The Anonymous Widower

Railfreight Goes Back To Diesel As Electricity Costs Soar

The title of this post, is the same as that of this article on Railnews.

This is the first paragraph.

Some rail freight operators have abandoned electric traction, at least for now, because the price of electricity has been rising sharply. The electricity tariffs include a 40 per cent renewable energy tax, and following the latest rises diesel traction is now cheaper. The drivers’ union ASLEF is calling for the government to intervene, but Freightliner has already taken action.

This quote from the article is from ASLEF General Secretary; Mick Whelan.

Moving freight by rail rather than road is, inherently, a carbon-efficient mode of transport and an environmentally-friendly way of doing business. Electric-hauled freight services reduce emissions by 99 per cent; even moving goods by diesel traction reduces emissions by 76 per cent.

It looks to me, that a reputable and trusted environmental economist could come up with a compromise price and possibly a solution to improve the situation.

Possible solutions could include.

  • Use of Biodiesel or Hydrotreated Vegetable Oil
  • More energy storage.

Surely, though, the long term solution is hydrogen-powered locomotives. or dual-fuel locomotives, as I wrote about in Freightliner Secures Government Funding For Dual-Fuel Project.

 

October 20, 2021 Posted by | Energy, Energy Storage, Hydrogen, Transport | , , , , , | 1 Comment

ITM Power Raises £250 million

The title of this post, is the same as that of this media release from ITM Power.

There is a also a sub-title.

Manufacturing Expanded To 5GW Per Annum By 2024

ITM Power are certainly going large.

Given the number of plans for electrolysers published around the world, a 5GW annual production is by no means over ambitious.

October 15, 2021 Posted by | Energy, Energy Storage, Hydrogen | , | Leave a comment

Sun Cable’s Australia-Asia PowerLink

Two weeks ago, in How Clean Energy And Jobs Can Flow From Morocco to The UK, I talked about a plan to generate electricity using solar arrays in Southern Morocco and use an underwater interconnector to bring it to the UK.

If you think that project was ambitious and distinctly bonkers, then that project is outshone by Sun Cable‘s Australia-Asia PowerLink, which is shown in this SunCable graphic.

These are a few facts about the project.

  • Electricity will be generated by solar panels in the Northern Territories of Australia.
  • There will be 12,000 hectares of solar panels in Australia, which will create 3.2 GW of electricity for distribution.
  • There will be a 36-42 GWh battery in Australia.
  • There will be 4,200 km of submarine HVDC cable to deliver the electricity to Singapore and Indonesia.
  • It looks like there will be batteries in Darwin and Singapore.
  • The link could supply up to fifteen percent of Singapore’s electricity.

It is certainly an ambitious project, that will contain the world’s largest solar array, the world’s largest battery, and the world’s longest submarine power cable.

Note.

  1. Currently, the largest solar park in the world is Bhadia Solar Park in India, which is half the size of the solar array proposed.
  2. At 720 km, the North Sea Link is the largest undersea HVDC is operation.
  3. The largest battery in the UK is Electric Mountain in Snowdonia, which is only 9.1 GWh.
  4. A Tesla Megapack battery of the required size would probably cost at least ten billion dollars.

This is certainly, a project that is dealing in superlatives.

Is The Australia-Asia PowerLink Possible?

I shall look at the various elements.

The Solar Panels

I have flown a Piper Arrow from Adelaide to Cairns.

  • My route was via Coober Pedy, Yulara, Alice Springs and Mount Isa.
  • There didn’t seem to be much evidence of rain.
  • The circle from South to East took four days of almost continuous flying, as Australia is not a small country.
  • It left me with the impression of a flat featureless and hot country.

Having seen solar panels on flat areas in the UK, the Australian Outback could be ideal for solar farms.

Sun Cable are talking about 10,000 hectares of solar panels, which is roughly 38.6 square miles or a 6.2 mile square.

Given enough money to source the solar panels and install them, I would expect that the required solar farm could be realised.

The Cable

Consider.

  • The North Sea Link is a 1.4 GW cable that is 720 km. long.
  • I would size it as 10008 GW-km, by multiplying the units together.
  • The Australia-Asia PowerLink will be 4200 km or nearly six times as long.
  • But at 3.2 GW as opposed to 1.4 GW, it will have 2.3 times the capacity.
  • I would size it as 13,400 GW-km.

