of 168.5 tonnes.
  • A passenger capacity of 169.
  • Installed power of 560 kW in each coach, which means there is 1560 kW in total.

If each passengers weighs 90 Kg, with all their extras, a full train will weigh 183.7 tonnes.

So a full train has a power-weight ratio of nine kW/tonne, which must be sufficient to maintain the timetable across the Pennines.

The diesel Class 68 locomotive, which will be hauling trains on the route in the New Year,  has an installed power of 2,800 kW, which gives a power/weight ratio of 8.4 kW/tonne.

I would be interested to know, if a Class 88 locomotive running in diesel mode with a power output of only 700 kW, could take one of the new trains across the Pennines. I suspect Stadler and/or DRS know the answer to this question.

But it would be a power/weight ratio of only 2.1 kW/tonne!

The challenging route is between Stalybridge and Leeds via Huddersfield, where the Pennines has to be crossed. I’m pretty certain, that all the other sections lack the gradients of the section between Stalybridge and Leeds.

So would a Class 88 locomotive with a 1,000 kWh battery be able to cross the Pennines with a full train?

Theoretically, up and down routes are good for battery/electric trains with regenerative braking, as energy used going uphill can be recovered on the other side.

The thirty-five miles between Stalybridge and Leeds take forty-six minutes, so for how long on this journey will the locomotive be applying full power? Perhaps for twenty minutes. If the locomotive applied an average of 2,000 kW for twenty minutes or a third of an hour, that would be 667 kWh.

With an electric multiple unit like an Aventra, where most if not all axles are driven and they can also contribute to regenerative braking, reasonably high rates of braking energy can be recycled.

But what proportion can be recycled, when the locomotive is doing all the regenerative braking. Any braking done by disc brakes on the coaches will result in lost energy.

As an aside, I wouldn’t be surprised to find out that train manufacturers simulate train braking in order to develop braking systems, that turn less energy into wasted heat.

I’d also love to see a simulation using Stadler’s real data of a Class 88 locomotive with batteries attempting to cross the Pennines, with a rake of Mark 5A coaches!

  • What size of battery will be needed?
  • Can this battery be fitted in the locomotive?
  • Would distributing the batteries along the train increase performance?
  • Would short lengths of electrification on the route, increase performance?

I was doing problems of similar complexity to attempt to design efficient chemical plants nearly fifty years ago. We had our successes, but not as great as we hoped. But we certainly eliminated several blind alleys.

My figures don’t show conclusively, that a Class 88 locomotive with a 1,000 kWh battery instead of a diesel engine and all the related gubbings, would be able to perform services across the Pennines.

But.

  • Battery technology is improving at a fast pace.
  • Train manufacturers are finding surprising ways to use batteries to improve performance.
  • I don’t have access to Stadler’s real performance figures of their diesel locomotives.
  • Finding a way to make it work, has a very high cost benefit.

Who knows what will happen?

125 Mph Running

The Class 88 locomotive, has a similar power output to the 125 mph Class 91 locomotive of the InterCity 225 and I believe that the locomotive might have enough power, when running on 25 KVAC overhead wires to be able to haul the train at 125 mph on the East Coast Main Line.

Conclusion

I believe that it is possible to create a battery/electric version of the Class 88 locomotive, that should be able to take a rake of five Mark 5A coaches across the Pennines.

Timings across the Pennines would benefit substantially, without any new infrastructure, other than that already planned and the charging system at Scarborough.

December 8, 2018 Posted by | Transport | , , , , | 5 Comments

GE To Partner BNSF On Battery Freight Locomotive Tests

The title of this post is the same as that of this article on Rail Engineer.

The article includes this image.

I think that there are some mixed up captions on the image.

It talks about Massive Power Generation Capabilities up to 2400 kWhrs.

kWhrs are a unit of total energy and could refer to the battery storage capability of the locomotive.

If you look at our much smaller ubiquitous UK diesel freight locomotive, the Class 66, this has a power output of 2,460 kW.

If the GE locomotive, which is experimental had a battery of 2400 kWh, then it could supply 2400 kW for an hour.

