The Anonymous Widower

Battery Train Pilot Project On Challenging’ Westerwald Routes

The title of this post, is the same as that of this article on Railway Gazette.

It is only a small order for three Mireo Plus B battery-electric multiple-units from Siemens Mobility, but I feel, it is significant that  engineers and managers are confident that a battery-electric multiple unit can handle a challenging route.

February 8, 2023 Posted by | Transport/Travel | , , , | 3 Comments

GeoPura’s Construction World First

On the GeoPura web site there is a case study, which is entitled Construction World First.

These two paragraphs outline what was done.

Working in partnership with Siemens Energy our hydrogen fuel cell system, has provided off grid power and heat to National Grid’s UK Viking Link construction site.

The fuel cell system removes the need for diesel generators and provides innovative, sustainable, low carbon energy to the Viking Link interconnector project site.

The interesting thing, is that the heat that the hydrogen fuel cell gives out is collected and used to heat the remote site.

This last paragraph, explains the need for off grid power.

Off grid power is needed as this site didn’t have a grid connection for at least six to eight months, and the fuel cell system provided enough heat and power for the construction village during that time, removing the need for diesel generators.

There’s more in this Siemens Energy report.

 

January 15, 2023 Posted by | Energy | , , , , , | Leave a comment

Offshore Wind Turbines Need To Be Standardised, Energy Transition Industrialised To Reach Targets, Says Siemens Energy VP For Western Europe

The title of this post, is the same as that of this article on offshoreWIND.biz.

This is the sub-heading.

Governments need to move from talking about policies to implementation, the offshore wind industry needs to employ standardisation, and clear rules and regulations need to be set for green hydrogen in order to move faster with large-scale deployment and achieve meaningful progress in limiting global warming to 1.5 degrees Celsius.

The guy has a point, as mass production of anything is generally more efficient and creates more units in a given time.

But can a diverse group of politicians, agree on a standard for turbines, fixed foundations, floaters, cables and sub-stations and then make sure all are identical and clip together like Lego? I doubt it!

And how would you fit innovative designs like TwinHub into a standard.

This image shows one of their TwinHub turbine installations being towed into place.

At least it could be built to hold two standard turbines.

December 20, 2022 Posted by | Design, Energy | , , , | 2 Comments

ECML Net Zero Traction Decarbonisation

This project was one of the winners in the First Of A Kind 2022 competition run by Innovate UK.

In this document, this is said about the project.

Project No: 10036245

Project title: ECML Net Zero Traction Decarbonisation
Lead organisation: SIEMENS MOBILITY LIMITED
Project grant: £59,983

Public description: Electrification is the foundation of all modern railways and fundamental to decarbonisation. Through
delivering faster, smoother, quieter and more reliable train services, rail electrification reduces
industry fuel cost by 45%, rolling stock costs by 33%, and track maintenance costs by 10-20%
(compared to diesel operation). Electric railways are the most efficient, lowest carbon form of
transportation in the UK.

Network Rail operates the largest power distribution network in the UK, and is the largest consumer
of electricity in the UK, consuming 4TWh electricity per year. Power is provided from the electricity
supply industry, a mix of gas, nuclear, coal and renewables, emitting approximately 944,000 tonnes
of carbon dioxide annually. Connecting new renewable generation directly to the railway reinforces
the railway power supply, while reducing coal and gas use in the UK and is a longstanding Network
Rail industry challenge statement. To date, engineering incompatibilities between renewable,
electricity supply systems and the railway single-phase electrical and other railway systems have
prevented local renewable connection in rail.

In a world first, Siemens Mobility, working with British Solar Renewables, DB Cargo UK, Network
Rail, ECML operators, and the University of York, will directly connect large-scale renewable
generation to the East Coast Mainline. The demonstrator phase will deliver up to 1GWh green
electricity direct to trains each year, reducing UK gas imports by 151,000 cubic metres and carbon
emissions by 236 tonnes annually. It will gather vital data creating a new green industry, creating a
precedent and setting standards to enable larger scale roll-out across the UK.

My Thoughts And Conclusion

This page on the Network Rail web site is entitled Power Supply Upgrade.