Whichever way you look at it, the amount of cable needed will be massive.

The Battery

Currently, the largest battery in the world is the Bath County Pumped Storage Station, which has these characteristics.

  • Peak power of 3 GW
  • Storage capacity of 24 GWh.

Sun Cable’s 36-42 GWh battery will be the largest in the world, by a long way.

But I don’t think pumped storage will be suitable in the usually dry climate of Northern Australia.

The largest lithium-ion battery in the world is the Hornsdale Power Reserve in South Australia, which is only 150 MW/194 MWh, so something else will have to be used.

As Highview Power are building a CRYOBattery for the Atacama region in Chile, which I wrote about in The Power Of Solar With A Large Battery, I wonder, if a cluster of these could provide sufficient storage.

 

October 12, 2021 Posted by | Energy Storage, Energy | , , , , , , , , , | Leave a comment

Tesla Batteries Power UK Energy Storage Plan

The title of this post, is the same as that of this article on The Times.

Britain’s energy problems could be alleviated by a new scheme to build power-storage sites across the UK using batteries produced by Tesla, the electric carmaker.

Six sites will be built by Harmony Energy Income Trust.

  • The trust intends to raise £230 million in a stock market listing.
  • The trust was registered on the 1st October 2021.
  • The batteries will be built in rural locations.
  • The sites will use Tesla Magapack batteries and Autobidder software.
  • These batteries charge up in two hours and provide energy for two hours.
  • The sites are “shovel ready”
  • All planning permissions and contracts have been signed.

It would appear that everything is ready to go.

This is a paragraph in The Times article.

The trust is a spin-off from developer Harmony Energy, which found the six sites and obtained the permissions for construction. The developer will retain a minority stake after the listing.

It is also said in the article that two sites at Holes Bay in Dorset and Contego in West Sussex, have already been developed using Tesla batteries.

The Harmony Energy web site lists fifteen wind projects and thirteen battery projects.

  • The average size of the battery projects is an output of 44 MW.
  • If they can supply that for two hours, the average capacity would be 88 MWh.

The company does appear to be developing smaller batteries than the two established energy storage funds; Gore Street and Gresham House. But then everyone can use their own plan.

October 10, 2021 Posted by | Energy, Energy Storage | , , , | Leave a comment

UK National Grid In Talks To Build An Energy Island In The North Sea

The title of this post, is the same as that of this article on the New Scientist.

This is the first paragraph.

UK company National Grid has revealed it is in talks with two other parties about building an “energy island” in the North Sea that would use wind farms to supply clean electricity to millions of homes in north-west Europe.

These are my thoughts.

An Artificial Island on the Dogger Bank

The idea of the North Sea Wind Power Hub in the area of the Dogger Bank has been around for a few years and has a comprehensive Wikipedia entry.

Wikipedia says that it would be an artificial island on the Dutch section of the Dogger Bank and the surrounding sea could eventually host up to 110 GW of wind turbines.

North Sea Wind Power Hub Programme

The Dutch and the Danes seems to have moved on and there is now a web site for the North Sea Wind Power Hub Programme.

The home page is split into two, with the upper half entitled Beyond The Waves and saying.

The incredible story of how the Netherlands went beyond technical engineering as it had ever been seen before. Beyond water management. To secure the lives of millions of inhabitants.

I have met Dutch engineers, who designed and built the Delta Works after the North Sea Floods of 1953 and I have seen the works all over the country and it is an impressive legacy.

And the lower half of the home page is entitled North Sea Wind Power Hub and saying.

Today, climate policy is largely national, decoupled and incremental. We need a new approach to effectively realise the potential of the North Sea and reach the goals of the Paris Agreement. We take a different perspective: harnessing the power of the North Sea requires a transnational and cross-sector approach to take the step-change we need.

Behind each half are two videos, which explain the concept of the programme.

It is a strange web site in a way.

  • It is written totally in English with English not American spelling.
  • The project is backed by Energinet, Gasunie and TenneT, who are Danish and Dutch companies, that are responsible for gas and electricity distribution networks in Denmark, Ger,many and The Netherlands.
  • There are four sections to the web site; Netherlands, Germany, Denmark and North Sea.