But the concept seems sound, where the battery electric locomotive would be paired with a diesel locomotive to haul a freight train. Fuel savings of ten percent are expected.

A Diesel/Electric/Battery Hybrid Locomotive For The UK

I could see a practical diesel/electric/battery locomotive being developed for the UK.

A Class 66 Replacement

Over four hundred of the these locomotives were built and they are currently used by these operators  in the UK.

Which adds up to a surprisingly precise four hundred locomotives.

  • They have a power output of 2,460 kW – Call it 2500 kW for ease of calculation.
  • They have a top speed of 75 mph, although some can only manage 65 mph.
  • They weigh 68 tonnes.
  • They are noisy, smelly and don’t meet the latest EU pollution regulations.
  • Class 66 drivers, I’ve spoken to, are not keen on the working environment.

But they do various jobs for their operators competently and are not the most expensive of locomotives.

There are also other modern similar-sized diesel locomotives like the thirty Class 67 and thirty-seven Class 70, but these are not as unfriendly, to the environment and staff.

Many of the Class 66 locomotives pull heavy freight trains on routes that are fully or partly electrified like the East Coast Main Line, West Coast Main Line, Great Western Main Line, Midland Main Line and Great Eastern Main Line. The services are diesel-hauled because at the ends of the route, they need to use diesel power.

A specification for a locomotive to replace the long-haul Class 66 locomotives for working fully or partly-electrified routes could be something like.

  • Power on electrification of upwards of 3000 kW.
  • Ability to move a heavy freight train in and out freight terminals to and from electrification.
  • Ability to do a small amount of shunting.
  • Sufficient diesel or battery power to handle the train, away from electrification.
  • Ability to switch between electric and diesel/battery power at line speed.

I’ve heard from those who work at the Port of Felixstowe, that port operators wouldn’t electrify the port, for both cost and Health and Safety reasons.

The Felixstowe Problem

The Port of Felixstowe is at the end of the twelve mile long Felixstowe Branch Line, which is not electrified.

Trains seem to be allocated up to just over an hour for the journey between the Great Eastern Main Line and the Port.

This would mean that any proposed locomotive must be capable of handling a branch line to a port or freight depot remote from the electrified network.

Similar problems exist at other ports and freight depots including Hull, Immingham, Liverpool, Southampton, Tilbury and Teesport.

The Southampton Problem

If anything, the Port of Southampton has the worst problem, in that it only has access to the third-rail electrification South of the Thames, until freight trains reach Reading, where there is 25 KVAC overhead electrification. It looks like that trains take about ninety minutes between the Port of Southampton and Reading.

Even, if a powerful dual-voltage locomotive were to be available, I doubt that the power supply to the electrification could provide enough power.

The proposed solution to the Southampton problem was the Electric Spine, which would have linked the port to Northern and Central England with a 25 KVAC overhead electrified route.

It has now been largely cancelled.

An alternative would be a locomotive, that could pull a heavy freight train between the Port of Southampton and Reading in an environmentally-friendly way.

One point to note is that a Class 92 locomotive is rated at 4000 kW on 750 VDC third-rail electrification.

Thoughts On A Battery Locomotive

Suppose an operator needed a battery locomotive to go between Southampton and Cardiff, that would be a straight replacement for a Class 66 locomotive.

The proposed battery locomotive  would need to be able to supply the 2500 kW of the Class 66 locomotive for two hours to handle the route between Reading and Southampton.

So it would need a battery capacity of around 5000 kWh, which is twice the size of the American test locomotive. A battery this size would probably weigh around fifty tonnes.

I am probably being conservative here, as regenerative braking would probably reduce the amount of energy needed to move the train.

The electro-diesel Class 88 locomotive would probably weigh around eighty tonnes without the diesel engine. So would it be possible to design an electric locomotive incorporating a 5000 kWh battery, with a weight of perhaps one hundred and thirty tonnes.