Since 2014, Network Rail and its partners have been upgrading the overhead electrification and the associated substations and electricity supply on the East Coast Main Line (ECML).

  • It is not a small project which includes fifty new substations and 1,600 km. of new cabling between London and Edinburgh.
  • When complete, fleets of electric trains on the route will be receiving high-quality electric power from the upgraded overhead electrification.

However, the East Coast Main Line is unique among British electrified main lines, in that it runs more or less close to a coast, that is populated by a large number of massive wind farms.

I believe the objective of this project, is to more directly connect the massive wind farms to the East Coast Main Line.

Lessons learned could then be applied to other electrified main lines.

We may even see onshore wind farms or small modular nuclear reactors built to power the railways.

November 19, 2022 Posted by | Energy, Transport/Travel | , , , , , , , , , | 3 Comments

25kV Battery Train Charging Station Demonstration

This project was one of the winners in the First Of A Kind 2022 competition run by Innovate UK.

In this document, this is said about the project.

Project No: 10037158

Project title: 25kV Battery Train Charging Station Demonstration
Lead organisation: SIEMENS MOBILITY LIMITED
Project grant: £59,910

Public description: The UK rail industry is committed to decarbonisation, including the removal of diesel trains by 2040.

Replacing diesel trains with electric, hydrogen or battery bi-mode rolling stock provides faster, smoother and more reliable journeys, as well as eliminating local pollution and greatly reducing carbon dioxide. To enable clean, green electric bi-mode operation without continuous electrification requires enhancement of the power supply to existing electrification and novel charging facilities to support bi-mode trains. No small, low-cost solution is currently available for charging facilities that are compatible with standard UK trains and locally available power supplies and space.

Siemens Mobility, working with ROSCO, TOCs and Network Rail, will deliver a novel AC charging solution enabling simple installation of small, low-cost rapid charging facilities fed from existing standard local power supply cables. Compatible with all OLE-powered trains, the novel design enables the removal of diesel passenger train operation on non-electrified routes across the UK, while minimising land requirements and modifications required to existing station structures.

My Thoughts And Conclusion

Consider.

  • The solution works with all 25 KVAC trains.
  • It looks like it is a compact overhead electrification system, which might have originally been designed for a European tram or German S-Bahn system.
  • It is claimed to be low-cost.
  • Siemens were not asking for a lot of money.
  • ROSCO, TOCs and Network Rail are all involved, which must be good.

It looks to me, that someone at Siemens has raided the parts bin and found some small, low-cost overhead electrification, that can be installed in the UK gauge and powered by a fairly standard mains supply.

It strikes me, that this system would be ideal to install in a station like Marylebone, if services to the station were to be run by battery-electric trains.

November 17, 2022 Posted by | Energy, Transport/Travel | , , , , , , | 1 Comment

Siemens Bags First Fleet Order For Hydrogen Trains In Berlin-Brandenburg Region

The title of this post, is the same as that of this article on RailTech.com.

This is the first paragraph.

Niederbarnimer Eisenbahn (NEB) has ordered seven Mireo Plus H hydrogen trains from Siemens Mobility. Delivery is set for autumn 2024, with first operations on the Heidekrautbahn (RB27) network planned in December the same year.

It is a detailed article. about the Mireo Plus H.

June 28, 2022 Posted by | Hydrogen, Transport/Travel | , , , | 2 Comments

Siemens Mobility and Deutsche Bahn Present New Hydrogen Train

The title of this post, is the same as that of this article on Global Railway Review.

This is the sub-title.

Deutsche Bahn and Siemens Mobility have presented the newly developed Mireo Plus H and a newly designed mobile hydrogen storage trailer.

It seems that Deutsche Bahn and Siemens Mobility have put together a well-thought out plan to use hydrogen on a lot of unelectrified lines.

The Germans have given the project, the catchy name of H2goesRail.

How does that translate into German?

 

May 5, 2022 Posted by | Hydrogen, Transport/Travel | , , , , , , , | 4 Comments

How Britannia With Help From Her Friends Can Rule The Waves And The Wind

The Government doesn’t seem to have published its future energy plans yet, but that hasn’t stopped the BBC speculating in this article on their web site, which is entitled Energy Strategy: UK Plans Eight New Nuclear Reactors To Boost Production.

