The Anonymous Widower

A Class 93 Locomotive Hauling A Train Between The Port Of Felixstowe And Wentloog

I am looking at this trip in detail, to see how a Class 93 locomotive could change this journey.

Where Is Wentloog?

Wentloog is a Rail Freight Interchange, run by Freightliner, a few miles to the East of Cardiff.

This Google Map shows the interchange.

Note the electrified Great Western Main Line between London and Cardiff giving rail access to freight trains.

Sections Of The Route

The route can be divided into these sections.

  • Port of Felixstowe and Trimley – 2.3 miles – 7 minutes – 19.7 mph –  Not Electrified
  • Trimley and Ipswich – 14 miles – 60 minutes -14 mph – Not Electrified
  • Ipswich and Stratford – 64.6 miles – 77 minutes – 50.3 mph – Electrified
  • Stratford and Acton Wells Junction – 12.5 miles – 72 minutes – 10.4 mph – Electrified
  • Acton Wells Junction and Acton Main Line – 0.7 miles – 3 minutes -14 mph – Possibly Electrified
  • Acton Main Line and Wentloog – 134.3 miles – 249 minutes -32.4 mph – Electrified

Note.

  1. Nearly, all the route is electrified.
  2. I am not sure if between Acton Wells Junction and Acton Main Line is electrified.

The journey takes nearly eight hours.

These are my thoughts on how the various sections would be handled.

Port of Felixstowe And Trimley

As I stated in Rail Access To The Port Of Felixstowe, I would electrify the short section between the Port of Felixstowe And Trimley. This would do the following.

  • Charge the batteries on trains entering the Port, so they could operate in the Port without using diesel.
  • Charge batteries on trains leaving the Port, so that they could have a power boost to Ipswich.
  • The trains could be accelerated to operating speed using the electrification.

There would also be no use of diesel to the East of Trimley, which I’m sure the residents of Felixstowe would like.

Trimley and Ipswich

This section would be on diesel, with any energy left in the battery used to cut diesel running through Ipswich.

Ipswich And Stratford

Consider

  • Ipswich and Stratford is a 100 mph fully-electrified line.
  • A passenger train can do the route in an hour.

There must be savings to be made! Especially, if all trains between Ipswich and Liverpool Street are 100 mph electrically-hauled trains.

Stratford and Acton Wells Junction

The North London Line is getting increasingly busy and as it goes through the middle of residential areas, there will be increasing pressure for all trains to be electric, to cut noise and pollution.

In A North London Line With Digital Signalling, I wrote about the benefits of adding digital signalling on the North London Line.

I suspect in a few years time all freight trains using the North London Line will be electrically-hauled and will use digital ERTMS signalling, so that more trains can be squeezed onto the North London Line, so that increasing numbers of freight trains can travel between Felixstowe, London Gateway and Tilbury in the East and Birmingham, Cardiff, Liverpool, Manchester, Scotland and other destinations in the North and West.

Locomotives like the Class 93 locomotive will become an increasingly common sight on the line.

Acton Wells Junction and Acton Main Line

This connection between the North London Line and the Great Western Main Line will surely, be electrified, if it has not been done already, so that electric freight trains can go between the two routes.

Acton Main Line and Wentloog

Consider

  • Acton Main Line and Wentloog is a fully-electrified line.
  • The operating speed is up to 125 mph
  • A passenger train can do the route in just under 100 minutes.

There must be savings to be made! Especially, if all trains between London and Cardiff are electrically-hauled trains, capable of upwards of 100 mph.

Conclusion

There would be very worthwhile time and diesel savings, by running the Felixstowe and Wentloog service using a Class 93 locomotive.

How many other services to and from Felixstowe, London Gateway and Tilbury would be improved by being hauled by a Class 93 locomotive?

I suspect, it’s not a small number, that can be counted on your fingers and toes.

January 19, 2021 Posted by | Transport | , , , , , | 1 Comment

A Class 93 Locomotive Hauling A 1500 Tonne Train Between The Port Of Felixstowe And Nuneaton

I am writing this post to show how I believe the new Class 93 locomotive would haul a freight train between the Port of Felixstowe and Nuneaton, where it would join the West Coast Main Line for Liverpool, Manchester mor Scotland.

Why 1500 Tonnes?

This article on Rail Engineer, which is entitled, Re-Engineering Rail Freight, gives a few more details about the operation of the Class 93 locomotives.

This is said about performance.

As a result, the 86-tonne Class 93 is capable of hauling 1,500 tonnes on non-electrified routes and 2,500 tonnes on electrified routes. With a route availability (RA) of seven, it can be used on most of the rail network.

So as I’m talking about non-electrified routes, I’ll use 1500 tonnes.

Sections Of The Route

The route can be divided into these sections.

  • Port of Felixstowe and Trimley – 2.3 miles – 7 minutes – 19.7 mph –  Not Electrified
  • Trimley and Ipswich Europa Junction – 13.5 miles – 43 minutes -18.8 mph – Not Electrified
  • Ipswich Europa Junction and Haughley Junction – 12.1 miles – 24 minutes -30.2 mph – Electrified
  • Haughley Junction and Ely – 38.3 miles – 77 minutes -29.8 mph – Not Electrified
  • Ely and Peterborough – 30.5 miles – 58 minutes -31.6 mph – Not Electrified
  • Peterborough and Werrington Junction – 3.1 miles – 5 minutes -37.2 mph – Electrified
  • Werrington Junction and Leicester – 49.1 miles – 97 minutes -30.4 mph – Not Electrified
  • Leicester and Nuneaton – 18.8 miles – 27 minutes -41.8 mph – Not Electrified

Note.

  1. The train only averages around 40 mph on two sections.
  2. There is electrification at between Europa Junction and Haughley Junction, at Ely and Peterborough, that could be used to fully charge the batteries.
  3. In Trimode Class 93 Locomotives Ordered By Rail Operations (UK), I calculated that the 80 kWh batteries in a Class 93 locomotive hauling a 1500 tonne load can accelerate the train to 40 mph.

I can see some innovative junctions being created, where electrification starts and finishes, so that batteries are fully charged as the trains pass through.

  • There must be tremendous possibilities at Ely, Haughley and Werrington to take trains smartly through the junctions and send, them on their way with full batteries.
  • All have modern electrification, hopefully with a strong power supply, so how far could the electrification be continued on the lines without electrification?
  • Given that the pantographs on the Class 93 locomotives, will have all the alacrity and speed to go up and down like a whore’s drawers, I’m sure there will be many places on the UK rail network to top up the batteries.