  • It would be about the weight of a Class 70 locomotive.
  • It would probably need to be a Co-Co locomotive, to reduce the axle-loading, to that of a Class 70 locomotive.
  • It might need to be longer than other comparable locomotives to have enough space for the battery.
  • The battery would handle the energy generated by the regenerative braking.
  • It could have the 4000 kW power of a Class 88  locomotive.
  • It should probably be designed with a 100 mph top speed and the ability to haul passenger trains
  • It would be able to use both 25 KVAC overhead and 750 VDC third-rail electrification.

If it is not possible now, as battery energy densities improve, it will be in a few years time.

Other countries other than the UK need a locomotive with a similar specification and I am certain at least one manufacturer in Europe will build a locomotive to this or a similar specification.

A Battery/Electric Locomotive And Felixstowe

Handling the Felixstowe Branch Line would entail the following.

  • The locomotive must enter the branch with a battery containing enough energy for the sixty minute run to the Port.
  • As the locomotive would probably have hauled a train from London or Haughley Junction using the existing electrification, a full enough battery probably wouldn’t be difficult.
  • In the Port, there could be a charging station for the locomotive, where they would connect to a short length of 25 KVAC overhead electrification.
  • On leaving the Port, the locomotive would start with a full battery, which would be enough power to reach the Great Eastern Main Line.
  • Trains going South to London would run on electrification as far as they could and would arrive in London with a full battery.
  • Trains going West to Peterborough, would hopefully be able to top up their battery between Ipswich and Haughley Junction, where they would enter the section without electrification to Peterborough, which takes between two and two-and-a half hours.

It should be noted that, freight trains often wait at Ely in a passing loop alongside the station, to keep out of the way of passenger trains. As Ely is electrified with 25 KVAC, this loop could be electrified, so that locomotives could sneak a top-up during the wait.

I am fairly certain, that a 4000 kW electric locomotive fitted with a 5000 kWh battery could handle all freight services to and from the Port of Felixstowe, at least as far as London and Peterborough.

A Battery/Electric Locomotive Between Peterborough And Nuneaton

How would a battery/electric locomotive handle this important route between Felixstowe and the Midlands and North?

Currently freight trains between Peterborough and Nuneaton have a timing on the section without electrification between Werrington Junction and Nuneaton of a few minutes under two hours.

This should be possible, given the battery range and power of the locomotive.

It would also mean that the battery/electric locomotive could haul a train between the West Coast Main Line and Felixstowe.

A Battery/Electric Locomotive And Southampton

Trains hauled by a battery/electric locomotive on this route, could probably take advantage of the third-rail electrification to top-up the battery as required, which would make it very likely that a 4000 kW electric locomotive fitted with a 5000 kWh battery could handle the route with ease.

A Battery/Electric Locomotive Between ReadingAnd The Midlands And The North

From Reading routes to Bristol, Cardiff and London are fairly easy, but the problems start, if trains need to go to Oxford, Birmingham or the Midlands and the North.

This is where the Electric Spine would have been useful

I have traced some trains from Southampton to the Midlands and the North.

  • Southampton to Birch Coppice – There is a three hour section without electrification from Didcot to Birch Coppice.
  • Southampton to Birmingham Freightliner Terminal – There is a two-and-a half hour section without electrification from Didcot to the terminal.
  • Southampton to Castle Bromwich Jagiuar – There is a two-and-a-half-hour section without electrification from Didcot to Castle Bromwich Jaguar.
  • Southampton to Liverpool – There is a two hour section without electrification from Didcot to Coventry.

All of these services are routed through Didcot, Oxford and Banbury. Extending the planned electrification between Didcot and Oxford to Banbury would probably reduce the amount of time on battery power by around thirty minutes.

TransPennine Passenger Services

TransPennine Express will soon be running services between Liverpool Lime Street and Newcastle using rakes of Mark 5 coaches, that will be hauled by a Class 68 diesel locomotive, which has a power of 2800 kW and a maximum speed of 100 mph.

On the TransPennine route, the current service takes seventy-one minutes between the electrified stations of Manchester Victoria and York.

The proposed battery/electric locomotive could handle this with ease to provide a flagship electrically-hauled service across the Pennines without any difficult electrification.