These are the first two paragraphs.

Up to eight more nuclear reactors could be delivered on existing sites as part of the UK’s new energy strategy.

The plan, which aims to boost UK energy independence and tackle rising prices, also includes plans to increase wind, hydrogen and solar production.

Other points include.

  • Up to 95% of the UK’s electricity could come from low-carbon sources by 2030.
  • 50 gigawatts (GW) of energy through offshore wind farms, which  would be more than enough to power every home in the UK.
  • One of the big points of contention is thought to have been the construction of onshore wind turbines.
  • Targets for hydrogen production are being doubled to help provide cleaner energy for industry as well as for power, transport and potentially heating.
  • A new licensing round for North Sea oil and gas projects.
  • A heat pump accelerator program.

In this post I shall only be looking at one technology – offshore wind and in particular offshore floating wind.

Who Are Our Friends?

I will start with explaining, who I see as our friends, in the title of this post.

The Seas Around Us

If we are talking about offshore winds around the the UK, then the seas around the UK are surely our biggest and most-needed friend.

The Island Of Ireland

The seas are shared with the island of Ireland and the UK and the Republic must work together to maximise our joint opportunities.

As some of the largest offshore wind farm proposals, between Wales and Ireland involve a Welsh company called Blue Gem Wind, who are a partnership between Irish company; Simply Blue Energy, and French company; TotalEnergies, we already seem to be working with the Irish and the French.

The City Of London

Large insurance and pension companies, based in the City of London like, abrdn, Aviva, L & G and others are always looking for investments with which to provide income to back their insurance business and our pensions.

In World’s Largest Wind Farm Attracts Huge Backing From Insurance Giant, I describe why and how, Aviva back wind farms.

Germany

Germany are certainly on our side, despite being in a mess of Mutti Merkel’s making, because she got the country too deeply dependant on Vlad the Mad’s tainted gas.

  • German utilities are providing finance to build wind farms in British waters.
  • German company; Siemens is manufacturing turbine blades in Hull.
  • Germany wouldn’t mind buying any electricity and hydrogen we have spare. Especially, as we haven’t invaded them since 1944.

I suspect a mutually-beneficial relationship can be negotiated.

Norway

I have customised software for a number of countries, including Iran, Saudi Arabia, South Korea and the United States and despite selling large numbers of systems to Norway, the Norwegians never requested any modifications.

They are generally easy-going people and they are great friends of the UK. They were certainly a fertile country for the sale of Artemis systems.

Just as the UK worked together with the Norwegians to deliver North Sea Oil, we are now starting to work together to develop renewable energy in the North Sea.

In UK To Norway Sub-Sea Green Power Cable Operational, I describe how we have built the North Sea Link with the Norwegians, which will link the British and Norwegian energy networks to our mutual benefit.

In Is This The World’s Most Ambitious Green Energy Solution?, I describe an ambitious plan called Northern Horizons, proposed by Norwegian company; Aker to build a 10 GW floating wind farm, which will be 120 km to the North-East of the Shetlands.

Floating Wind Turbines

This is the introduction of the Wikipedia entry for floating wind turbines.

A floating wind turbine is an offshore wind turbine mounted on a floating structure that allows the turbine to generate electricity in water depths where fixed-foundation turbines are not feasible. Floating wind farms have the potential to significantly increase the sea area available for offshore wind farms, especially in countries with limited shallow waters, such as Japan, France and US West coast. Locating wind farms further offshore can also reduce visual pollution, provide better accommodation for fishing and shipping lanes, and reach stronger and more consistent winds.

At its simplest a floating wind farm consists of a semi-submersible platform, which is securely anchored to the sea-bed to provide a firm platform on which to erect a standard wind turbine.

There are currently two operational floating wind farms off the East Coast of Scotland and one in the Atlantic off the Portuguese coast.

