The Anonymous Widower

Siemens Bags First Fleet Order For Hydrogen Trains In Berlin-Brandenburg Region

The title of this post, is the same as that of this article on RailTech.com.

This is the first paragraph.

Niederbarnimer Eisenbahn (NEB) has ordered seven Mireo Plus H hydrogen trains from Siemens Mobility. Delivery is set for autumn 2024, with first operations on the Heidekrautbahn (RB27) network planned in December the same year.

It is a detailed article. about the Mireo Plus H.

June 28, 2022 Posted by | Hydrogen, Transport/Travel | , , , | 2 Comments

Siemens Mobility and Deutsche Bahn Present New Hydrogen Train

The title of this post, is the same as that of this article on Global Railway Review.

This is the sub-title.

Deutsche Bahn and Siemens Mobility have presented the newly developed Mireo Plus H and a newly designed mobile hydrogen storage trailer.

It seems that Deutsche Bahn and Siemens Mobility have put together a well-thought out plan to use hydrogen on a lot of unelectrified lines.

The Germans have given the project, the catchy name of H2goesRail.

How does that translate into German?

 

May 5, 2022 Posted by | Hydrogen, Transport/Travel | , , , , , , , | 4 Comments

How Britannia With Help From Her Friends Can Rule The Waves And The Wind

The Government doesn’t seem to have published its future energy plans yet, but that hasn’t stopped the BBC speculating in this article on their web site, which is entitled Energy Strategy: UK Plans Eight New Nuclear Reactors To Boost Production.

These are the first two paragraphs.

Up to eight more nuclear reactors could be delivered on existing sites as part of the UK’s new energy strategy.

The plan, which aims to boost UK energy independence and tackle rising prices, also includes plans to increase wind, hydrogen and solar production.

Other points include.

  • Up to 95% of the UK’s electricity could come from low-carbon sources by 2030.
  • 50 gigawatts (GW) of energy through offshore wind farms, which  would be more than enough to power every home in the UK.
  • One of the big points of contention is thought to have been the construction of onshore wind turbines.
  • Targets for hydrogen production are being doubled to help provide cleaner energy for industry as well as for power, transport and potentially heating.
  • A new licensing round for North Sea oil and gas projects.
  • A heat pump accelerator program.

In this post I shall only be looking at one technology – offshore wind and in particular offshore floating wind.

Who Are Our Friends?

I will start with explaining, who I see as our friends, in the title of this post.

The Seas Around Us

If we are talking about offshore winds around the the UK, then the seas around the UK are surely our biggest and most-needed friend.

The Island Of Ireland

The seas are shared with the island of Ireland and the UK and the Republic must work together to maximise our joint opportunities.

As some of the largest offshore wind farm proposals, between Wales and Ireland involve a Welsh company called Blue Gem Wind, who are a partnership between Irish company; Simply Blue Energy, and French company; TotalEnergies, we already seem to be working with the Irish and the French.

The City Of London

Large insurance and pension companies, based in the City of London like, abrdn, Aviva, L & G and others are always looking for investments with which to provide income to back their insurance business and our pensions.

In World’s Largest Wind Farm Attracts Huge Backing From Insurance Giant, I describe why and how, Aviva back wind farms.

Germany

Germany are certainly on our side, despite being in a mess of Mutti Merkel’s making, because she got the country too deeply dependant on Vlad the Mad’s tainted gas.

  • German utilities are providing finance to build wind farms in British waters.
  • German company; Siemens is manufacturing turbine blades in Hull.
  • Germany wouldn’t mind buying any electricity and hydrogen we have spare. Especially, as we haven’t invaded them since 1944.

I suspect a mutually-beneficial relationship can be negotiated.

Norway

I have customised software for a number of countries, including Iran, Saudi Arabia, South Korea and the United States and despite selling large numbers of systems to Norway, the Norwegians never requested any modifications.

They are generally easy-going people and they are great friends of the UK. They were certainly a fertile country for the sale of Artemis systems.

Just as the UK worked together with the Norwegians to deliver North Sea Oil, we are now starting to work together to develop renewable energy in the North Sea.

In UK To Norway Sub-Sea Green Power Cable Operational, I describe how we have built the North Sea Link with the Norwegians, which will link the British and Norwegian energy networks to our mutual benefit.