Consider going between Ely and Peterborough.

  • Leaving Ely, the train will have a battery containing enough energy to get them to forty mph.
  • Once rolling along at forty, the Cat would take them to the East Coast Main Line, where they would arrive with an almost flat battery.
  • It would then be a case of pan up and on to Peterborough.

These are my ideas for how the various sections would be handled.

Port of Felixstowe And Trimley

As I stated in Rail Access To The Port Of Felixstowe, I would electrify the short section between the Port of Felixstowe And Trimley. This would do the following.

  • Charge the batteries on trains entering the Port, so they could operate in the Port without using diesel.
  • Charge batteries on trains leaving the Port, so that they could have a power boost to Ipswich.
  • The trains could be accelerated to operating speed using the electrification.

There would also be no use of diesel to the East of Trimley, which I’m sure the residents of Felixstowe would like.

Trimley and Ipswich Europa Junction

This section would be on diesel, with any energy left in the battery used to cut diesel running through Ipswich.

Ipswich Europa Junction and Haughley Junction

Consider.

  • This is a 100 mph line.
  • It is fully-electrified.
  • All the passenger trains will be running at this speed.

If the freight ran at that speed, up to 17 minutes could be saved.

Haughley Junction And Ely

This section would be diesel hauled, with help from the batteries, which could be fully charged when entering the section.

There are also plans to improve Haughley Junction, which I wrote about in Haughley Junction Improvements.

One possibility would be to extend the electrification from Haughley Junction a few miles to the West, to cut down diesel use in both Greater Anglia’s Class 755 trains and any freight trains hauled by Class 93 locomotives.

As there are plans for an A14 Parkway station at Chippenham Junction, which is 25 miles to the West of Haughley Junction, it might be sensible to electrify around Chippenham Junction.

Ely and Peterborough

This section would be diesel hauled, with help from the batteries, which could be fully charged when entering the section.

It should also be noted that the tracks at Ely are to be remodelled.

  • Would it not be sensible to have sufficient electrification at the station, so that a Class 93 locomotive leaves the area with full batteries?
  • Acceleration to operating speed would be on battery power, thus further reducing diesel use.

It probably wouldn’t be the most difficult of projects at Peterborough to electrify between Peterborough East Junction and Werrington Junction on the Stamford Lines used by the freight trains.

On the other hand, I strongly believe that the route between Ely and Peterborough should be an early electrification project.

  • It would give a second electrified route between London and Peterborough, which could be a valuable diversion route.
  • It would allow bi-mode trains to work easier to and from Peterborough.
  • It would be a great help to Class 93 locomotives hauling freight out of Felixstowe.

As the Ely-Peterborough Line has a 75 mph operating speed, it would Class 73 locomotive-hauled freights would save around thirty ,inutes.

Peterborough and Werrington Junction

This section looks to be being electrified during the building of the Werrington Dive Under.

Werrington Junction and Leicester

This section would be diesel hauled, with help from the batteries, which could be fully charged when entering the section.

Leicester and Nuneaton

This section would be diesel hauled, with help from the batteries,

As there is full electrification at Nuneaton, this electrification could be extended for a few miles towards Leicester.

Conclusion

This has only been a rough analysis, but it does show that Class 93 locomotives can offer advantages in running freight trains between Felixstowe and Nuneaton.

But selective lengths of electrification would bring time and diesel savings.

January 17, 2021 Posted by | Transport | , , , , , , , | Leave a comment

Trimode Class 93 Locomotives Ordered By Rail Operations (UK)

The title of this post, is the same as that of this article on Railway Gazette.

This is the introductory paragraph.

Stadler and Rail Operations (UK) Ltd have signed a framework agreement for the supply of 30 Class 93 trimode locomotives, with an initial batch of 10 scheduled for delivery in early 2023.

Note that the order may have been a long time coming, but it is now for thirty locomotives. In this article on Rail Magazine from December 2018, which is entitled Rail Operations Fuels its Ambitions With Tri-Mode Class 93s, only ten locomotives were to be ordered.

A Few More Details

This article on Rail Engineer, which is entitled, Re-Engineering Rail Freight, gives a few more details about the operation of the Class 93 locomotives.

It says this about operation in electric mode.

In electric mode, the batteries are charged when braking or from the transformer. As the batteries use the space occupied by the braking resistors in the Class 88, when the batteries are fully charged, the locomotive has only its friction brake.

This about operation in diesel-hybrid mode.

In diesel/battery hybrid mode, the batteries are charged both as the train brakes and by the diesel engine when it is not operating under full load. When the train accelerates, the batteries give it the extra power needed to get up to speed. This is a significant benefit as accelerating a freight train of over 1,000 tonnes up to its operating speed can take several minutes.

This is said about the batteries and their effect on performance.

It has two Lithium Titanate Oxide liquid-cooled battery packs, which have a rapid charge and discharge rate. These each have a 40kWh capacity with a peak power of 200kW. Thus, whilst the train is accelerating, the Class 93 will have a peak power of 1,300kW for up to ten minutes, which is almost twice that of a Class 88 in diesel mode.

The batteries would appear to be quite small when you consider, that Vivarail are talking about 424 KWh in one of their Class 230 trains.

This is said about performance.

As a result, the 86-tonne Class 93 is capable of hauling 1,500 tonnes on non-electrified routes and 2,500 tonnes on electrified routes. With a route availability (RA) of seven, it can be used on most of the rail network.

It may not be the largest of locomotives, but it could have a very high performance.

I have a few thoughts.

Regenerative Braking Performance

The Rail Engineer  article says this about the Class 93 locomotive.

  • The train has a total of 80 kWh of battery storage to store braking energy.
  • The locomotive weighs 86 tonnes
  • It can haul 1,500 tonnes on non-electrified lines.

Using a train weight of 1586 tonnes and Omni’s Kinetic Energy Calculator, gives a kinetic energy of 8 kWh at 42.6 mph.

Does this mean that the locomotive is designed to trundle around the countryside at around forty mph?

These are timings from Real Time Trains.

  • Haughley Junction and Ely – 40 miles – 60 minutes – 40 mph
  • Werrington Junction and Doncaster – 86 miles – 130 minutes – 40 mph
  • Werrington Junction and Nuneaton – 67 miles – 123 minutes – 32.7 mph
  • Southampton and Oxford – 74 miles – 120 minutes – 37 mph

There will be savings compared to the current diesel timings, with a Class 93 locomotive.