The locomotive would be charged on the current electrification between Liverpool and Manchester Victoria and along the East Coast Main Line.

Chiltern Main Line Passenger Services

Chiltern Main Line passenger services between London Marylebone and Birmingham, are another route, where a rake of coaches are hauled by a Class 68 locomotive.

The problem is that there is no electrification on this route and although a charging station could be provided at Marylebone and Moor Street, it is questionable, if enough power could be taken on during turnround.

But I said earlier, that to ease the passage of freight from Soiuthampton to the Midlands, that Didcot to Banbury should be electrified.

So could this electrification be continued all the way to Birmingham?

This would mean that the battery/electric locomotives would only need to be able to handle the hour-long journey to and from Marylebone, which would have 25 KVAC electrication over the platforms to top up the battery.

The solution is not as easy as TransPennine, but Chiltern Main Line to Birmingham would become an electric service.

The Stadler Class 88 Battery/Electric Locomotive

As Stadler seem to have a monopoly of new locomotives in the UK at present, I will look at their proven Class 88 locomotive.

  • It has a power of 4,000 kW on electricity.
  • It has a power of 700 kW using an onboard diesel.
  • It has a top speed of 100 mph.
  • The Caterpillar C27 diesel engine weighs around seven tonnes.
  • The locomotive has regenerative braking.

The locomotive is certainly no weakling on electricity, although performance, when pulling a heavy freight train on diesel might be desired to be better. This article on Rail Magazine is entitled Inside Direct Rail Services. This is an extract about the pulling ability of the Class 88 locomotive.

Sample performances over the northern section of the West Coast Main Line (Preston –Carlisle–Mossend) demonstrate that Class 88 can operate the same train weight to the same schedule as Class 68 using 15% less energy. Alternatively, it offers a 45-minute time advantage over a ‘68’ and 80 minutes for Class 66. This gives a competitive edge because a significant proportion of movement costs are absorbed by fuel.

When hauling the maximum permitted load of 1,536 tonnes on the 1 in 75 banks on this route, Class 88 has a balancing speed of 34mph in electric mode or 5mph in diesel mode. Taken together, all these factors helped Class 88 win the Rail Freight Group ‘Rail Freight Project of the Year’ Award in the Innovation and Technical Development category this year.

The locomotive doesn’t appear to be a wimp.

But could the Class 88 locomotive be fitted with a battery?

Current energy storage technology seems to be able to store about 100Wh/kg. So on this basis a seven tonne battery would store about 700 kWh.

I think in a few years it would be possible to build a version of a Class 88 locomotive with no diesel engine and a battery with a 1000 kWh capacity.

But even so, the 1000 kWh battery may be too small.

Would it be able to handle these important routes with a full-length freight train?

  • Haughley Junction to Peterborough
  • Peterborough to Doncaster via Lincoln
  • Peterborough to Nuneaton.
  • Southampton to Reading
  • Immingham to Doncaster

However, Stadler and Direct Rail Services will be able to extensively model the performance of a battery/electric Class 88 locomotive pulling various weights of freight train on different routes in the UK.

The modelling would show how much battery capacity would be needed for various routes.

Suppose though the battery capacity needed was say 2400 kWh, as I suspect has been specified by the Americans for their locomotive. This would be too heavy and large for the small Class 88 locomotive

But just as the Americans are using their battery/electric locomotive in combination with a diesel locomotive, why not run the battery-electric Class 88 locomotive as a pair with a standard electro-diesel Class 88 locomotive?

TransPennine Passenger Services With A Class 88 Battery/Electric Locomotive

Currently electrification is planned or very likely on the Liverpool to Newcastle route between.

  • Manchester Victoria and Stalybridge
  • Leeds and Colton Junction on the East Coast Main Line.

This would mean that only around forty minutes of the entire Liverpool to Newcastle route would be without electrification.

Would a battery/electric locomotive with a 1000 kWh battery be able to bridge the gap in the wires between Stalybridge and Leeds?

The battery would be fully charged, at both Stalybridge and Leeds, as the locomotive would have been running under the wires for some time.