It is almost as if the web site has been designed for a British company to join the party.

Hubs And Spokes In North Sea Wind Power Hub Programme

If you watch the videos on the site, they will explain their concept of hubs and spokes, where not one but several energy islands or hubs will be connected by spokes or electricity cables and/or hydrogen pipelines to each other and the shore.

Many electrical networks on land are designed in a similar way, including in the UK, where we have clusters of power stations connected by the electricity grid.

The Dogger Bank

The Dogger Bank is a large sandbank in a shallow area of the North Sea about 100 kilometres off the east coast of England.

Wikipedia says this about the geography of the Dogger Bank.

The bank extends over about 17,600 square kilometres (6,800 sq mi), and is about 260 by 100 kilometres (160 by 60 mi) in extent. The water depth ranges from 15 to 36 metres (50 to 120 ft), about 20 metres (65 ft) shallower than the surrounding sea.

As there are Gunfleet Sands Wind Farm and Scroby Sands Wind Farm and others, on sandbanks in the North Sea, it would appear that the engineering of building wind farms on sandbanks in the North Sea is well understood.

The Dogger Bank Wind Farm

We are already developing the four section Dogger Bank Wind Farm in our portion of the Dogger Bank and these could generate up to 4.8 GW by 2025.

The Dogger Bank Wind Farm has its own web site, which greets you with this statement.

Building the World’s Largest Offshore Wind Farm

At 4.8 GW, it will be 45 % larger than Hinckley Point C nuclear power station, which is only 3.3 GW. So it is not small.

The three wind farms; Dogger Bank A, B and C will occupy 1670 square kilometres and generate a total of 3.6 GW or 0.0021 GW per square kilometre.

If this density of wind turbines could be erected all over the Dogger Bank, we could be looking at nearly 40 GW of capacity in the middle of the North Sea.

Interconnectors Across The North Sea

This Google Map shows the onshore route of the cable from the Dogger Bank Wind Farm.

Note.

  1. Hull and the River Humber at the bottom of the map.
  2. The red arrow which marks Creyke Beck sub station, where the cable from the Dogger Bank Wind Farm connects to the UK electricity grid.
  3. At the top of the map on the coast is the village of Ulrome, where the cable comes ashore.

The sub station is also close to the Hull and Scarborough Line, so would be ideal to feed any electrification erected.

I would assume that cables from the Dogger Bank Wind Farm could also link the Wind Farm to the proposed Dutch/Danish North Sea Wind Power Hub.

Given that the cables between the wind farms and Creyke Beck could in future handle at least 4.8 GW and the cables from the North Sea Wind Power Hub to mainland Europe would probably be larger, it looks like there could be a very high capacity interconnector between Yorkshire and Denmark, Germany and The Netherlands.

It almost makes the recently-opened North Sea Link to Norway, which is rated at 1.4 GW seem a bit small.

The North Sea Link

The North Sea Link is a joint project between Statnett and National Grid, which cost €2 billion and appears to have been delivered as planned, when it started operating in October 2021.

So it would appear that National Grid have shown themselves capable of delivering their end of a complex interconnector project.

Project Orion And The Shetlands

In Do BP And The Germans Have A Cunning Plan For European Energy Domination?, I introduced Project Orion, which is an electrification and hydrogen hub and clean energy project in the Shetland Islands.

The project’s scope is described in this graphic.

Note that Project Orion now has its own web site.

  • Could the Shetlands become an onshore hub for the North Sea Power Hub Programme?
  • Could Icelink, which is an interconnector to Iceland be incorporated?

With all this renewable energy and hydrogen, I believe that the Shetlands could become one of the most prosperous areas in Europe.

Funding The Wind Farms And Other Infrastructure In The North Sea

In World’s Largest Wind Farm Attracts Huge Backing From Insurance Giant, I described how Aviva were funding the Hornsea wind farm.

I very much believe that City of London financial institutions will be able to finance a lot of the developments in the North Sea.

After all National Grid managed to find a billion euros in a sock drawer to fund their half of the North Sea Link.

Electrifying The North Sea: A Gamechanger For Wind Power Production?

The title of this section, is the same as that of this article on Engineering and Technology Magazine.