In Is This The World’s Most Ambitious Green Energy Solution?, I describe an ambitious plan called Northern Horizons, proposed by Norwegian company; Aker to build a 10 GW floating wind farm, which will be 120 km to the North-East of the Shetlands.

Floating Wind Turbines

This is the introduction of the Wikipedia entry for floating wind turbines.

A floating wind turbine is an offshore wind turbine mounted on a floating structure that allows the turbine to generate electricity in water depths where fixed-foundation turbines are not feasible. Floating wind farms have the potential to significantly increase the sea area available for offshore wind farms, especially in countries with limited shallow waters, such as Japan, France and US West coast. Locating wind farms further offshore can also reduce visual pollution, provide better accommodation for fishing and shipping lanes, and reach stronger and more consistent winds.

At its simplest a floating wind farm consists of a semi-submersible platform, which is securely anchored to the sea-bed to provide a firm platform on which to erect a standard wind turbine.

There are currently two operational floating wind farms off the East Coast of Scotland and one in the Atlantic off the Portuguese coast.

  • These wind farms are fairly small and use between three and five turbines to generate between 25-50 MW.
  • The largest current floating turbines are the 9.5 MW turbines in the Kincardine Wind Farm in Scotland, but already engineers are talking of 14 MW and 20 MW floating turbines.
  • Experience of the operation of floating wind turbines, indicates that they can have capacity factors in excess of 50 %.
  • Floating wind turbines can be erected on their floats in the safety of a port using a dockside crane and then towed into position.
  • Floating wind turbines can be towed into a suitable port for servicing and upgrading.

Many serious engineers and economists, think that floating wind farms are the future.

The Energy Density of Fixed Foundation And Floating Wind Farms

In ScotWind Offshore Wind Leasing Delivers Major Boost To Scotland’s Net Zero Aspirations, I summarised the latest round of Scotwind offshore wind leases.

  • Six new fixed foundation wind farms will give a capacity of 9.7 GW in 3042 km² or about 3.2 MW per km².
  • Ten new floating wind farms will give a capacity of 14.6 GW in 4193 km² or about 3.5 MW per km².

Note.

  1. Floating wind farms have a small advantage in terms of energy density over those with fixed foundations.
  2. Suppose these energy densities are achieved using 14 MW turbines.
  3. Engineers are talking of 20 MW turbines.
  4. Using large turbines could increase the energy density by 20/14 or 43 %

We could see in a few years with 20 MW turbines, fixed foundation turbines having an energy density of 4.6 MW per km², with floating turbines having 5 MW per km².

The Potential Of A Ten-Mile Square In The Seas Around Us

I will assume.

  • It is at least 100 km from land.
  • The water would be at least 100 metres deep.
  • There are no structures in the area.

And calculate.

  • The area will be a hundred square miles, which is smaller than the county of Rutland.
  • This will be 259 square kilometres.

If it were to be filled with floating wind turbines at a density of 5 MW per km², the capacity would be 1300 MW or 1.3 GW.

There must be hundreds of empty ten-mile squares in the seas around us.

Offshore Hydrogen Production And Storage

I believe in the near future, that a lot of offshore wind energy will be converted to hydrogen offshore.

  • Electrolysers could be combined with wind turbines.
  • Larger electrolysers could be combined with sub-stations collecting the electricity.
  • In Torvex Energy, I discuss a method to create hydrogen from seawater, without having to desalinate the water. Surely, this technology would be ideal for offshore electrolysis.

Hydrogen would be brought to shore using pipelines, some of which could be repurposed from existing gas pipelines, that are now redundant, as the gas-fields they served have no gas left.

I also suspect that hydrogen could be stored in a handy depleted gas field or perhaps some form of specialist storage infrastructure.

Combining Wind And Wave Power In A Single Device

Marine Power Systems are a Welsh company, that has developed a semi-submersible structure, that can support a large wind turbine and/or a wave-power generator.

This is the mission statement on their home page.

Marine Power Systems is revolutionising the way in which we harvest energy from the world’s oceans.