It is a very interesting and in my view, a totally feasible possibility.

Conclusion

My modelling experience says that there is at least one solution in there.

  • A new build battery/electric locomotive could be designed.
  • A battery/electric version of the Class 88 locomotive must be possible and it could work alone or with the current electro-diesel Class 88 locomotive.

I am sure that Jo Johnson’s dream of removing diesel from UK railways will take a big step forward in the next decade, when a battery/electric locomotive with sufficient performance becomes available.

I also believe that short lengths of electrification like Oxford to Banbury, may usefully increase the range of an electric/battery locomotive.

 

October 22, 2018 Posted by | Transport | , , , | Leave a comment

Five Mark 4 Coaches, A Driving Van Trailer And A Stadler UKLight Locomotive

In writing Would Electrically-Driven Trains Benefit From Batteries To Handle Regenerative Braking?, I started to analyse the mathetics and possibilities of a train with the following formation.

The sub-section got too large and important so I decided to write it as a separate post.

I like the Class 68 locomotive, as it looks professional and seems to do all asked of it.

So what would be the kinetic energy of a formation of five Mark 4 coaches, between a DVT and a Class 68 Locomotive?

  • The five Mark 4 coaches would weigh 209 tonnes.
  • The Class 68 locomotive weighs 85 tonnes.
  • The DVT weighs 42.7 tonnes
  • I will assume that a five cars will seat around 300 passengers.
  • The passengers weigh 27 tonnes, if you assume each weighs 90 Kg, with baggage, bikes and buggies.
  • The train weight is 363.7 tonnes.

At 100 mph, which is the maximum speed of the Class 68 locomotive, the Omni Kinetic Energy Calculator gives the kinetic energy of the train as 100 kWh.

I doubt there’s the space to squeeze a 100 kWh of battery into a Class 68 locomotive to handle the regenerative braking of the locomotive, but I do believe that a locomotive can be built with the following specification.

  • Enough diesel power to pull perhaps five or six Mark 4 coaches and a DVT at 125 mph.
  • Ability to use both 25 KVAC and 750 VDC electrification.
  • Battery to handle regenerative braking.
  • As the Class 88 electro-diesel locomotive, which is around the same weight as a Class 68 locomotive, I suspect the proposed locomotive would be a bit heavier at perhaps 95 tonnes.

This train would have a kinetic energy of 160 kWh at 125 mph.

Consider.

  • If the locomotive could have a 200 kWh battery, it could harvest all the regenerative braking energy.
  • Accelerating the train to cruising speed uses most energy.
  • Running at a constant high speed, would conserve the kinetic energy in the train.
  • Stadler, who manufacture the Class 68 and 88 locomotives are going to supply a diesel/electric/battery version of the Class 755 train, for the South Wales Metro. In What Is The Battery Size On A Tri-Mode Stadler Flirt?, I estimated the battery size is about 120 kWh.
  • The Class 68 and 88 locomotives are members of Stadler’s Eurolight family, which are designed for a 125 mph capability with passenger trains.
  • I don’t believe the UK is the only country looking for an efficient locomotive to haul short rakes of coaches at 125 mph, on partially-electrified lines.

It should also be noted, that to pull heavy freight trains, the Class 88 locomotive has a 700 kW Caterpillar C27 diesel that weighs over six tonnes, whereas 200 kWh of battery, would weigh about two tonnes. I believe that a smaller diesel engine might allow space for a large enough battery and still be able to sustain the 125 mph cruise.

Stadler have the technology and I wonder, if they can produce a locomotive to fill the market niche!

In HS2 To Kick Off Sheffield Wiring, I reported on the news that the Northern section of the Midland Main Line between Clay Cross and Sheffield will be electrified.

This would greatly improve the performance of diesel/electric/battery hybrid trains between London and Sheffield.

  • Between London and Kettering, the trains would be electrically-powered.
  • Between Kettering and Clay Cross, they would use a mixture of diesel and battery operation.
  • Between Clay Cross and Sheffield, the trains would be electrically-powered.