This article in the magazine of the IET is a serious read and puts forward some useful facts and interesting ideas.

  • The EU is targeting offshore wind at 60 GW by 2030 and 300 GW by 2050.
  • The UK is targeting offshore wind at 40 GW by 2030.
  • The article explains why HVDC electricity links should be used.
  • The major players in European offshore wind are the UK, Belgium, the Netherlands, Germany, and Denmark.
  • The foundations for a North Sea grid, which could also support the wider ambitions for a European super-grid, are already forming.
  • A North Sea grid needs co-operation between governments and technology vendors. as well as technological innovation.
  • National Grid are thinking hard about HVDC electrical networks.
  • By combining HVDC links it can be possible to save a lot of development capital.
  • The Danes are already building artificial islands eighty kilometres offshore.
  • Electrical sub-stations could be built on the sea-bed.

I can see that by 2050, the North Sea, South of a line between Hull and Esbjerg in Denmark will be full of wind turbines, which could generate around 300 GW.

Further Reading

There are various articles and web pages that cover the possibility of a grid in the North Sea.

I shall add to these as required.

Conclusion

I am coming to the conclusion that National Grid will be joining the North Sea Wind Power Hub Programme.

  • They certainly have the expertise and access to funding to build long cable links.
  • The Dogger Bank wind farm would even be one of the hubs in the planned hub and spoke network covering the North Sea.
  • Only a short connection would be needed to connect the Dogger Bank wind farm, to where the Dutch and Danes originally planned to build the first energy island.
  • There may be other possibilities for wind farm hubs in the UK section of the North Sea. Hornsea Wind Farm, which could be well upwards of 5 GW is surely a possibility.
  • Would it also give access to the massive amounts of energy storage in the Norwegian mountains, through the North Sea Link or Nord.Link between Norway and Germany.

Without doubt, I know as a Control Engineer, that the more hubs and spokes in a network, the more stable it will be.

So is National Grid’s main reason to join is to stabilise the UK electricity grid? And in turn, this will stabilise the Danish and Dutch grids.

 

October 9, 2021 Posted by | Energy, Energy Storage, Hydrogen | , , , , , , , , , , , , , , , | 4 Comments

UK To Norway Sub-Sea Green Power Cable Operational

The title of this post is the same as that of this article on the BBC.

This is the first two paragraphs.

The world’s longest under-sea electricity cable, transferring green power between Norway and the UK, has begun operation.

The 450-mile (725km) cable connects Blyth in Northumberland with the Norwegian village of Kvilldal.

The BBC article is based on this press release from National Grid.

The link has been called the North Sea Link (NSL).

These are some thoughts.

What Is The Capacity Of The North Sea Link?

The National Grid press release says this.

[The link] will start with a maximum capacity of 700 megawatts (MW) and gradually increase to the link’s full capacity of 1400MW over a three-month period.

It also says this.

Once at full capacity, NSL will provide enough clean electricity to power 1.4 million homes.

It is more or less equivalent to two or three gas-fired power stations.

What Is The Operating Philosophy Of The North Sea Link?

The National Grid press release says this.

The Norwegian power generation is sourced from hydropower plants connected to large reservoirs, which can respond faster to fluctuations in demand compared to other major generation technologies. However, as the water level in reservoirs is subject to weather conditions, production varies throughout seasons and years.

When wind generation is high and electricity demand low in Britain, NSL will enable renewable power to be exported from the UK, conserving water in Norway’s reservoirs. When demand is high in Britain and there is low wind generation, hydro power can be imported from Norway, helping to ensure secure, affordable and sustainable electricity supplies for UK consumers.

It almost seems to me, that the North Sea Link is part of a massive pumped-storage system, where we can bank some of our wind-generated electricity in Norway and draw it out when we need it.

I would suspect that the rate and direction of electricity transfer is driven by a very sophisticated algorithm, that uses detailed demand and weather forecasting.

As an example, if we are generating a lot of wind power at night, any excess that the Norwegians can accept will be used to fill their reservoirs.

The Blyth Connection

This page on the North Sea Link web site, describes the location of the UK end of the North Sea Link.

These three paragraphs describe the connection.

The convertor station will be located just off Brock Lane in East Sleekburn. The site forms part of the wider Blyth Estuary Renewable Energy Zone and falls within the Cambois Zone of Economic Opportunity.