Our flexible technology is the only solution of its type that can be configured to harness wind and wave energy, either as a combined solution or on their own, in deep water. Built on common platform our devices deliver both cost efficiency and performance throughout the entire product lifecycle.

Our structurally efficient floating platform, PelaFlex, brings excellent stability and straightforward deployment and maintenance. The PelaGen wave energy converter represents market-leading technology and generates energy at an extremely competitive cost of energy.

Through optimised farm layout and the combination of wind and wave energy, project developers can best exploit the energy resource for any given area of seabed.

We are unlocking the power of oceans.

There is a link on the page to more pages, that explain the technology.

It looks to me, that it is well-designed technology, that has a high-chance of being successful.

It should also be noted that according to this news page on the Marine Power Systems web site, which is entitled MPS Lands £3.5M Of Funding From UK Government, the UK government feel the technology is worth backing.

I certainly believe that if Marine Power Systems are not successful, then someone else will build on their original work.

If wind and wave power can successfully be paired in a single float, then this must surely increase the energy production at each float/turbine in the floating wind farm.

Energy Storage In Wind Turbines

The output of wind farms can be very variable, as the wind huffs and puffs, but I believe we will see energy storage in wind turbines to moderate the electricity and deliver a steadier output.

Using lithium-ion or other batteries may be possible, but with floating offshore turbines, there might be scope to use the deep sea beneath the float and the turbine.

Hybrid Wind Farms

In the latest round of Scotwind offshore wind leases, one wind farm stands out as different. Magnora ASA’s ScotWind N3 Offshore Wind Farm is described as a floating offshore wind farm with a concrete floater.

I can see more wind farms built using this model, where there is another fixed or floating platform acts as control centre, sub-station, energy store or hydrogen electrolyser.

How Much Electricity Could Be Produced In UK And Irish Waters?

I will use the following assumptions.

  • Much of the new capacity will be floating wind turbines in deep water.
  • The floating wind turbines are at a density of around 5 MW per km²

This Google Map shows the British Isles.

I will look at various seas.

The Celtic Sea

The Celtic Sea is to the South-West of Wales and the South of Ireland.

In Blue Gem Wind, I posted this extract from the The Our Projects page of the Blue Gem Wind web site.

Floating wind is set to become a key technology in the fight against climate change with over 80% of the worlds wind resource in water deeper than 60 metres. Independent studies have suggested there could be as much as 50GW of electricity capacity available in the Celtic Sea waters of the UK and Ireland. This renewable energy resource could play a key role in the UK meeting the 2050 Net-Zero target required to mitigate climate change. Floating wind will provide new low carbon supply chain opportunities, support coastal communities and create long-term benefits for the region.

Consider.

  • The key figure would appear 50 GW of electricity capacity available in the Celtic Sea waters of the UK and Ireland.
  • Earlier I said that floating turbines can have a wind turbine density of 5 MW per km².
  • According to Wikipedia, the surface area of the Celtic Sea is 300,000 km².

To accommodate enough floating turbines to generate 50 GW would need 10000 km², which is a 100 km. square, or 3.33 % of the area of the Celtic Sea.

This wind generation capacity of 50 GW would appear to be feasible in the Celtic Sea and still leave plenty of space for the shipping.

The Irish Sea

According to Wikipedia, the surface area of the Irish Sea is 46,000 km².

Currently, there are ten wind farms in the Irish Sea.

  • Six are in English waters, three are in Welsh and one is in Irish.
  • None are more than sixteen kilometres from the coast.

The total power is 2.7 GW.

I feel that the maximum number of wind farms in the Irish Sea would not cover more than the 3.33 % proposed for the Celtic Sea.

3.33 % of the Irish Sea would be 1532 km², which could support 7.6 GW of wind-generated electricity.

I can’t leave the Irish Sea without talking about two wind farms Mona and Morgan, that are being developed by an enBW and BP joint venture, which I discussed in Mona, Morgan And Morven. This infographic from the joint venture describes Mona and Morgan.

That would appear to be a 3 GW development underway in the Irish Sea.

Off The Coast Of South-East England, East Anglia, Lincolnshire And Yorkshire

These wind farms are proposed in these areas.

Note.

All wind farms have comprehensive web sites or Wikipedia entries.