Note.

  1. Going North, trains would pass Kettering with a full battery.
  2. Going South, trains would pass Clay Cross with a full battery.
  3. Regenerative braking at stops between Kettering and Clay Cross would help recharge the batteries.
  4. The diesel engine would be sized to keep the train cruising at 125 mph on the gentle Midland Main Line and back up the acceleration needed after stops.

It would be a faster and very electrically-efficient journey, with a large reduction in the use of diesel power.

The locomotive would also have other uses in the UK.

  • TransPennine services, where they could surely replace the Class 68 locomotives, that will haul Mark 5A coaches between Liverpool and Scarborough and Manchester Airport and Middlesborough.
  • Between London and Holyhead
  • Waterloo to Exeter via Basingstoke and Salisbury.
  • Marylebone to Birmingham via the Chiltern Main Line, if the two ends were to be electrified.
  • Services on the East West Rail Link.
  • Between Norwich and Liverpool
  • CrossCountry services.

Note.

  1. Services could use a rake of Mark 4 coaches and a DVT or a rake of new Mark 5A coaches.
  2. If more electrification is installed, the trains would not need to be changed, but would just become more efficient.
  3. The competition would be Bombardier’s proposed 125 mph bi-mode Aventra with batteries, that I wrote about in Bombardier Bi-Mode Aventra To Feature Battery Power.

And that is just the UK!

Conclusion

Using the Mark 4 coaches or new Mark 5A coaches with a new 125 mph diesel/electric/battery hybrid Stadler UKLight locomotive could create an efficient tri-mode train for the UK rail network.

The concept would have lots of worldwide applications in countries that like the UK, are only partially electrified.

 

 

August 5, 2018 Posted by | Transport | , , , , , | 1 Comment

A Hydrogen-Powered Locomotive

If Alstom’s ventures in Germany and the UK with hydrogen-powered trains, are successful, I don’t think it will be long before engineers start thinking about a hydrogen-powered locomotive.

Consider some of the various locomotives used in the UK.

  • Class 66 – Diesel – 2,500 kW – Over 400 in service
  • Class 67 – Diesel – 2,400 kW – 30 in service
  • Class 68 – Diesel – 2,800 kW – 34 in service
  • Class 70 – Diesel – 2,800 kW – 37 in service
  • Class 88 – Diesel – 700 kW – Electric – 4,000 kW – 10 in service
  • Class 90 – Electric – 3,700 kW – 50 produced.
  • Class 91 – Electric – 4,800 kW – 31 produced
  • Class 92 – Electric – 5.000 kW – 46 produced.

Note.

  1. Many of the diesel locomotives, like the Class 66, don’t meet the latest emission regulations.
  2. Class 66 locomotives spent a lot of time pulling freight trains on electrified lines.
  3. The Class 90 electric locomotives are getting old and need careful maintenance.
  4. The Rail Minister, Jo Johnson, would like to see diesel power on UK railways gone by 2040.

I have not included some of the heritage locomotives, that are regularly seen on the UK rail network pulling freight.

This picture shows a pair of Class 86 locomotives hauling a freight train through Hackney Wick station.

These two Class 86 locomotives date from the mid-1960s. But they do have 2,700 kW of power. Each!

According to Wikipedia, fourteen of Freightliner‘s thirty Class 86 locomotives are still in regular use.

Not only is this a tribute to 1960s engineering, but it does show that there is a shortage of suitable locomotives in the UK.

So could a modern environmentally-friendly locomotive be developed to fill the gap?

A Look At The Class 88 Locomotive

There could be a clue as to what could be a useful power output in the design of the Class 88 locomotive.

  • These are a modern design from Shadler that entered service in 2017.
  • They have a power output of 4,000 kW from electricity.
  • They have a power output of 700kW from diesel.
  • They can switch between power sources automatically.
  • They can haul passenger trains, as well as heavy freight trains.
  • They comply with Euro III B emission limits.

Did Direct Rail Services make sure they got a correctly-sized locomotive with the right capabilities?