The converter station will involve construction of a series of buildings within a securely fenced compound. The buildings will be constructed with a steel frame and clad with grey insulated metal panels. Some additional outdoor electrical equipment may also be required, but most of the equipment will be indoors.

Onshore underground cables will be required to connect the subsea cables to the converter station. Underground electricity cables will then connect the converter station to a new 400kV substation at Blyth (located next to the existing substation) which will be owned and operated by National Grid Electricity Transmission PLC.

This Google Map shows the area.

Note.

  1. The light grey buildings in the North-West corner of the map are labelled as the NSL Converter Station.
  2. Underground cables appear to have been dug between the converter station and the River Blyth.
  3. Is the long silver building to the West of the triangular jetty, the 400 KV substation, where connection is made to the grid?

The cables appear to enter the river from the Southern point of the triangular jetty. Is the next stop Norway?

Britishvolt And The North Sea Link

Britishvolt are are building a factory at Blyth and this Google Map shows are to the North and East of the NSL Converter Station.

Note the light-coloured buildings of the NSL Converter Station.

I suspect there’s plenty of space to put Britishvolt’s gigafactory between the converter station and the coast.

As the gigafactory will need a lot of electricity and preferably green, I would assume this location gives Britishvolt all they need.

Where Is Kvilldal?

This Google Map shows the area of Norway between Bergen and Oslo.

Note.

  1. Bergen is in the North-West corner of the map.
  2. Oslo is at the Eastern edge of the map about a third of the way down.
  3. Kvilldal is marked by the red arrow.

This second Google Map shows  the lake to the North of Kvilldal.

Note.

  1. Suldalsvatnet is the sixth deepest lake in Norway and has a volume of 4.49 cubic kilometres.
  2. Kvilldal is at the South of the map in the middle.

This third Google Map shows Kvilldal.

Note.

  1. Suldalsvatnet is the dark area across the top of the map.
  2. The Kvilldal hydro-electric power station on the shore of the lake.
  3. Kvilldal is to the South-West of the power station.

Kvilldal doesn’t seem to be the biggest and most populous of villages. But they shouldn’t have electricity supply problems.

Kvilldal Power Station And The North Sea Link

The Wikipedia entry for Kvilldal power station gives this information.

The Kvilldal Power Station is a located in the municipality of Suldal. The facility operates at an installed capacity of 1,240 megawatts (1,660,000 hp), making it the largest power station in Norway in terms of capacity. Statnett plans to upgrade the western grid from 300 kV to 420 kV at a cost of 8 billion kr, partly to accommodate the NSN Link cable] from Kvilldal to England.

This power station is almost large enough to power the North Sea Link on its own.

The Kvilldal power station is part of the Ulla-Førre complex of power stations and lakes, which include the artificial Lake Blåsjø.

Lake Blåsjø

Lake Blåsjø would appear to be a lake designed to be the upper reservoir for a pumped-storage scheme.

  • The lake can contain 3,105,000,000 cubic metres of water at its fullest.
  • The surface is between 930 and 1055 metres above sea level.
  • It has a shoreline of about 200 kilometres.

This Google Map shows the Lake.

Note the dam at the South end of the lake.

Using Omni’s Potential Energy Calculator, it appears that the lake can hold around 8 TWh of electricity.

A rough calculation indicates that this could supply the UK with 1400 MW for over eight months.

The Wikipedia entry for Saurdal power station gives this information.

The Saurdal Power Station is a hydroelectric and pumped-storage power station located in the municipality of Suldal. The facility operates at an installed capacity of 674 megawatts (904,000 hp) (in 2015). The average energy absorbed by pumps per year is 1,189 GWh (4,280 TJ) (in 2009 to 2012). The average annual production is 1,335 GWh (4,810 TJ) (up to 2012)

This Google Map shows the area between Kvilldal and Lake Blåsjø.

Note

  1. Kvilldal is in the North West of the map.
  2. Lake Blåsjø is in South East of the map.

This second Google Map shows the area to the South-East of Kvilldal.

Note.

  1. Kvilldal is in the North-West of the map.
  2. The Saurdal power station is tight in the South-East corner of the map.

This third Google Map shows a close-up of Saurdal power station.