  • These wind farms are fairly small and use between three and five turbines to generate between 25-50 MW.
  • The largest current floating turbines are the 9.5 MW turbines in the Kincardine Wind Farm in Scotland, but already engineers are talking of 14 MW and 20 MW floating turbines.
  • Experience of the operation of floating wind turbines, indicates that they can have capacity factors in excess of 50 %.
  • Floating wind turbines can be erected on their floats in the safety of a port using a dockside crane and then towed into position.
  • Floating wind turbines can be towed into a suitable port for servicing and upgrading.

Many serious engineers and economists, think that floating wind farms are the future.

The Energy Density of Fixed Foundation And Floating Wind Farms

In ScotWind Offshore Wind Leasing Delivers Major Boost To Scotland’s Net Zero Aspirations, I summarised the latest round of Scotwind offshore wind leases.

  • Six new fixed foundation wind farms will give a capacity of 9.7 GW in 3042 km² or about 3.2 MW per km².
  • Ten new floating wind farms will give a capacity of 14.6 GW in 4193 km² or about 3.5 MW per km².

Note.

  1. Floating wind farms have a small advantage in terms of energy density over those with fixed foundations.
  2. Suppose these energy densities are achieved using 14 MW turbines.
  3. Engineers are talking of 20 MW turbines.
  4. Using large turbines could increase the energy density by 20/14 or 43 %

We could see in a few years with 20 MW turbines, fixed foundation turbines having an energy density of 4.6 MW per km², with floating turbines having 5 MW per km².

The Potential Of A Ten-Mile Square In The Seas Around Us

I will assume.

  • It is at least 100 km from land.
  • The water would be at least 100 metres deep.
  • There are no structures in the area.

And calculate.

  • The area will be a hundred square miles, which is smaller than the county of Rutland.
  • This will be 259 square kilometres.

If it were to be filled with floating wind turbines at a density of 5 MW per km², the capacity would be 1300 MW or 1.3 GW.

There must be hundreds of empty ten-mile squares in the seas around us.

Offshore Hydrogen Production And Storage

I believe in the near future, that a lot of offshore wind energy will be converted to hydrogen offshore.

  • Electrolysers could be combined with wind turbines.
  • Larger electrolysers could be combined with sub-stations collecting the electricity.
  • In Torvex Energy, I discuss a method to create hydrogen from seawater, without having to desalinate the water. Surely, this technology would be ideal for offshore electrolysis.

Hydrogen would be brought to shore using pipelines, some of which could be repurposed from existing gas pipelines, that are now redundant, as the gas-fields they served have no gas left.

I also suspect that hydrogen could be stored in a handy depleted gas field or perhaps some form of specialist storage infrastructure.

Combining Wind And Wave Power In A Single Device

Marine Power Systems are a Welsh company, that has developed a semi-submersible structure, that can support a large wind turbine and/or a wave-power generator.

This is the mission statement on their home page.

Marine Power Systems is revolutionising the way in which we harvest energy from the world’s oceans.

Our flexible technology is the only solution of its type that can be configured to harness wind and wave energy, either as a combined solution or on their own, in deep water. Built on common platform our devices deliver both cost efficiency and performance throughout the entire product lifecycle.

Our structurally efficient floating platform, PelaFlex, brings excellent stability and straightforward deployment and maintenance. The PelaGen wave energy converter represents market-leading technology and generates energy at an extremely competitive cost of energy.

Through optimised farm layout and the combination of wind and wave energy, project developers can best exploit the energy resource for any given area of seabed.

We are unlocking the power of oceans.

There is a link on the page to more pages, that explain the technology.

It looks to me, that it is well-designed technology, that has a high-chance of being successful.

It should also be noted that according to this news page on the Marine Power Systems web site, which is entitled MPS Lands £3.5M Of Funding From UK Government, the UK government feel the technology is worth backing.

I certainly believe that if Marine Power Systems are not successful, then someone else will build on their original work.

If wind and wave power can successfully be paired in a single float, then this must surely increase the energy production at each float/turbine in the floating wind farm.

Energy Storage In Wind Turbines

The output of wind farms can be very variable, as the wind huffs and puffs, but I believe we will see energy storage in wind turbines to moderate the electricity and deliver a steadier output.