They obviously find the diesel Class 68 locomotive to their liking, as they have bought over thirty.

So they probably knew very well, the sort of power that they would need from a dual-mode electro-diesel locomotive.

On electricity, the Class 88 locomotive is more powerful than a Class 90 electric locomotive, which commonly haul heavy freight trains on the electrified network.

In this article in Rail Magazine, the following is said about Class 88 locomotives, operating from Preston to Glasgow.

When hauling the maximum permitted load of 1,536 tonnes on the 1 in 75 banks on this route, Class 88 has a balancing speed of 34mph in electric mode or 5mph in diesel mode.

This shows how a well-delivered 700 kW, isn’t that inadequate.

I suspect that there is sufficient power to bring a heavy freight train out of Felixstowe and the other ports without electrification.

So perhaps, we should take the specification of a Class 88 train, as a starting point for the specification of a proposed hydrogen locomotive?

Possible Routes And Duties

There are also some specific problems associated with various routes and duties, where the current UK fleet of locomotives are used.

InterCity 225 Trains

There are currently thirty-one InterCity 225 trains, running on the East Coast Main Line.

  • They are hauled by a 4,800 kW Class 91 electric locomotive.
  • The trains consist of nine Mark 4 coaches and a driving van trailer.
  • The trains were designed for 140 mph, but normally run at 125 mph.
  • The trains have a capacity of over five hundred passengers.
  • The trains could be made to meet all proposed access regulations for those with reduced mobility, with not a great deal of expensive work.
  • Most of the trains will be replaced by Class 800 trains in the next couple of years.
  • The trains are owned by Eversholt Rail Group, who are gaining a reputation for innovation.

The trains could probably give a few more years of service.

One suggestion, that has been made, would be to run the trains on the Midland Main Line.

  • Sections of the route allow running at 125 mph.
  • The route needs an urgent replacement for InterCity 125 trains.
  • The route is only to be electrified as far as Kettering and Corby.

So an alternative and powerful  locomotive would be needed, that could run on both lines with and without electrification.

The Class 91 locomotives are powerful beasts running on electricity, but with careful calculations, I’m sure that the power needed on lines with and without wires should be known.

The trains might also be formed of less coaches and selective electrification could be used in stations to accelerate the trains.

Note that accelerating the train to 125 mph, will be the major use of electricity. Hence, electrified stations would be welcome.

Expect some innovative proposals to use Mark 4 coaches from the InterCity 225 on the Midland Main Line.

Initially, could two Class 88 locomotives working in push-pull mode, handle say six Mark 4 coaches between London and Derby, Nottingham and Sheffield?

Who knows? But there are probably teams of engineers working away to create plausible solutions for the bidders for the new East Midlands Franchise, which will be awarded in April 2019.

Class 66 Locomotive Replacement

Because of their number, you see Class 66 locomotives everywhere on the UK network.

  • They haul long inter-modal freight trains.
  • They haul freight into and out of docks like Felixstowe, that are without electrification.
  • They haul engineering trains.
  • They are often seen hauling trains using diesel power on electrified lines.

But they are one of the most environmentally-unfriendly of diesel trains, which don’t meet the latest emission regulations.

How long before residents and rail passengers, start to complain about these locomotives, where electric haulage is possible?

I believe there is an increasingly urgent need for a go-anywhere replacement for the Class 66 locomotive.

It would appear, that the Class 88 locomotive, was specified so it can take over some of the duties of a Class 66 locomotive,

Could this see more orders for the Stadler locomotive?

I also believe that we could see other types of locomotive built to replace the Class 66 locomotive.

We might even see a locomotive with a lower power rating able to use electric or hydrogen power for work with all the smaller trains, that Class 66 locomotives haul.

Hydrogen Instead Of Diesel

The 700 kW diesel engine in a Class 88 locomotive is a Caterpillar C27, which drives an ABB alternator.

The engine alone weighs three tonnes.

By comparison Ballard make a hydrogen fuel cell that has an output of 100 kW, for a weight of  385 Kg.

This gives a weight of 2.7 tonnes for an output of 700 kW.