Saurdal power station is no ordinary power station.

This page on the Statkraft web site, gives a brief description of the station.

The power plant was commissioned during 1985-1986 and uses water resources and the height of fall from Lake Blåsjø, Norway’s largest reservoir.

The power plant has four generating units, two of which can be reversed to pump water back up into the reservoir instead of producing electricity.

The reversible generating units can thus be used to store surplus energy in Lake Blåsjø.

Is Lake Blåsjø and all the power stations just a giant battery?

Economic Effect

The economic effect of the North Sea Link to both the UK and Norway is laid out in a section called Economic Effect in the Wikipedia entry for the North Sea Link.

Some points from the section.

  • According to analysis by the United Kingdom market regulator Ofgem, in the base case scenario the cable would contribute around £490 million to the welfare of the United Kingdom and around £330 million to the welfare of Norway.
  • This could reduce the average domestic consumer bill in the United Kingdom by around £2 per year.
  • A 2016 study expects the two cables to increase price in South Norway by 2 øre/kWh, less than other factors.

This Economic Effect section also talks of a similar cable between Norway and Germany called NorGer.

It should be noted, that whereas the UK has opportunities for wind farms in areas to the North, South, East and West of the islands, Germany doesn’t have the space in the South to build enough wind power for the area.

There is also talk elsewhere of an interconnector between Scotland and Norway called NorthConnect.

It certainly looks like Norway is positioning itself as Northern Europe’s battery, that will be charged from the country’s extensive hydropower and surplus wind energy from the UK and Germany.

Could The Engineering Be Repeated?

I mentioned NorthConnect earlier.

  • The cable will run between Peterhead in Scotland and Samnanger in Norway.
  • The HVDC cable will be approximately 665 km long.
  • The cable will be the same capacity as the North Sea Link at 1400 MW.
  • According to Wikipedia construction started in 2019.
  • The cable is planned to be operational in 2022.
  • The budget is €1.7 billion.

Note.

  1. Samnager is close to Bergen.
  2. NorthConnect is a Scandinavian company.
  3. The project is supported by the European Union, despite Scotland and Norway not being members.
  4. National Grid is not involved in the project, although, they will be providing the connection in Scotland.

The project appears to be paused at the moment, awaiting how North Sea Link and NordLink between Norway and Germany are received.

There is an English web site, where this is the mission statement on the home page.

NorthConnect will provide an electrical link between Scotland and Norway, allowing the two nations to exchange power and increase the use of renewable energy.

This sounds very much like North Sea Link 2.

And then there is Icelink.

  • This would be a 1000-1200 km link between Iceland and the UK.
  • It would have a capacity of 1200 MW.
  • National Grid are a shareholder in the venture.
  • It would be the longest interconnector in the world.

The project appears to have stalled.

Conclusion

I can see these three interconnectors coming together to help the UK’s electricity generation become carbon-free by 2035.

 

 

 

 

 

October 3, 2021 Posted by | Computing, Energy, Energy Storage | , , , , , , , , | 9 Comments

Good Energy’s Juliet Davenport Joins Gravitricity

The title of this post, is the same as that of this article on Solar Power Portal.

Taking the title of this article at face value, it is probably good practice for a company like Gravitricity to take on someone like Juliet Davenport, as they move to the next phase of their business.

The article also mentions Gravitricity’s developments in the storage of hydrogen and heat.

This paragraph also mentions a new development.

Gravitricity is now developing plans for a full-scale energy storage project at a recently closed coal mine in mainland Europe, in what will be the start of a pipeline of projects worldwide.

That does seem to be good news.

Note that it is recently closed coal mine. This is surely for the best, as who knows what the state of long-disused mine will be? My project management and engineering knowledge, says that an orderly handover can reduce the cost of the installation.

 

 

October 2, 2021 Posted by | Energy, Energy Storage | , | Leave a comment

Quinbrook To Build The UKs Largest Consented Solar + Battery Storage Project

The title of this post, is the same as that article on Financial Buzz.

This is the first paragraph.

Quinbrook Infrastructure Partners (“Quinbrook”), a specialist global investment manager focused exclusively on renewables, storage and grid support infrastructure investment, today announced that it has acquired a consented 350MW Solar + Battery storage project, located in Kent, UK (“Project Fortress”). Quinbrook expects to commence construction of the project in the first half of 2022.