  • Either side of these sections, the locomotive can use electric power to cut pollution, noise and carbon emissions.
  • Stops and starts on sections without electrification will save diesel and cut carbon emissions.
  • The train will be faster on electrified sections.

I also feel that with its smaller diesel engine, it will be able to maintain similar timings to current trains hauled by Class 66, Class 68 and Class 70 locomotives.

It can haul 2,500 tonnes on non-electrified lines.

Assuming a train weight of 2586 tonnes, the train energy at various speeds is as follows.

  • 40 mph – 114 kWh
  • 60 mph – 258 kWh
  • 80 mph – 459 kWh
  • 100 mph – 718 kWh
  • 110 mph – 868 kWh

Am I right to assume that once the batteries are full, the regenerative braking energy can be returned through the catenary to power other trains?

Operation With 750 VDC Third Rail Electrification

Will some locomotives be fitted with third-rail shoes to work into and out of Southampton?

They would not need to use diesel between and Basingstoke.

Access To Ports And Rail Freight Terminals

I recently wrote Rail Access To The Port Of Felixstowe.

Looking in detail at Felixstowe and how trains will serve the port, this was my conclusion.

I very much feel, that the specification of the Class 93 locomotive with its trimode capability is ideal for working to and from ports and freight terminals.

Looking at the specification, I am certain, that these locomotives can haul a heavy freight train out of Felixstowe on diesel, with help from the batteries.

  • The distance without electrification is around fifteen miles.
  • It takes around thirty minutes.
  • It is fairly flat Suffolk countryside with the possible exception of the climb over Spring Road Viaduct.

The batteries would need to be charged and surely in Felixstowe’s case the best way would be to electrify the two single track access routes between Trimley station and the Port.

  • On leaving, the trains would pass Trimley with full batteries.
  • They could also be at line speed after accelerating using the two miles or so of electrification.
  • They could also enter the Port with full batteries, after charging the batteries on the short length of electrification.

The batteries may be large and powerful enough, to enable diesel free operations in the Port.

Does this partially explain the increase in the order for Class 93 locomotives? There’s not really been a genuine Last-Mile locomotive in the UK before.

Enabling Carbon-Free Ports And Rail Freight Terminals

Regularly, I read reports of ports wanting to do carbon-free.

Class 93 locomotives can help the process, by not using their diesel engines in ports and rail freight terminals.

It might just need a short length of electrification between the port or terminal and the main line, to make sure batteries are fully-charged.

But not at London Gateway!

This Google Map shows the couple of kilometres of track without electrification, that connects London Gateway to the electrified route through East Tilbury station.

London Gateway would appear to be ready for low or possibly zero-carbon access, using Class 93 locomotives.

High Speed Freight Trains

Consider.

  • These Class 93 locomotives will have an operating speed of 110 mph, when running on electrified lines.
  • Currently, many multimode freight trains run at speeds of under 90 mph, as Class 66 locomotives don’t have the power to go faster and the wagons carrying the containers have a lower speed limit.

So with new or refurbished wagons capable of travelling at 110 mph, there will be speed improvements in some containerised freight.

As an example of what happens on the UK rail network, at the present time, I have found a freight train that goes between Felixstowe and Coatbridge near Glasgow,

  • The route is via Ipswich, London, The North London Line and the West Coast Main Line.
  • It can weigh 1600 tonnes.
  • The distance is 483 miles.
  • The service takes around 16 hours.
  • With the exception of between Felixstowe and Ipswich, the route is fully electrified.

I estimate that if this service could run at up to 100 mph on the Great Eastern Main Line and up to 110 mph on the West Coast Main Line, that several hours could be saved.

Electrification Gap Bridging

As I indicated earlier, I believe these Class 93 locomotives will be able to haul a freight train out of Felixstowe to the electrified Great Eastern Main Line.

In Thoughts On A Battery/Electric Replacement For A Class 66 Locomotive, I gave a list of typical gaps in the electrification in the UK.

  • Didcot and Birmingham – Around two-and-a-half hours
  • Didcot and Coventry – Just under two hours
  • Felixstowe and Ipswich – Around an hour
  • Haughley Junction and Peterborough – Around two hours
  • Southampton and Reading – Around one-and-a-half hours
  • Werrington Junction and Doncaster via Lincoln – Around two hours
  • Werrington Junction and Nuneaton – Just under two hours

How many of these gaps could be bridged by a Class 93 locomotive working in a diesel hybrid mode?

Stadler have not confirmed the size of the battery, but have said that it can provide 400 kW of power, which gives a maximum of 1.3 MW, when the batteries are working as afterburners for the diesel engine!

If the article in Rail Engineer is correct, I feel there is a high chance, that a Class 93 locomotive can bridge these gaps, with a load of 1500 tonnes in tow.

It is worth looking at current timings between Haughley Junction and Ely, when hauled by a Class 66 locomotive.

  • The distance is around 40 mph
  • The time taken is around an hour.
  • A Class 66 locomotive would put 2.2 MW at the rail.

This locomotive could need up to 2.2 MWh to bridge the gap.

But I don’t believe that a forty mile gap will be impossible for a Class 93 locomotive.

  • Stadler will have all the performance data of the bi-mode Class 88 locomotive to draw on.
  • The Class 93 locomotive has regenerative braking to help charge the batteries at any stops.
  • Several of the large electrification gaps on the UK rail network are in the flat lands of East Anglia and Lincolnshire.
  • Modern control systems would be able to eke out the power of the batteries.

I wouldn’t be surprised to find that Stadler have had an objective to design a locomotive that can perform like a Class 66 locomotive for two hours.

Conclusion

If Stadler get the specification, performance and reliability of this locomotive right, they will sell a lot of locomotives for operations like these! And not just in the UK!

 

 

January 16, 2021 Posted by | Transport | , , , , , | 4 Comments

Rail Access To The Port Of Felixstowe

This Google Map shows the Port of Felixstowe.

Note.

  1. Trimley station is at the top edge of the map.
  2. One rail line curves down from Trimley to the Southern side of the Port.
  3. Another rail line connects Trimley to the Northern side of the Port.
  4. A few miles of the route between Trimley and Ipswich, has recently been double-tracked and improved.

I will now describe the important parts of the rail network to and from the Port.

Trimley Station

This Google Map shows Trimley station.

Note.