Using lithium-ion or other batteries may be possible, but with floating offshore turbines, there might be scope to use the deep sea beneath the float and the turbine.

Hybrid Wind Farms

In the latest round of Scotwind offshore wind leases, one wind farm stands out as different. Magnora ASA’s ScotWind N3 Offshore Wind Farm is described as a floating offshore wind farm with a concrete floater.

I can see more wind farms built using this model, where there is another fixed or floating platform acts as control centre, sub-station, energy store or hydrogen electrolyser.

How Much Electricity Could Be Produced In UK And Irish Waters?

I will use the following assumptions.

  • Much of the new capacity will be floating wind turbines in deep water.
  • The floating wind turbines are at a density of around 5 MW per km²

This Google Map shows the British Isles.

I will look at various seas.

The Celtic Sea

The Celtic Sea is to the South-West of Wales and the South of Ireland.

In Blue Gem Wind, I posted this extract from the The Our Projects page of the Blue Gem Wind web site.

Floating wind is set to become a key technology in the fight against climate change with over 80% of the worlds wind resource in water deeper than 60 metres. Independent studies have suggested there could be as much as 50GW of electricity capacity available in the Celtic Sea waters of the UK and Ireland. This renewable energy resource could play a key role in the UK meeting the 2050 Net-Zero target required to mitigate climate change. Floating wind will provide new low carbon supply chain opportunities, support coastal communities and create long-term benefits for the region.

Consider.

  • The key figure would appear 50 GW of electricity capacity available in the Celtic Sea waters of the UK and Ireland.
  • Earlier I said that floating turbines can have a wind turbine density of 5 MW per km².
  • According to Wikipedia, the surface area of the Celtic Sea is 300,000 km².

To accommodate enough floating turbines to generate 50 GW would need 10000 km², which is a 100 km. square, or 3.33 % of the area of the Celtic Sea.

This wind generation capacity of 50 GW would appear to be feasible in the Celtic Sea and still leave plenty of space for the shipping.

The Irish Sea

According to Wikipedia, the surface area of the Irish Sea is 46,000 km².

Currently, there are ten wind farms in the Irish Sea.

  • Six are in English waters, three are in Welsh and one is in Irish.
  • None are more than sixteen kilometres from the coast.

The total power is 2.7 GW.

I feel that the maximum number of wind farms in the Irish Sea would not cover more than the 3.33 % proposed for the Celtic Sea.

3.33 % of the Irish Sea would be 1532 km², which could support 7.6 GW of wind-generated electricity.

I can’t leave the Irish Sea without talking about two wind farms Mona and Morgan, that are being developed by an enBW and BP joint venture, which I discussed in Mona, Morgan And Morven. This infographic from the joint venture describes Mona and Morgan.

That would appear to be a 3 GW development underway in the Irish Sea.

Off The Coast Of South-East England, East Anglia, Lincolnshire And Yorkshire

These wind farms are proposed in these areas.

Note.

All wind farms have comprehensive web sites or Wikipedia entries.

The total capacity of these wind farms is 22.5 GW

The North Sea

According to Wikipedia, the surface area of the North Sea is 570,000 km².

Would it is reasonable to assume, that perhaps a tenth of this area would be available for new wind farms in UK waters?

3.33 % of the available North Sea would be 1898 km², which could support 9.5 GW of wind-generated electricity.

On The East Coast Of Scotland

In Wind Farms On The East Coast Of Scotland, I summarised the wind farms off the East coast of Scotland, that are being built in a cluster in the First of Forth.

This map shows the proposed wind farms in this area.

There are five wind farms in the map.

  • The green area is the cable corridor for Seagreen 1a
  • Inch Cape is the odd-shaped wind farm to the North and West of the green area
  • Seagreen at the top of the map, to the North of Inch Cape.
  • Marr Bank with the pink NE-SW hatching
  • Berwick Bank with the green NW-SE hatching
  • Neart Na Gaoithe is edged in blue to the South of the green area.

Berwick Bank and Marr Bank are both owned by SSE and appear to have been combined.

The capacity of the wind farms can be summarised as follows.