The total capacity of these wind farms is 22.5 GW

The North Sea

According to Wikipedia, the surface area of the North Sea is 570,000 km².

Would it is reasonable to assume, that perhaps a tenth of this area would be available for new wind farms in UK waters?

3.33 % of the available North Sea would be 1898 km², which could support 9.5 GW of wind-generated electricity.

On The East Coast Of Scotland

In Wind Farms On The East Coast Of Scotland, I summarised the wind farms off the East coast of Scotland, that are being built in a cluster in the First of Forth.

This map shows the proposed wind farms in this area.

There are five wind farms in the map.

  • The green area is the cable corridor for Seagreen 1a
  • Inch Cape is the odd-shaped wind farm to the North and West of the green area
  • Seagreen at the top of the map, to the North of Inch Cape.
  • Marr Bank with the pink NE-SW hatching
  • Berwick Bank with the green NW-SE hatching
  • Neart Na Gaoithe is edged in blue to the South of the green area.

Berwick Bank and Marr Bank are both owned by SSE and appear to have been combined.

The capacity of the wind farms can be summarised as follows.

  • Seagreen – 1075 MW
  • Neart Na Gaoithe – 450 MW
  • Inch Cape – 1000 MW
  • Berwick Bank and Marr Bank – 4100 MW

This gives a total of 6625 MW or just over 6.6 GW.

Around The North Of Scotland

This map shows the latest successful ScotWind leases.

Note.

  1. Several of these proposed wind farms have detailed web sites.

These seventeen leases total up to 24.3 GW.

An Interim Total

I believe these figures are realisable.

  • Celtic Sea – 50 GW
  • Irish Sea – 7.6 GW – 3 GW already underway
  • South East England, East Anglia, Lincolnshire And Yorkshire – 22.5 GW
  • North Sea – 9.5 GW
  • On The East Coast Of Scotland – 6.6 GW
  • Around The North Of Scotland – 24.3 GW

Note.

  1. I have tried to be as pessimistic as possible.
  2. Irish and North Sea estimates are based on Blue Gem Wind’s professional estimate for the Celtic Sea.
  3. I have used published figures where possible.

My estimates total up to 120.1 GW of extra wind-power capacity. As I write this, current UK electricity production is around 33 GW.

Vikings Will Invade

This Google Map shows the Faroe Islands, the North of Scotland, Norway and Denmark.

To get an idea of scale, the Shetland Isles are around 70 miles or 113 km. from North to South.

In Is This The World’s Most Ambitious Green Energy Solution?, I talked about Norwegian company; Aker Solutions’s plan for Northern Horizons.

  • It would be a 10 GW offshore floating wind farm 136 km to the North-East of the Shetlands.
  • This position would probably place it about halfway between the Faroes and the Norwegian coast.
  • The project is best described in this article on the Engineer, which is entitled Northern Horizons Plans Clean Energy Exports For Scotland.
  • In the article, there is a good graphic and a video.

This will be offshore engineering of the highest class, but then I first came across Norwegian offshore engineering like this in the 1970s, where nothing was too difficult for Norwegian engineers.

There are two major points to remember about the Norwegians.

  • They have the Sovereign Wealth Fund to pay for the massive investment in Northern Horizons.
  • They need to replace their oil and gas income, with a zero-carbon investment stream.

I feel that Northern Horizons will not be a one-off and the virgin sea in the map above will be liberally carpeted with more floating wind farms.

  • On Shetland, electricity can be fed into the UK grid.
  • On Norway, electricity can be fed into the Norwegian grid or stored in Norwegian pumped storage systems.
  • On Scotland, more pumped storage systems can be built to store energy.
  • Hydrogen can be piped to where it is needed to decarbonise heavy industry and transport.
  • Norwegian fjords, Shetland harbours, Scottish lochs and possibly Scapa Flow would be ideal places to assemble and service the giant floating turbines and build the other needed floating infrastructure.
  • I can also see Denmark getting in on the act, as they will probably want to decarbonise the Faroe Islands.

I estimate that between the Faroes, Scotland and Norway, there are 510,000 km² of virgin sea.

With a potential of 5 MW per km², that area has the potential to create an amazing amount of both electricity and hydrogen.