  1. Trimley station has two platforms. although only the Northern one, which is numbered 1 is in use.
  2. There are two tracks through the station.
  3. There is a footbridge over the tracks.
  4. Most people cross the lines on the level crossing.

The track through Trimley station has been improved and the improved is described in the Wikipedia entry for the Felixstowe Branch Line, where this is said.

In October 2017 final approval was given for a £60.4m project which includes doubling between Trimley station and Grimston Lane foot crossing. Work started on 7 April 2018 and was predicted to end in Autumn 2019.[29] However, the work was completed by May 2019 and saw changes to the infrastructure at Trimley station where trains from the Felixstowe direction could now access the disused platform road and the establishment of a double track as far as a new junction called Gun Lane Junction just over a mile west of Trimley station. Both lines can be worked bi-directionally and with the increase in freight traffic that resulted from the additional capacity a number of level crossings were either abolished or upgraded to improve safety.

This Google Map shows the section of line, that has now been dualed.

Note.

  1. Grimston Lane is the triangle of roads in the North-West corner of the map.
  2. Trimley station is in the South-East corner of the map.

This Google Map shows the track layout East of Trimley station.

Note.

  1. Trimley station is at the top of the map.
  2. There is a junction to the South-East of Trimley station.
  3. The Northern track goes straight on to Felixstowe station and the Southern Terminal at the Port of Felixstowe.
  4. The Southern track curves South to the North Terminal at the Port of Felixstowe.
  5. Both branches are single track.

It would appear that all trains going to and from the South Terminal at the Port, take the Northern track through Trimley station and those going to and from the North Terminal at the Port, take the Southern track.

Southern Access To The Port

This Google Map shows how the trains go between Trimley station and the Southern entry to the Port.

Note.

  1. Felixstowe station is in the North-East corner of the map.
  2. The single track from Trimley station splits into two in the North West corner of the map.
  3. One branch allows an hourly service between Ipswich and Felixstowe stations.
  4. The second branch goes South to the Port.
  5. The junction used to be a full triangular junction to allow trains to go between the two Felixstowe stations.

Do the residents of some houses in Felixstowe, get plagued by noise, pollution, smell and the diesel smoke of Class 66 locomotives going to and from the Southern access to the Port?

Felixstowe Beach Station

There used to be a Felixstowe Beach station on the railway to the Port.

This Google Map shows the location.

The station was to the North-East of the level crossing.

These pictures show the area as it was a year or so ago.

Is there a need for a new Felixstowe Beach station to allow workers and visitors to the Port to avoid the crowded roads?

Future Passenger Services Between Ipswich and Felixstowe

The passenger service between Ipswich and Felixstowe has for many years been a bine of contention between the Port of Felixstowe and passenger train operators.

The Port would like to see the passenger service discontinued, so that they could run more freight trains.

However, to increase both freight and passenger capacity, the East-West Rail consortium has proposed running a tram-train between Felixstowe and Ipswich.

  • It would run through the streets of Ipswich to the forecourt of Ipswich station.
  • It would serve important points in Ipswich, like the Hospital, Town Centre and Portman Road.
  • It would have a frequency of four trains per hour (tph).

I wrote about the proposal in Could There Be A Tram-Train Between Ipswich And Felixstowe?

The Southern area of Felixstowe, along the beach is run down and needs improvement.

So why not run the tram-train all the way along the sea-front to Landguard Point?

This Google Map shows Landguard Point.

A tram-train going to Landguard Point would do the following.

  • Provide a direct passenger rail service between the Port and Ipswich.
  • Provide access to the Harwich ferry.
  • Improve the economic prospects of the Southern part of Felixstowe.
  • Bring visitors to the beach without using their cars.

But the main thing it would do is create decent access to the historic Landguard Fort.

Landguard Fort was the site of the last invasion of the UK, when the Dutch were repelled on the 2nd of July 1667, at the Battle of Landguard Fort.

The Southern Terminal At The Port Of Felixstowe

This Google Map shows the Southern terminal of the Port.

This second Google Map shows where the rail line enters the Southern terminal.

Note how the rail link enters in the North-East corner of the and curves towards the quays before it splits into two.

One branch goes straight on, past some sidings and gives a connection to the Trinity Terminal.

The second branch turns South to several sidings.

This Google Map shows these sidings.

Note that the sidings are towards the right of the image and run North-South.

Northern Access To The Port

This Google Map shows the route taken by the rail access to the Trinity Terminal.

Note.

  1. The route branches off South just to the East of Trimley station.
  2. It curves its way South to the South-West corner of the map, where it enters the Port.
  3. It is single track.

This second Google Map shows where it enters the Port.

Note.

  1. The track enters from the North-West corner of the map.
  2. It then splits into two branches.
  3. One branch goes West to the Trinity Terminal.
  4. The second branch goes South into a set of sidings.

It looks to be a well-designed access, to the Felixstowe Branch Line at Trimley station.

The Trinity Terminal At The Port Of Felixstowe

This Google Map shows the Trinity terminal.

Note the rail sidings and the link to the East, which links to the previous map.

This Google Map shows the rail sidings in detail.

I hope the pictures give a clear impression of the size of the port, which in the next few years will probably need more trains to the rest of the country.

There is also a yard that appears to be connected to both the North and South train entrances to the Port.

This yard is shown in this Google Map.

Note, the cranes to lift containers on and off.

Electrification In The Port

Note that there is no electrification in the Port or on the access links from Trimley station.

I once spent half-an-hour with a fellow Ipswich supporter before an away match. He turned out to be a crane driver at the Port of Felixstowe and we got to talking about why the trains weren’t electrified.

He told me that accidents to happen and that you you don’t want high voltage wires about, when you’re swinging containers on and off trains.

Especially, when the trains are close together, as they are in the previous image.

Class 73 Locomotives And The Port Of Felixstowe

The first Class 73 locomotives have now been ordered by Rail Operations Group (UK), and I wrote about the order in Trimode Class 93 Locomotives Ordered By Rail Operations (UK).

What surprised me about the order was that it was for thirty locomotives, whereas only ten were talked about two years ago. I know, that Rail Operations (UK) have received a big capital injection, as was reported in this article on Rail Advent, which is entitled Rail Operations Group Acquired By STAR Capital Partnership. but they must have ambitious plans for thirty locomotives.

Could it be that the specification of these locomotives is geared to operating out of ports like Felixstowe?

Consider.