I have also read about Quinbrook on their web site.

A section on the site is entitled Our Industry Pedigree, where this is said.

Quinbrook is led and managed by a senior team of power industry professionals who have collectively invested over US$ 8.2 billion in energy infrastructure assets since the early 1990’s, representing over 19.5GW of power supply capacity. Our team brings an industrial perspective to investing in low carbon and renewables infrastructure.

Could companies like this be one of the keys to get more renewable power sources delivered?

September 29, 2021 Posted by | Energy, Energy Storage, World | , , , | Leave a comment

How Clean Energy And Jobs Can Flow From Morocco to The UK

The title of this post, is the same as that of this article in The Times.

  • The article has been written by Simon Morrish, who is the founder and CEO of Xlinks.
  •  The article is about his plans to build a 10.5 GW solar and wind power complex in Morocco and connect it to the UK, by an undersea power cable running up the coasts of Morocco, Spain, Portugal and France.
  • This page on the Xlinks web site gives details of the project.

These are some points from the article.

Relationship With The Exchequer

He makes these points about the projects relationship with the Exchequer.

  • The company will be a net contributor.
  • The project will not require government subsidy of finance.
  • Energy will be delivered under the Contract for Difference (CfD) price of £48/MWh.
  • This compares with a CfD price of £92/MWh for Hinckley Point C.

Simon Morrish also claims they will be energised before Hinckley Point C.

That sounds good to me.

Finance

I wonder if at the CfD price quoted in the  article, could this mean that this is a project that could be financed in the City of London or from a Sovereign Wealth Fund?

As Simon  is confident the project can be completed before Hinckley Point C, I suspect that the finance might be in place, even if it hasn’t been signed off.

The 20GWh/5GW Battery

Simon says this about the battery.

Alongside the consistent output from its solar panels and wind turbines, a 20GWh/5GW battery facility will ensure power generated can be delivered every day, resulting in a dedicated, near-constant source of flexible and predictable renewable energy, designed to complement renewable energy generated in the UK.

In Moroccan Solar-Plus-Wind To Be Linked To GB In ‘Ground-Breaking’ Xlinks Project, I forecast that the battery would be from Highview Power, but given the delivery date before Hinckley Point C, I would suspect that Xlinks have a battery supplier in mind.

Employment Benefits

Simon says this about employment benefits.

Thousands of jobs will be created in Morocco and also at home.

If the project goes ahead, given its size, I don’t think many would disagree with that.

Simon also claims the project will create 1350 permanent jobs by 2024. Sites mentioned include Hunterston, Port Talbot and the North East of England.

Simon’s Conclusion

This is Simon’s conclusion about the project.

I love the idea of clean electricity flowing, all the way from Morocco to the UK. I hope it may inspire other ambitious renewable energy projects too — which, together, will provide clean, secure and stable energy, at affordable prices, for businesses and households to rely on and help to protect this special planet.

If you can, I suggest you read the full article on The Times.

Conclusion

The more I read about this project, the more I tilt towards it being feasble

Engineering is the science of the possible, whereas politics is dreads of the impossible.

September 29, 2021 Posted by | Energy, Energy Storage, Finance | , , , , | 1 Comment

Breakthrough Energy Storage And R&D Company SuperDielectrics Expands At Chesterford Research Park

The title of this post, is the same as that of this article on Cambridge Network.

This is the first paragraph.

Chesterford Research Park is delighted to announce the expansion of an existing occupier, SuperDielectrics, into new laboratory and write up space within the Emmanuel Building.

But it does flag up progress by one of Cambridge’s new companies; SuperDielectrics.

Superdielectrics’ mission is to develop high energy density, low cost, low environmental impact electrical energy storage devices that will help create a clean and sustainable global energy and transportation system. Superdielectric’s storage devices (supercapacitors) are not only safe, rapidly rechargeable and have a long life, they contain no rare materials or conflict metals and have the added benefit of reducing pollution and waste with no end-of-life recycling issues.

I believe they are a company to watch, as supercapacitors can take over some applications of lithium-ion batteries.

September 28, 2021 Posted by | Energy Storage | , , , | 1 Comment