Exporting Power To Europe

There will need to be more interconnectors from the UK to Europe.

These are already working.

These are proposed.

There are also gas interconnectors, that could be converted to hydrogen.

This press release from National Grid, which is entitled Undersea Electricity Superhighways That Will Help Deliver Net Zero Move A Step Closer, has these bullet points.

  • Positive progress on plans for £3.4bn electricity super-highway projects – Scotland to England Green Links.
  • Ofgem opens consultation that recognises the “clear case” and “consumer benefit” of two subsea high voltage cables to transport clean between Scotland and England.
  • The cables form part of a planned 16 project £10 billion investment from National Grid to deliver on the government’s target of 40GW of offshore wind generation by 2030.

This paragraph expands on the work by National Grid to meet the third point.

These projects are part of National Grid’s work upgrading the electricity transmission system to deliver the UK government’s target of 40GW of offshore wind generation by 2030. In addition to the Eastern Links, it is developing 14 major projects across its network to facilitate the target representing a £10 billion investment. This includes two further Scotland to England high voltage links (also in partnership with the Scottish transmission network owners) and proposals in the Humber, Lincolnshire, East Midlands, North of England, Yorkshire, North Kent, as well as four in East Anglia (one of which is a proposed offshore link between Suffolk and Kent).

I think we can assume, that National Grid will do their part to allow the UK government’s target of 40GW of offshore wind generation by 2030 to be met.

Will The UK Have 40 GW Of Offshore Wind Generation By 2030?

In the Wikipedia entry for Windpower In The UK, this is the opening sentence.

The United Kingdom is one of the best locations for wind power in the world and is considered to be the best in Europe. By the beginning of March 2022, the UK had 11,091 wind turbines with a total installed capacity of over 24.6 gigawatts (GW): 14.1 GW of onshore capacity and 10.4 GW of offshore capacity.

It would appear an extra 30 GW of wind power is needed.

In An Interim Total earlier, I gave these figures.

  • Celtic Sea – 50 GW
  • Irish Sea – 7.6 GW – 3 GW already underway
  • South East England, East Anglia, Lincolnshire And Yorkshire – 22.5 GW
  • North Sea – 9.5 GW
  • On The East Coast Of Scotland – 6.6 GW
  • ScotWind – 24.3 GW

The wind farms in South East England, East Anglia, Lincolnshire And Yorkshire and ScotWind and Mona and Morgan are either being planned or under construction, and in many cases leases to construct wind farms are being paid.

I would feel, that at least 30 GW of these 56.4 GW of wind farms will be completed by 2030.

Conclusion

Boris’s vision of the UK becoming a Saudi Arabia of wind is no fantasy of a man with massive dreams.

Standard floating wind turbines, with the possibility of also harvesting wave power could be assembled in ports along the coasts, towed into position and then connected up.

Several GW of wind-power capacity could probably be added each year to what would become the largest zero-carbon power station in the world.

By harvesting the power of the winds and waves in the seas around the British Isles it is an engineering and mathematical possibility, that could have been developed by any of those great visionary Victorian engineers like Armstrong, Bazalgette, Brunel and Reynolds, if they had had access to our modern technology.

Up Yours! Putin!

 

 

 

April 19, 2022 Posted by | Energy, Energy Storage, Hydrogen | , , , , , , , , , , , , , , , , , , , , , , , , , , | 2 Comments

H2goesRail

The title of this post, is the same as that of this page on the Deutsche Bahn web site.

These three paragraphs introduce the H2goesRail philosopher.

Deutsche Bahn is currently developing and implementing solutions that utilize hydrogen. One such endeavor is the H2goesRail project. In partnership with Siemens Mobility, we are breaking new ground and driving forward decarbonization of the transport sector for the good of the environment. Together we are developing an innovative hydrogen system for rail transport, which will comprise a refueling station, hydrogen train, and maintenance infrastructure.

We aim to replace diesel multiple units in regional service and thus further reduce carbon emissions in rail transport. To achieve this, with H2goesRail we are developing an innovative mobile refueling station whose smart control unit will allow fast refueling of hydrogen trains.

DB Energie GmbH will ensure the supply of hydrogen for the project, from production by means of renewable-powered electrolysis all the way through to storage and provision.