There will need to be a substantial battery. I estimate that a 500 kWh battery will weigh about eight tonnes.

On balance, the hydrogen-powered locomotive will probably be heavier than a diesel one, but it will have environmental advantages.

But with good design, I do think that a locomotive with similar performance to a Class 88 can be produced.

It might need to be longer and have more powered axles, to cope with extra weight.

Conclusion

I am led to the belief that a hydrogen-powered locomotive with sufficient power is possible.

They may be able to handle a lot of the duties of Class 66 locomotives, but I doubt they would be powerful enough for hauling full rakes of Mark 4 coaches.

It will be interesting to see, what solutions are proposed to solve the forthcoming rolling stock shortage on the Midland Main Line.

 

 

 

May 18, 2018 Posted by | Transport | , , , , | 1 Comment

Jumbo Trains Are Arriving

This article on Global Rail News is entitled  DB Cargo UK’s First “Jumbo Train” From Cardiff Makes Maiden Journey. This is the first paragraph.

DB Cargo and Cemex UK made history earlier this month when the freight operator’s first “jumbo train” of 34 wagons made its maiden journey from Cardiff.

The cargo was building materials from South Wales for London and the South East.

Yesterday, I also took this picture of a very long cement train at Stratford.

The building boom in London and the South East is still requiring large amounts of cement and aggregate.

Long trains like these have various consequences.

  • They increase the capacity of the railway, as longer trains make better use of the available freight paths.
  • They take more trucks off the road.
  • Track, junctions and sidings may need to be updated to handle the longer trains.
  • The trains need two locomotives.

It’s not just aggregates and cement that will be transported this way, but containers, new cars and vans, bio-fuel for power stations and aviation fuel.

New Locomotives

The biggest need will be for new locomotives. At present, Wales to London aggregate trains are hauled by a pair of Class 66 diesel locomotives. When electrification is complete between London and Cardiff, surely this route should be handled by a pair or even a single large electric locomotive.

This article in Rail Magazine is entitled GB Railfreight In ‘Locomotive Acquisition’ Talks.

So at least one freight company is looking for new motive power.

What characteristics will the locomotives need?

Adequate Performance

The power and operating speed of the various modern locomotives used for freight are as follows.

  • Class 66 – Diesel – 2,460 kW – 75 mph
  • Class 67 – Diesel – 3,200 kW – 125 mph
  • Class 68 – Diesel – 2,800 kW – 100 mph
  • Class 70 – Diesel – 2,750 kW – 75 mph
  • Class 90 – Electric – 3,730 kW – 110 mph
  • Class 92 – Electric – 5,040 kW – 87 mph

There is also the Class 88, which can run on both electric or diesel power.

  • Diesel – 700 kW
  • Electric – 4,000 kW

An operating speed of 100 mph is quoted in Wikipedia.

If the locomotive was to replace two Class 66 locomotives working together, it would appear the locomotive would need a power of around 5,000 kW.

I took this picture of a Class 90 electric locomotive and a Class 66 diesel locomotive double-heading a freight train.

The two locomotives would have a combined power of about 6,200 kW.

Diesel, Electric Or Dual Power

Does the picture, indicate a need for a high-power dual mode locomotive?

Or was it just convenient to pull the freight train out of the Port of Felixstowe with a Class 66 locomotive and then add a Class 90 locomotive to pull the train on the electrified route to London?

As the freight companies are regularly reported as needing more locomotives, I suspect some unusual motive power is used at times.

Now that the Class 88 dual-mode locomotives are coming into service, I would suspect that the capability of these locomotives is being examined in detail.

It may only have 700 kW using diesel, but 4,000 kW using electricity is very respectable, although not as much as two Class 66 locomotives working together.

The Bombardier TRAXX

The Bombardier TRAXX is a family of locomotives, that come in electric, diesel and dual-mode versions.

Several hundred have been ordered.

A version of this locomotive or something similar might fit the specification.

Conclusion

Some more powerful freight locomotives are needed, but the designs should be available.

 

September 27, 2017 Posted by | Transport | , , | 3 Comments