  • Seagreen – 1075 MW
  • Neart Na Gaoithe – 450 MW
  • Inch Cape – 1000 MW
  • Berwick Bank and Marr Bank – 4100 MW

This gives a total of 6625 MW or just over 6.6 GW.

Around The North Of Scotland

This map shows the latest successful ScotWind leases.

Note.

  1. Several of these proposed wind farms have detailed web sites.

These seventeen leases total up to 24.3 GW.

An Interim Total

I believe these figures are realisable.

  • Celtic Sea – 50 GW
  • Irish Sea – 7.6 GW – 3 GW already underway
  • South East England, East Anglia, Lincolnshire And Yorkshire – 22.5 GW
  • North Sea – 9.5 GW
  • On The East Coast Of Scotland – 6.6 GW
  • Around The North Of Scotland – 24.3 GW

Note.

  1. I have tried to be as pessimistic as possible.
  2. Irish and North Sea estimates are based on Blue Gem Wind’s professional estimate for the Celtic Sea.
  3. I have used published figures where possible.

My estimates total up to 120.1 GW of extra wind-power capacity. As I write this, current UK electricity production is around 33 GW.

Vikings Will Invade

This Google Map shows the Faroe Islands, the North of Scotland, Norway and Denmark.

To get an idea of scale, the Shetland Isles are around 70 miles or 113 km. from North to South.

In Is This The World’s Most Ambitious Green Energy Solution?, I talked about Norwegian company; Aker Solutions’s plan for Northern Horizons.

  • It would be a 10 GW offshore floating wind farm 136 km to the North-East of the Shetlands.
  • This position would probably place it about halfway between the Faroes and the Norwegian coast.
  • The project is best described in this article on the Engineer, which is entitled Northern Horizons Plans Clean Energy Exports For Scotland.
  • In the article, there is a good graphic and a video.

This will be offshore engineering of the highest class, but then I first came across Norwegian offshore engineering like this in the 1970s, where nothing was too difficult for Norwegian engineers.

There are two major points to remember about the Norwegians.

  • They have the Sovereign Wealth Fund to pay for the massive investment in Northern Horizons.
  • They need to replace their oil and gas income, with a zero-carbon investment stream.

I feel that Northern Horizons will not be a one-off and the virgin sea in the map above will be liberally carpeted with more floating wind farms.

  • On Shetland, electricity can be fed into the UK grid.
  • On Norway, electricity can be fed into the Norwegian grid or stored in Norwegian pumped storage systems.
  • On Scotland, more pumped storage systems can be built to store energy.
  • Hydrogen can be piped to where it is needed to decarbonise heavy industry and transport.
  • Norwegian fjords, Shetland harbours, Scottish lochs and possibly Scapa Flow would be ideal places to assemble and service the giant floating turbines and build the other needed floating infrastructure.
  • I can also see Denmark getting in on the act, as they will probably want to decarbonise the Faroe Islands.

I estimate that between the Faroes, Scotland and Norway, there are 510,000 km² of virgin sea.

With a potential of 5 MW per km², that area has the potential to create an amazing amount of both electricity and hydrogen.

Exporting Power To Europe

There will need to be more interconnectors from the UK to Europe.

These are already working.

These are proposed.

There are also gas interconnectors, that could be converted to hydrogen.

This press release from National Grid, which is entitled Undersea Electricity Superhighways That Will Help Deliver Net Zero Move A Step Closer, has these bullet points.

  • Positive progress on plans for £3.4bn electricity super-highway projects – Scotland to England Green Links.
  • Ofgem opens consultation that recognises the “clear case” and “consumer benefit” of two subsea high voltage cables to transport clean between Scotland and England.
  • The cables form part of a planned 16 project £10 billion investment from National Grid to deliver on the government’s target of 40GW of offshore wind generation by 2030.

This paragraph expands on the work by National Grid to meet the third point.