There is a lot of video.

January 13, 2022 Posted by | Hydrogen | , , , | Leave a comment

Should All Trains Have Grab Handles By The Doors?

These pictures show the vertical grab handles on London Overground Class 710 trains.

Note the vertical handles everywhere and especially tucked into the corner behind the door.

These pictures show the interior of a 1973 Stock train on the Piccadilly Line.

There are worse trains in the UK.

It should be noted that the trains were extensively refurbished in 1996-2001.

Should all trains have lots of grab handles like these two examples? And especially by the door?

I think they should.

This is an interesting picture of a Siemens design study, which I wrote about in Siemens’ View Of The Future Of The Underground.

Note the grab handles by the sides of the doors.

So at least Siemens are following the rule of grab handles by the door.

November 3, 2021 Posted by | Design, Transport/Travel | , , , , | 4 Comments

What Will Happen To The Eighty-Seven Class 350 Trains

At the current time, West Midlands Trains have a fleet of eighty-seven Class 350 trains.

  • The trains are being replaced by new Class 730 trains.
  • They are of different specifications.
  • The interiors vary, but there are a lot of tables.
  • All are four-car sets.
  • They are 110 mph trains.
  • Thirty of the trains are dual-voltage.
  • Fifty are owned by Angel Trains.
  • Thirty-seven are owned by Porterbrook, who have looked at converting the trains to battery-electric operation.
  • They are a bit of a dog’s breakfast, although they are excellent trains.
  • The future of the trains is rather uncertain and even Porterbrook’s plans have gone rather quiet.

So perhaps a big dog ought to round up all these trains and turn them into something more useful.

Consider.

  • All the trains were built in this century by Siemens in Germany.
  • Siemens service the Class 350 trains at Kings Heath Depot in Northampton.
  • Siemens have recently opened a factory in Goole to make new trains for the London Underground.
  • Siemens are developing the Mireo Plus B, which is a battery-electric multiple unit in Germany.

Siemens must have the knowledge and experience to turn these trains into a quality fleet of battery-electric trains.

  • Thirty would be dual-voltage and fifty-seven would be 25 KVAC overhead only.
  • All would be 110 mph trains.
  • I doubt there would be many places on the UK rail network, where they couldn’t run.

All appear to be in excellent condition, as these pictures show.

I very much feel, that these fleets could be converted into a quality fleet of very useful battery-electric trains.

Charging The Batteries

Most of the charging would be done from existing electrification, but as all trains have pantographs, they could use specially-erected short lengths of 25 KVAC overhead wires or charging systems like the Furrer + Frey Voltap system.

Possible Routes

I will start with the dual-voltage trains.

  • Uckfield Branch, where a charger would be needed at Uckfield station.
  • Marshlink Line
  • Basingstoke and Exeter, where chargers would be needed at Salisbury and Exeter and possibly Yeovil Junction.

I feel with 25 KVAC overhead applications, we will soon run out of trains.

 

 

October 19, 2021 Posted by | Transport/Travel | , , , , , , , | 5 Comments

Vivarail At COP26

This press release from Network Rail is entitled Network Rail And Porterbrook To Showcase Britain’s Green Trains Of The Future At COP26.

These two paragraphs are from the end of the first section of the press release.

It is envisaged that the HydroFLEX may also be used to transport visitors to see the Zero Emission Train, Scotland’s first hydrogen powered train.

Network Rail is also in the earlier stages of planning a similar event with Vivarail to bring an operational battery train to COP26.

Vivarail have taken battery trains to Scotland before for demonstration, as I wrote about in Battery Class 230 Train Demonstration At Bo’ness And Kinneil Railway.

Will other train companies be joining the party?

Alstom

It looks like Alstom’s hydrogen-powered Class 600 train will not be ready for COP26.

But I suspect that the French would not like to be upstaged by a rolling stock leasing company and a university on the one hand and a company with scrapyard-ready redundant London Underground trains on the other.

I think, they could still turn up with something different.

They could drag one of their Coradia iLint trains through the Channel Tunnel and even run it to Scotland under hydrogen power, to demonstrate the range of a hydrogen-powered train.