  • A locomotive probably needs a self-powdered capability to take a heavy train in or out of the Port of Felixstowe.
  • Would a Class 73 locomotive have sufficient range and power to take the average train out of the port using bi-mode diesel and battery power until it arrived at the electrification of the Great Eastern Main Line?
  • How would these locomotives handle a gap like Haughley Junction and Ely?
  • A Class 73 locomotive could probably handle these container trains at 100 mph to and from London on the Great Eastern Main Line, which would keep them out of the way of Greater Anglia’s express trains.
  • What speed would these locomotives be able to achieve under electric power on the West Coast and East Coast Main Lines?
  • The two single-track access links between Trimley station and the Port could be electrified to charge the batteries both ways and to accelerate the train fast out of the Port.

I also feel that other ports would benefit.

Conclusion

I very much feel, that the specification of the Class 93 locomotive with its trimode capability is ideal for working to and from ports and freight terminals.

 

 

 

 

January 15, 2021 Posted by | Transport | , , , , , , , , , , | 3 Comments

Class 88 Locomotive Heads On To The East Coast Main Line

The title of this post, is the same as that of this article on Rail Advent.

This is the first three paragraphs.

Direct Rail Services has confirmed that one of its Class 88 broke new ground last week when it ran the length of the East Coast Main Line.

Last weekend, freight operator, DRS, ran a new diversionary route to enable the Class 88 locomotives to run almost the length of the ECML on electric power, as well as feeder routes that link up Daventry and Mossend.

The route normally follows the West Coast Main Line, but engineering work last weekend required a diversion.

That makes a second Class 88 locomotive story, where the locomotives are serving new routes, after ’88’ Makes Sizewell Debut.

Could it be that with new electrification coming on stream and more being planned, Direct Rail Services are researching what these locomotives can do?

The Route

As the Rail Advent article says, the route is electric all the way from Mossend to Daventry.

Mossend to Edinburgh via the Shotts Line.

  • Edinburgh to Stevenage via the East Coast Main Line.
  • Stevenage to Alexandra Palace via the Hertford Loop Line.
  • Alexandra Palace to Camden Road Central Junction via the East Coast Main Line.
  • Xamden Road Central Junction to Camden Junction via the North London Line.
  • Camden Junction to Daventry via the West Coast Main Line.

But it does go round the houses!

Note.

  1. The journey took fifteen hours and it arrived about two-and-a-half hours late.
  2. Edinburgh to Stevenage was timed to take seven hours, whereas passengers can do that journey in four-and-a half hours with a change.

With some strategic electrification would the train be able to cut across from the East Coast Main Line to reach Daventry?

The Future Of Direct Rail Services

Direct Rail Services have a mixed fleet of locomotives.

Only the last two types are modern locomotives, that are capable of hauling trains at 100 mph.

The Wikipedia entry also says this.

In September 2017, Direct Rail Services issued a tender for ten brand new diesel-electric locomotives.

Consider.

  • As Government policy is a zero-carbon UK by 2050, is that likely to change the tender to electro-diesel locomotives?
  • Direct Rail Services is owned by the Government,
  • The order from Rail Operations Group for Class 93 locomotives seems to have stalled.
  • Rail Operations Group have some ambitious plans for the use of the tri-mode 110 mph Class 93 locomotives, which I wrote about in Rail Operations Group Gets Serious About Thunderbirds Etc.
  • As any locomotives delivered in the next few years, will probably still be running in 2060, surely this conflicts with Government policy.

Perhaps, all three parties are working on a cunning plan to jointly order a common design.

 

 

 

 

 

May 23, 2020 Posted by | Transport | , , , , , | Leave a comment

’88’ Makes Sizewell Debut

The title of this post, is the same as that of a news snippet in the June 2020 Edition of Modern Railways.

There is a picture of the electro-diesel Class 88 locomotive moving a nuclear flask from Sizewell on the closed Aldeburgh branch line to Crewe.

Note that is about 27-28 miles from the electrification at Ipswich East Suffolk Junction and the siding close to the power station, where flasks are loaded.

This is a classic use of an electric locomotive, that has a Last Mile-capability using an on-board diesel engine.

Many ports in the UK, like these examples are a few miles from the electrified network.

  • Felixstowe – 16 miles
  • Liverpool – 5 miles
  • London Gateway – 4 miles
  • Southampton – 2 miles

How many trains could be hauled to and from these and other ports using a Class 88 locomotive or their similar, but more powerful sibling; the Class 93 locomotive?

Conclusion

I suspect there are a number of routes that could be handled by electro-diesel locomotives.

I would like to see a serious analysis of all duties performed by diesel locomotives, like for example; Classes 66, 67, 68 and 70 locomotives, to see how many could be performed by suitably-sized electro-diesel locomotives.

If  there is a gap in the market, then a rolling stock leasing company, should fill it!

Just like Beacon Rail Leasing and Clayton Equipment appear to have done with a diesel shunter, which I wrote about in UK Diesel-Battery Hybrid Locomotive Lease Fleet Ordered.

As Beacon Rail Leasing seem to be heavily involved in the leasing of electro-diesel locomotives, perhaps, they’re working on it?

 

May 22, 2020 Posted by | Transport | , , , , , , , | 8 Comments

Is The East-West Rail Link Going For The Freight Market?

I will deal with question in two main sections; West and East.

Freight In The West

In Shapps Supports Beeching Axe Reversals, I talked about the reopening of the Northampton and Marketharborough Line to connect the West Coast and Midland Main Lines..

  • Passenger services could run between Market Harborough or Leicester and Marylebone, Milton Keynes, Oxford or Reading.
  • Multi-modal services could run between freight terminals in the North Midlands and Yorkshire and Southampton Docks.
  • With electrification, it could create the Electric Spine, that was cancelled a few years ago.

Judging by Grant Shapps comments, I do wonder if this scheme is part of the East-West Rail Link.

Look at freight trains between Sheffield or South Yorkshire and Southampton Docks.

  • Currently, they seem to use a route via Chesterfield, Ilkeston, Toton, Burton-on-Trent, Bordesley, Solihull, Warwick Parkway, Banbury, Oxford, Reading and Basingstoke.
  • After the East-West Rail Link and the Northampton and Market Harborough Line are opened, the trains would go via Chesterfield, Ilkeston, East Midland Parkway, Loughborough, Leicester, Market Harborough, Northampton, Milton Keynes, Bletchley, Bicester, Oxford, Reading and Basingstoke.

The advantages of the new second route would appear to be.

