The Anonymous Widower

All Platforms Should Be Wide Like This

It is my view, that all platforms, like this one at Angel station should be wide.

Consider,

  • It must be less likely, that passengers get knocked onto the tracks.
  • Wide platforms must be easier for all passengers to navigate.
  • Blind people with of without guide dogs must find it easier.

Let’s see a few more. And with step-free access between platform and train!

January 9, 2021 Posted by | Transport | , | 8 Comments

Companies Have New Take On Old Energy Storage Tech

The title of this post, is the same as that of this article on Hackaday.

This is the introductory paragraph.

According to Spectrum, several companies are poised to make a splash storing energy with gravity. That sounds fancy and high tech at first, but is it, really? Sure, we usually think of energy storage as some sort of battery, but there are many energy storage systems that use water falling, for example, which is almost what this new technology is all about. Almost, since instead of water these new systems move around multi-ton blocks.

The article gives a review of Energy Vault, Gravitricity and another company called Gravity Power.

This is the article’s take on Gravity Power.

The scale of the weights is hard to imagine. Another company, Gravity Power, claims they could deliver 400 megawatts for 16 hours using an 8 million metric ton piston. There’s no word on how long it takes to bring that piston back to the charged position after the 16 hours, though. A Boeing 757-200, for example, weighs about 100 tons when loaded with fuel and passengers. So imagine 80,000 giant airplanes melted down. It makes Energy Vault’s 35-ton weights seem much more reasonable.

Looking at the Gravity Power web site, their technology is described on this page, where this is the first paragraph.

The GPM (Gravity Power Module) uses a very large piston that is suspended in a deep, water-filled shaft, with sliding seals to prevent leakage around the piston and a return pipe connecting to a pump-turbine at ground level. The piston is comprised of reinforced rock and in some cases concrete for low cost. The shaft is filled with water once, at the start of operations, but is then sealed and no additional water is required.

This graphic from the page explains the technology.

My worry would be water leakage past the piston.

This does sound like an idea from William Armstrong, who was responsible for many things including the hydraulic accumulator.

The picture shows the hydraulic accumulator at Limehouse in London.

I visited the Limehouse Accumulator during Open House in 2012 and wrote about it in Open House – The Limehouse Hydraulic Accumulator.

 

 

 

January 9, 2021 Posted by | Energy, Energy Storage | , , , | 1 Comment

EU Backs Orsted Team On Green Hydrogen Initiative

The title of this post, is the same as that as that of this article on renews.biz.

This is the sub-title of the article.

European Commission Funding For The Oyster Project That Also Includes Siemens Gamesa, Element Energy and ITM Power

There is a press release on ITM Power’s web site.

This paragraph sums up the project.

ITM Power, Ørsted, Siemens Gamesa Renewable Energy, and Element Energy have been awarded EUR 5 million in funding from The Fuel Cells and Hydrogen Joint Undertaking (FCH2-JU) under the European Commission to demonstrate and investigate a combined wind turbine and electrolyser system designed for operation in marine environments.

This is said about the design of the electrolyser.

The electrolyser system will be designed to be compact, to allow it to be integrated with a single offshore wind turbine, and to follow the turbine’s production profile. Furthermore, the electrolyser system will integrate desalination and water treatment processes, making it possible to use seawater as a feedstock for the electrolysis process.

It looks like it will be a standalone turbine, that instead of producing electricity it will produce hydrogen.

This paragraph gives the objective of the project.

The OYSTER project partners share a vision of hydrogen being produced from offshore wind at a cost that is competitive with natural gas (with a realistic carbon tax), thus unlocking bulk markets for green hydrogen making a meaningful impact on CO2 emissions, and facilitating the transition to a fully renewable energy system in Europe.

The project will run from 2021 to 2024.

When I first heard about creating hydrogen offshore with a combined wind-turbine and electrolyser, I thought this could be the way to go.

It’s certainly a way to produce large quantities of green hydrogen.

But I also feel, the process has a serious rival in Shell’s Blue Hydrogen Process, which uses a catalyst to split methane into hydrogen and carbon dioxide.

Shell will need uses for the carbon dioxide or worked-out gas fields to store it.

January 9, 2021 Posted by | Energy, Hydrogen | , , , , | 1 Comment