Alstom have recently acquired Bombardier’s train interests in the UK and there have been rumours of a fleet of battery-electric Electrostars, even since the demonstrator ran successfully in 2015. Will the prototype turn up at COP26?

Alstom’s UK train factory is in Widnes and I’ve worked with Liverpudlians and Merseysiders on urgent projects and I wouldn’t rule out the Class 600 train making an appearance.

CAF

Spanish train company; CAF, have impressed me with the speed, they have setup their factory in Newport and have delivered a total of well over a hundred Class 195 and Class 331 trains to Northern.

I wrote Northern’s Battery Plans, in February 2020, which talked about adding a fourth-car to three-car Class 331 trains, to create a battery-electric Class 331 train.

Will the Spanish bring their first battery-electric Class 331 train to Glasgow?

I think, they just might!

After all, is there a better place for a train manufacturer looking to sell zero-carbon trains around the world to announce, their latest product?

Hitachi

A lot of what I have said for Alstom and CAF, could be said for Hitachi.

Hitachi have announced plans for two battery-electric trains; a Regional Battery Train and an Intercity Tri-Mode Battery Train.

I doubt that either of these trains could be ready for COP26.

But last week, I saw the new Hitachi Class 803 train speeding through Oakleigh Park station.

This is not a battery-electric train, where battery power can be used for traction, but according to Wikipedia and other sources, it is certainly an electric train fitted with batteries to provide hotel power for the train, when the overhead electrification fails.

Are these Class 803 trains already fitted with their batteries? And if they are, have they been tested?

And who is building the batteries for the Class 803 trains?

The traction batteries for Hitachi’s two battery-electric trains are to be produced by Hyperdrive Innovation of Sunderland, which is not far from Hitachi’s train factory at Newton Aycliffe.

As an engineer, I would suspect that a well-respected company like Hyperdrive Innovation, can design a battery-pack that plugs in to Hitachi’s trains, as a diesel engine would. I would also suspect that a good design, would allow an appropriate size of battery for the application and route.

I feel it is very likely, that all batteries for Hitachi’s UK trains will be designed and build by Hyperdrive Innovation.

If that is the case and the Class 803 trains are fitted with batteries, then Hitachi can be testing the battery systems.

This document on the Hitachi Rail web site, which is entitled Development of Class 800/801 High-speed Rolling Stock for UK Intercity Express Programme, gives a very comprehensive description of the electrical and computer systems of the Hitachi trains.

As an engineer and a computer programmer, I believe that if Hyperdrive Innovation get their battery design right and after a full test program, that Hitachi could be able to run battery-electric trains based on the various Class 80x trains.

It could be a more difficult task to fit batteries to Scotland’s Class 385 trains, as they are not fitted with diesel engines in any application. Although, the fitting of diesel engines may be possible in the global specification for the train.

It is likely that these trains could form the basis of the Regional Battery Train, which is described in this infographic.

Note.

  1. The Class 385 and Regional Battery trains are both 100 mph trains.
  2. Class 385 and Class 80x trains are all members of Hitachi’s A-Train family.
  3. Regional Battery trains could handle a lot of unelectrified routes in Scotland.

I wouldn’t be surprised to see Hitachi bring a battery-equipped train to COP26, if the Class 803 trains have a successful introduction into service.

Siemens

Siemens have no orders to build new trains for the national rail network in the UK.

But there are plans by Porterbrook and possibly other rolling stock leasing companies and train operators to convert some redundant Siemens-built trains, like Class 350 trains, into battery-electric trains.

According to Wikipedia, Siemens upgraded East Midlands Railways, Class 360 trains to 110 mph operation, at their Kings Heath Depot in Northampton.

Could Siemens be updating one of the Class 350 trains, that are serviced at that depot, to a prototype battery-electric Class 350 train?

Stadler

Stadler have a proven design for diesel-electric, battery-electric and hydrogen trains, that they sell all over the world.

In the UK, the only ones in service are Greater Anglia’s Class 755 trains, which are diesel-electric bi-mode trains.

The picture shows one of these trains at Ipswich.

  • They are 100 mph trains.
  • Diesel, battery or hydrogen modules can be inserted in the short PowerPack car in the middle of the train.
  • Diesel-battery-electric versions of these trains have been sold for operation in Wales.
  • The interiors of these trains are designed for both short journeys and a two-hour run.