  • It doesn’t involve a Grand Tour of Birmingham.
  • It only involves the next phase of the East-West Rail Link.
  • It is partially-electrified.
  • It would be relatively easy to electrify between Didcot and Bletchley.
  • Innovative locomotives like the Class 93 locomotive might be ideal for the route.

I do suspect that the new route will be substantially quicker.

Freight In The East

If the East-West Rail Link will improve freight services in the West, what will it do in the East?

I wrote about freight at the Eastern end of the route in Roaming Around East Anglia – Freight Trains Through Newmarket.

This was the introduction to that article.

The East West Rail Consortium plan to change the route of freight trains to and from Haven Ports; Felixstowe, Harwich and Ipswich to the West of Kennett station.

In this document on the East-West Rail Consortium web site, this is said.

Note that doubling of Warren Hill Tunnel at Newmarket and
redoubling between Coldham Lane Junction and Chippenham Junction is included
in the infrastructure requirements. It is assumed that most freight would operate
via Newmarket, with a new north chord at Coldham Lane Junction, rather than
pursuing further doubling of the route via Soham.

How would these changes affect Newmarket and the horse-racing industry in the town?

I then examined the affects in detail.

My conclusions were that it will be a difficult project to get approved, as Newmarket won’t like a double-track freight railway through the centre.

Summary Of Freight Routes Using The East-West Rail Link

As far as I can see, these will be the major freight routes using the link.

Felixstowe and Birmingham

Ipswich, Newmarket, Cambridge, Bletchley, Nuneaton and Castle Bromwich

Felixstowe and Bristol

Ipswich, Newmarket, Cambridge, Bletchley, Oxford and Swindon

Felixstowe and Cardiff

Ipswich, Newmarket, Cambridge, Bletchley, Oxford, Swindon and Newport

Felixstowe and Glasgow

Ipswich, Newmarket, Cambridge, Bletchley, Stafford, Crewe, Preston and Carlisle

Felixstowe and Liverpool

Ipswich, Newmarket, Cambridge, Bletchley, Stafford, Crewe and Runcorn

Felixstowe and Trafford Park

Ipswich, Newmarket, Cambridge, Bletchley, Stafford Crewe, Manchester Piccadilly and Manchester Oxford Road

Southampton and Birmingham

Basingstoke, Oxford, Bletchley, Nuneaton and Castle Bromwich

Southampton and Glasgow

Basingstoke, Oxford,  Bletchley, Stafford, Crewe, Preston and Carlisle

Southampton and Liverpool

Basingstoke, Oxford, Bletchley, Stafford, Crewe and Runcorn

Southampton and Sheffield

Basingstoke, Oxford, Bletchley, Northampton, Market Harborough, Leicester, East Midlands Parkway, Ilkeston and Chesterfield

Southampton and Trafford Park

Basingstoke, Oxford, Bletchley, Stafford Crewe, Manchester Piccadilly and Manchester Oxford Road

Note, that I have ignored routes like Felixstowe and Leeds or London Gateway and Trafford Park, which will avoid the East-West Rail Link.

Conclusion

The East-West Rail Link is going to be a very important freight route.

Winners And Losers

Will there be objections in places like Cambridge, Market Harborough and Newmarket, which will see a large increase in freight traffic?

On the other hand, some places like Banbury, Birmingham and North London will see a reduction in freight traffic.

Others like Oxford would see little difference in the numbers of trains.

Electrification

The East-West Rail Link connects to five electrified main lines at Oxford, Bletchley, Bedford, Sandy and Cambridge.

For freight’s sake, I think it should be electrified to make the most of new motive power, like the Class 93 locomotive and reduce pollution and carbon emissions.

 

October 30, 2019 Posted by | Transport | , , , , | Leave a comment

Haughley Junction Improvements

This article in the East Anglian Daily Times is entitled New Tracks. New Platforms At Ipswich Station. And Faster Trains. Will East Anglia’s Rail Bosses Be Able To Deliver?.

This is said about Haughley Junction.

Mr Bradley said improving Haughley junction, making it a full double-track junction, would mainly benefit cross-country services but it would reduce a potential main-line bottleneck.

This Google Map shows the junction.

Haughley Junction is towards the top of the map.

  • The track going vaguely to the North-West goes towards Bury St. Edmunds, Newmarket and Cambridge.
  • The track going North goes to Diss and Norwich.
  • Ipswich is to the South.

Work is eased by having a large space on the Eastern side of the junction, but where the railway crosses Station Road, there is a level crossing, which is to be removed.

It looks to me, that this is one of those projects, that can grow to be very complicated.

Consider.

  • Will a flyover be built or will it be a flat junction?
  • Will the main Ipswich-Norwich line be moved to the East.
  • How will engineers deal with the level crossing closure?
  • Will any electrification be added towards Cambridge?

With regards to the last question, it should be noted that Cambridge and Haughley Junction are forty-two miles apart.

Greater Anglia’s Class 755 trains can replace each diesel engine with a battery pack. This will be done on the South Wales Metro.

In .Battery Power Lined Up For ‘755s’, I investigate what Stadler have said about Class 755 trains running on batteries.

  • Ranges of up to forty miles are quoted.
  • Batteries could be fitted to Greater Anglia’s bi-mode Flirts at an overhaul.

I would expect that the electrification would be extended towards Cambridge by as much as is needed to make sure that battery operation between Ipswich and Cambridge is possible.

I have just flown my helicopter along the line, as far as Chippenham Junction.

  • The line splits at Chippenham Junction, with one branch going through Newmarket to Cambridge and the other to Ely.
  • Chippenham Junction is seventeen miles from Cambridge.
  • The route betwen Chippenham Junction and Haughley Junction appears to have been cleared for el;ectrification.
  • Electrification through Newmarket would be expensive, as there is a tunnel, a section of single track and possibly a station rebuild.
  • Chippenham Junction and Haughley Junction are about twenty-five miles apart.
  • Chippenham Junction and Ely are about fourteen miles apart.

If I was in charge of this project, I would certainly investigate the possibility of electrification between Haughley and Chippenham Junctions

  • Class 755 trains with batteries would be able to run between Chippenham Junction and Cambridge or Ely on battery power.
  • The East West Rail Consortium is proposing a Park-And Ride station, which could be called A14 Parkway.
  • How much money would train operators save, if this section was el;ectrified?
  • Power for the electrification would be picked up at Haughley Junction.

Would it allow tri-mode Class 93 locomotives to be able to go between Felixstowe and Ely only using a relatively small amount of diesel compared to a Class 66 locomotive?