These projects are part of National Grid’s work upgrading the electricity transmission system to deliver the UK government’s target of 40GW of offshore wind generation by 2030. In addition to the Eastern Links, it is developing 14 major projects across its network to facilitate the target representing a £10 billion investment. This includes two further Scotland to England high voltage links (also in partnership with the Scottish transmission network owners) and proposals in the Humber, Lincolnshire, East Midlands, North of England, Yorkshire, North Kent, as well as four in East Anglia (one of which is a proposed offshore link between Suffolk and Kent).

I think we can assume, that National Grid will do their part to allow the UK government’s target of 40GW of offshore wind generation by 2030 to be met.

Will The UK Have 40 GW Of Offshore Wind Generation By 2030?

In the Wikipedia entry for Windpower In The UK, this is the opening sentence.

The United Kingdom is one of the best locations for wind power in the world and is considered to be the best in Europe. By the beginning of March 2022, the UK had 11,091 wind turbines with a total installed capacity of over 24.6 gigawatts (GW): 14.1 GW of onshore capacity and 10.4 GW of offshore capacity.

It would appear an extra 30 GW of wind power is needed.

In An Interim Total earlier, I gave these figures.

  • Celtic Sea – 50 GW
  • Irish Sea – 7.6 GW – 3 GW already underway
  • South East England, East Anglia, Lincolnshire And Yorkshire – 22.5 GW
  • North Sea – 9.5 GW
  • On The East Coast Of Scotland – 6.6 GW
  • ScotWind – 24.3 GW

The wind farms in South East England, East Anglia, Lincolnshire And Yorkshire and ScotWind and Mona and Morgan are either being planned or under construction, and in many cases leases to construct wind farms are being paid.

I would feel, that at least 30 GW of these 56.4 GW of wind farms will be completed by 2030.

Conclusion

Boris’s vision of the UK becoming a Saudi Arabia of wind is no fantasy of a man with massive dreams.

Standard floating wind turbines, with the possibility of also harvesting wave power could be assembled in ports along the coasts, towed into position and then connected up.

Several GW of wind-power capacity could probably be added each year to what would become the largest zero-carbon power station in the world.

By harvesting the power of the winds and waves in the seas around the British Isles it is an engineering and mathematical possibility, that could have been developed by any of those great visionary Victorian engineers like Armstrong, Bazalgette, Brunel and Reynolds, if they had had access to our modern technology.

Up Yours! Putin!

 

 

 

April 19, 2022 Posted by | Energy, Energy Storage, Hydrogen | , , , , , , , , , , , , , , , , , , , , , , , , , , , , | 3 Comments

H2goesRail

The title of this post, is the same as that of this page on the Deutsche Bahn web site.

These three paragraphs introduce the H2goesRail philosopher.

Deutsche Bahn is currently developing and implementing solutions that utilize hydrogen. One such endeavor is the H2goesRail project. In partnership with Siemens Mobility, we are breaking new ground and driving forward decarbonization of the transport sector for the good of the environment. Together we are developing an innovative hydrogen system for rail transport, which will comprise a refueling station, hydrogen train, and maintenance infrastructure.

We aim to replace diesel multiple units in regional service and thus further reduce carbon emissions in rail transport. To achieve this, with H2goesRail we are developing an innovative mobile refueling station whose smart control unit will allow fast refueling of hydrogen trains.

DB Energie GmbH will ensure the supply of hydrogen for the project, from production by means of renewable-powered electrolysis all the way through to storage and provision.

There is a lot of video.

January 13, 2022 Posted by | Hydrogen | , , , | Leave a comment

Should All Trains Have Grab Handles By The Doors?

These pictures show the vertical grab handles on London Overground Class 710 trains.

Note the vertical handles everywhere and especially tucked into the corner behind the door.

These pictures show the interior of a 1973 Stock train on the Piccadilly Line.

There are worse trains in the UK.

It should be noted that the trains were extensively refurbished in 1996-2001.

Should all trains have lots of grab handles like these two examples? And especially by the door?

I think they should.

This is an interesting picture of a Siemens design study, which I wrote about in Siemens’ View Of The Future Of The Underground.

Note the grab handles by the sides of the doors.

So at least Siemens are following the rule of grab handles by the door.

November 3, 2021 Posted by | Design, Transport/Travel | , , , , | 4 Comments