There is a possibility, that these trains will be upgraded with batteries. See Battery Power Lined Up For ‘755s’.

Conclusion

Times will be interesting in Glasgow at COP26!

 

June 6, 2021 Posted by | Hydrogen, Transport/Travel, World | , , , , , , , , , , , , , , , , , | 5 Comments

EU Backs Orsted Team On Green Hydrogen Initiative

The title of this post, is the same as that as that of this article on renews.biz.

This is the sub-title of the article.

European Commission Funding For The Oyster Project That Also Includes Siemens Gamesa, Element Energy and ITM Power

There is a press release on ITM Power’s web site.

This paragraph sums up the project.

ITM Power, Ørsted, Siemens Gamesa Renewable Energy, and Element Energy have been awarded EUR 5 million in funding from The Fuel Cells and Hydrogen Joint Undertaking (FCH2-JU) under the European Commission to demonstrate and investigate a combined wind turbine and electrolyser system designed for operation in marine environments.

This is said about the design of the electrolyser.

The electrolyser system will be designed to be compact, to allow it to be integrated with a single offshore wind turbine, and to follow the turbine’s production profile. Furthermore, the electrolyser system will integrate desalination and water treatment processes, making it possible to use seawater as a feedstock for the electrolysis process.

It looks like it will be a standalone turbine, that instead of producing electricity it will produce hydrogen.

This paragraph gives the objective of the project.

The OYSTER project partners share a vision of hydrogen being produced from offshore wind at a cost that is competitive with natural gas (with a realistic carbon tax), thus unlocking bulk markets for green hydrogen making a meaningful impact on CO2 emissions, and facilitating the transition to a fully renewable energy system in Europe.

The project will run from 2021 to 2024.

When I first heard about creating hydrogen offshore with a combined wind-turbine and electrolyser, I thought this could be the way to go.

It’s certainly a way to produce large quantities of green hydrogen.

But I also feel, the process has a serious rival in Shell’s Blue Hydrogen Process, which uses a catalyst to split methane into hydrogen and carbon dioxide.

Shell will need uses for the carbon dioxide or worked-out gas fields to store it.

January 9, 2021 Posted by | Energy, Hydrogen | , , , , | 1 Comment

Fuel Cell Mireo Plus H To Be Trialled In Baden-Württemberg

The title of this post, is the same as that of this article on Railway Gazette.

This is the opening paragraph.

Deutsche Bahn and Siemens Mobility are to trial a fuel cell powered regional trainset in revenue service between Tübingen, Horb and Pforzheim in 2024, along with a green hydrogen fuelling plant.

These two paragraphs describe the train.

Siemens Mobility is to supply a two-car Mireo Plus H trainset derived from its Mireo Plus regional multiple-unit family, equipped with a newly developed hydrogen fuel cell drive and a lithium-ion battery.

The 1·7 MW traction power rating is expected to offer a comparable performance to the electric version, with an acceleration rate of 1·1 m/s² and a maximum speed of 160 km/h. Sufficient hydrogen will be stored onboard to give an operating range of up to 600 km, with the promoters envisaging that a three-car variant could have a range of 1 000 km.

The article doesn’t say anything about, whether the train can use electrification, but as the train is based on a conventional electric train, I would assume it is possible.

 

November 26, 2020 Posted by | Hydrogen, Transport/Travel | , , | 2 Comments

Siemens and Macquarie Form Calibrant Energy To Tackle Distributed Energy Market

The title of this post is the same as that of this article on Greentech Media.

This is the introductory paragraphs.

Macquarie Capital and Siemens have formed a joint venture to finance and build distributed energy projects, joining an increasingly competitive landscape in the growing corporate renewables market, the two announced this week.

The partnership, called Calibrant Energy, will initially focus its energy-as-a-service model in the United States, where corporate and industrial customers have become heavyweight renewables buyers as they seek to reach decarbonization goals.

It looks a good idea for a business venture.

I also like it, that two big corporate beats have got together tp finance and install renewable energy systems like solar.

October 7, 2020 Posted by | Energy, Finance | , , , | Leave a comment