I also think that electrifying between Chippenham and Haughley Junctions is low risk electrification.

  • The route has been gauge-cleared.
  • Thee new Class 755 trains can run without it.
  • On the other hand they will run more efficiently when it has been installed.
  • It would enable Class 93 locomotives to run on electricity.

Too many electrification projects need new trains. These are already in service.

Conclusion

There is more to this project than meets the eye.

 

October 20, 2019 Posted by | Transport | , , , , , | 1 Comment

Europhoenix Earmarks ‘91s’ For European Freight Use

The title of this post is the same as that of this article on Rail Magazine.

Class 91 locomotives are the locomotives at one end of an InterCity 225 train.

The picture shows three Class 91 locomotives lined up at Kings Cross station. Locomotives are normally at the Northern end of the train, with driving van trailers, which are dummy locomotives with a cab, at the other end of the train. The locomotives have a pantograph.

They are electric locomotives, with an unusual transmission, described like this in Wikipedia.

The locomotive body shells are of all-steel construction. Unusually, the motors are body mounted and drive bogie-mounted gearboxes via cardan shafts. This reduces the unsprung mass and hence track wear at high speeds. The locomotive also features an underslung transformer so that the body is relatively empty compared to contemporary electric locomotives. Much of the engineering specification for the locomotive was derived from the research and operational experience of the APT-P.

Wikipedia also says this about the locomotives.

  •  Have a power of 4.83 MW.
  • Have a weight of 81.5 tonnes.
  • Can work on 25 KVAC overhead electrification.
  • Have a service speed of 125 mph
  • Have a service speed of 110 mph going blunt end first.
  • Can operate as a  normal locomotive.

According to Wikipedia, there are a total of 31 locomotives.

They are powerful locomotives, that were designed to haul nine heavily-loaded coasches at 140 mph.

Europheonix’s Plan

Europhoenix, which is described as a railway locomotive hire company by Wikipedia, intend to do the following, according to the Rail Magazine article.

Up to twenty Class 91 locomotives will be acquired and they will be used for freight in Eastern Europe.

Two have already been purchased and these are being readied for tests.

This paragraph gives more details on the modifications and how they will be used.

EP owner Glenn Edwards told RAIL on October 4 that the locomotives would work in permanent pairs, with the blunt ends coupled together. Currently, ‘91s’ are not suitable for heavy freight haulage duty, so in partnership with Voith they will be re-geared to a lower rating to enable them to operate in this manner.

A few of my thoughts!

The Double Locomotive

British Rail gets a lot of criticism.

Some of this is justified, but on the other hand, some of their track,locomotive and carriage design has admirably stood the test of time.

In his quote, Glenn Edwards seems very confident that the engines can work in permanent pairs.

As the Class 91 locomotives were designed to work as normal locomotives, perhaps the ability to work as a pair, was part of the original specification.

But as no-one ever used them to haul heavy freight trains, the feature was never needed.

British Rail has form in using pairs of electric engines to haul freight.

 

The picture shows a pair of Class 86 locomotives, which were built in 1965-66, pulling a heavy freight train through Canonbury in 2019.

I also must show this picture of a British Rail-era Class 90 locomotive double-heading a heavy freight train with a Class 66 diesel locomotive.

Is this the ultimate bi-mode locomotive for the UK?

I’ve never seen the formation again or found any reference on the Internet.

I wouldn’t be surprised to be told, that running two Class 91 locomotives, blunt end together, was part of the original design.

The pair would be a powerful beast.

  • Almost ten MW of power.
  • Eight driven axles.

But the pair would have a lowish axle loading of around twenty tonnes.

Modifications Planned

The only modification noted in the Rail Magazine article is to change the gearing from that needed for a 140 mph passenger train to that needed for a slower freight train.

Hopefully the manufacturer of the original gear-boxes are still in existence.

Other Information

There is a discussion about these locomotives on this topic on RailUK Forums.

One post says this.

I spoke to a colleague the other day who said ROG were getting 2X91’s for testing the new wires on the MML.

ROG is Rail Operations Group and they are should be well-qualified to do the testing.

According to Wikipedia, there is a lot of space inside the locomotive, so could this space be used to house instrumentation used to test the overhead wires?

Could Pairs Of Class 91 Locomotives Be Used For Freight In The UK?

I think it all depends on the routes, the amount of electrification and the economics.

On the other hand new Stadler Class 93 locomotives might be a better alternative.

Conclusion

It does look like Eirophoenix have organised an export deal, that is to the benefit of several parties.

October 10, 2019 Posted by | Transport | , , , , | Leave a comment

The Batteries For Bombardier Electrostars

This article on the Railway Gazette is entitle Bombardier And Leclanché Sign Battery Traction MoU.

This is the second paragraph.

According to Bombardier, Leclanché will deliver ‘imminently’ its first performance demonstrator battery systems, after which it will be in line to supply traction equipment worth in excess of €100m for use in more than 10 rolling stock projects.

In Stadler’s New Tri-Mode Class 93 Locomotive, I investigated who was providing two large suitcase-sized batteries for Stadler’s new Class 93 locomotive.

In the related post, I said this about the batteries in the Class 93 locomotive, which I describe as a hybrid locomotive.

The Class 93 Locomotive Is Described As A Hybrid Locomotive

Much of the article is an interview with Karl Watts, who is Chief Executive Officer of Rail Operations (UK) Ltd, who have ordered ten Class 93 locomotives. He says this.

However, the Swiss manufacturer offered a solution involving involving an uprated diesel alternator set plus Lithium Titanate Oxide (LTO) batteries.

Other information on the batteries includes.

  • The batteries are used in regenerative braking.
  • Batteries can be charged by the alternator or the pantoraph.
  • Each locomotive has two batteries slightly bigger than a large suitcase.

Nothing is said about the capacity of the batteries, but each could be say 200 litres in size.

I have looked up manufacturers of lithium-titanate batteries and there is a Swiss manufacturer of the batteries called Leclanche, which has this data sheet, that describes a LT30 Power cell 30Ah.

  • This small cell is 285 mm x 178.5 mm x 12 mm.
  • It has a storage capacity of 65 Wh
  • It has an expedited lifetime of greater than 15,000 cycles.
  • It has an energy density of 60 Wh/Kg or 135 Wh/litre

These cells can be built up into much larger batteries.

  • A large suitcase is 150 litres and this volume would hold 20 kWh and weigh 333 Kg.
  • A battery of 300 litres would hold 40 kWh. Is this a large Swiss suitcase?
  • A box 2.5 metres x 1 metre x 0.3 metres underneath a train would hold 100 kWh and weigh 1.7 tonnes

These batteries with their fast charge and discharge are almost like supercapacitors.

, It would appear that, if the large suitcase batteries are used the Class 93 locomotive will have an energy storage capacity of 80 kWh.

I wonder how many of these batteries can be placed under a Bombardier Eectrostar.

It looks rather cramped under there, but I’m sure Bombardier have the detailed drawings and some ideas for a bit of a shuffle about. For comparison, this is a selection of pictures of the underneath of the driver car of the new Class 710 trains, which are Aventras.

It looks like Bombardier have done a big tidy-up in changing from Electrostars to Aventras.

In Battery Electrostars And The Uckfield Branch, I came to the conclusion that Class 387 trains were the most likely trains to be converted for battery operation.

I also developed Excel spreadsheets that model the operation of battery trains on the Uckfield Branch and the Marshlink Line.

AshfordOre

HurstGreenUckfield

Feel free to download and examine.

Size Of Batteries Needed

My calculations in the two spreadsheets are based on the train needing 3 kWh per vehicle-mile to cruise between stations.

To handle the Uckfield Branch, it appears that 290.3 kWh is needed to go South and 310.3 kWh to go North.

I said this earlier.

A box 2.5 metres x 1 metre x 0.3 metres underneath a train would hold 100 kWh and weigh 1.7 tonnes.

So could we put some of these batteries under the train?

The Effect Of More Efficient Trains

My calculations  are based on the train needing 3 kWh per vehicle-mile, but what if the trains are more efficient and use less power?

  • 3 – 290.3 – 310.3
  • 2.5 – 242.6 – 262.6
  • 2 – 194.9 – 214.9
  • 1.5 – 147.2 – 167.2
  • 1 – 99.4 – 119.4

Note.

  1. The first figure is Southbound and the second figure is Northbound.
  2. More power is needed Northbound, as the train has to be accelerated out of Uckfield station on battery power.

The figures clearly show that the more efficient the train, the less battery capacity is needed.

I shall also provide figures for Ashford and Ore.

  • 3 – 288
  • 2.5 – 239.2
  • 2 – 190.4
  • 1.5 – 141.5
  • 1 – 92.7

Note that Westbound and Eastbound energy needs are the same, as both ends are electrified.

I obviously don’t know Bombardier’s plans, but if the train’s energy consumption could be reduced to around 2 kWh per vehicle-mile, a 250 kWh battery on the train would provide enough energy storage for both routes.

Could this be provided by two of Leclanche’s batteries designed to fit a space under the train?

These would be designed to provide perhaps 250 kWh.

What Would Be The Ultimate Range Of A Class 387 Train On Battery Power?

Suppose you have a four-car Class 387 train with 25 kWh of battery power that leaves an electrified station at 60 mph with a full battery.

How far would it go before it came to a lifeless stop?

The battery energy would be 250 kWh.

There would be 20 kWh of kinetic energy in the train.

Ranges with various average energy consumption in kWh per vehicle-mile are as follows.

  • 3 – 22.5 miles
  • 2.5 – 27 miles
  • 2 – 34 miles
  • 1.5 – 45 miles
  • 1 – 67.5 miles

Obviously, terrain, other traffic and the quality of the driving will effect the energy consumption.

But I do believe that a well-designed battery-electric train could easily handle a fifty mile electrification gap.

What Would Be The Rescue Range On One Battery?

One of the main reasons for putting batteries on an electrical multiple unit is to move the train to a safe place for passenger evacuation if the electrification should fail.

This week, there have been two electrification failures in London along, one of which was caused by a failing tree in the bad weather.

I’ll assume the following.

  • The train is a Class 387 train with one 125 kWh battery.
  • The battery is  ninety percent charged.
  • The train will be moved at 40 mph, which has a kinetic energy around 9 kWh.
  • The energy consumption of the train is 3 kWh per vehicle-mile.

The train will use 9 kWh to accelerate the train to line speed, leaving 116 kWh to move the train away from the problem.

With the energy consumption of 3 kWh per vehicle-mile, this would be a very useful 9.5 miles.

Regenerative Braking To Battery On Existing Trains

This has been talked about for the Class 378 trains on the London Overground.

Regenerative braking to batteries on the train, should cut energy use and would the battery help in train recovery from the Thames Tunnel?

What About Aventras?

Comparing the aerodynamics of an Electrostar like a Class 387 train with an Aventra like a Class 710 train, is like comparing a Transit van with a modern streamlined car.

Look at these pictures some of which are full frontal.

It should be noted that in one picture a Class 387 train is shown next to an InterCity 125. Did train designers forget the lessons learned by Terry Miller and his team at Derby.

I wonder how much electricity would be needed to power an Aventra with batteries on the Uckfield branch?

These are various parameters about a Class 387 train.

  • Empty Weight – 174.81 tonnes
  • Passengers – 283
  • Full Weight – 2003 tonnes
  • Kinetic Energy at 60 mph – 20.0 kWh

And these are for a Class 710 train.

  • Empty Weight – 157.8 tonnes
  • Passengers – 700
  • Full Weight – 220.8 tonnes
  • Kinetic Energy at 60 mph – 22.1 kWh

Note.

  1. The Aventra is twenty-seven tonnes lighter. But it doesn’t have a toilet and it does have simpler seating with no tables.
  2. The passenger weight is very significant.
  3. The full Aventra is heavier, due to the large number of passengers.
  4. There is very little difference in kinetic energy at a speed of 60 mph.

I have played with the model for some time and the most important factor in determining battery size is the energy consumption in terms of kWh per vehicle-mile. Important factors would include.

  • The aerodynamics of the nose of the train.
  • The turbulence generated by all the gubbins underneath the train and on the roof.
  • The energy requirements for train equipment like air-conditioing, lighting and doors.
  • The efficiency of the regenerative braking.

As an example of the improvement included in Aventras look at this picture of the roof of a Class 710 train.

This feature probably can’t be retrofitted, but I suspect many ideas from the Aventra can be applied to Electrostars to reduce their energy consumption.

I wouldn’t be surprised to see Bombardier push the energy consumption of an Electrostar with batteries towards the lower levels that must be possible with Aventras.

 

 

 

October 2, 2019 Posted by | Transport | , , , , , , , , , | Leave a comment